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Hill-Climbing Attacks and Robust Online Signature Verification
Algorithm against Hill-Climbing Attacks

Daigo MURAMATSU†a), Member

SUMMARY Attacks using hill-climbing methods have been reported
as a vulnerability of biometric authentication systems. In this paper, we
propose a robust online signature verification algorithm against such at-
tacks. Specifically, the attack considered in this paper is a hill-climbing
forged data attack. Artificial forgeries are generated offline by using the
hill-climbing method, and the forgeries are input to a target system to be
attacked. In this paper, we analyze the menace of hill-climbing forged data
attacks using six types of hill-climbing forged data and propose a robust
algorithm by incorporating the hill-climbing method into an online signa-
ture verification algorithm. Experiments to evaluate the proposed system
were performed using a public online signature database. The proposed
algorithm showed improved performance against this kind of attack.
key words: hill-climbing attack, online signature verification, biometrics,
vulnerability, offline attack

1. Introduction

Biometric person authentication technologies are becoming
more important in the drive to ensure security. These tech-
nologies are being actively studied, and some of them are
being used in real situations. However, several vulnerabili-
ties have been reported [1], [2], including a hill-climbing at-
tack [3]. Hill-climbing attacks against biometric systems of
several modalities, such as face [4]–[7], fingerprints [8], [9],
and online signatures [10], [11] have been reported.

There are two types of hill-climbing attack:
1. Online hill-climbing attack: Attackers access the tar-

geted biometric system directly and attack it repeat-
edly [4]–[11].

2. Offline hill-climbing attack (hill-climbing forged data
attack): Attackers repeatedly access a physically differ-
ent biometric system from the targeted biometric sys-
tem and generate hill-climbing forged data. Then, the
forged data is input to the targeted biometric system.

Several countermeasures against online attacks have been
reported, for example, limiting the number of sequential at-
tempts [3], score transformation [12], and so on. Also, a
parameter-updating method [13], [14] is one possible solu-
tion. However, these measures are not useful against an of-
fline attack because attackers do not need to access the tar-
geted biometric system repeatedly; rather, they input forged
data to the targeted biometric system only once. Thus, dif-
ferent countermeasures are necessary against an offline at-
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tack. However, no useful countermeasures for any type of
modality have been proposed.

In this paper, we propose a countermeasure against of-
fline hill-climbing attacks for online signature verification.
A robust online signature verification algorithm against such
attacks was implemented by incorporating a hill-climbing
algorithm into a verification algorithm.

Experiments were performed using a public online sig-
nature database, SVC2004 [15]. Experimental results show
that the proposed algorithm had improved performance
against hill-climbing forged data attacks.

We first describe a basic online signature verification
algorithm in Sect. 2.1. In Sect. 2.2, we explain why the
hill-climbing attack is a menace for online signature veri-
fication, and in Sect. 2.3, we propose a robust online signa-
ture verification algorithm against hill-climbing attacks. We
performed several experiments using a public database. In
Sects. 3.1 and 3.2, we explain details of the algorithm for
online signature verification and hill-climbing used in the
experiment, and we report and discuss the experimental re-
sults in the rest of Sect. 3. Finally, we conclude this paper in
Sect. 4.

2. Methodology

2.1 Basic Online Signature Verification Algorithm

Before describing hill-climbing attacks and our proposed
system, let us review a basic online signature verification
algorithm. Online signature verification is an automatic bio-
metric person authentication method that uses data obtained
while a signature is being written. This method has been
extensively studied [16]–[20] and several compatitions were
held [15], [21]–[23].

Online verification algorithms can be classified into
two approaches: parameter-based and function-based [16]
(or feature-based and function-based [20]). In this paper, we
focus on a function-based algorithm that utilizes dynamic
time warping [24] to calculate dissimilarity scores.

A basic function-based algorithm is depicted in Fig. 1.
The algorithm consists of an enrollment phase and a verifi-
cation phase.

All online signatures are represented as elements of a
set S . Let GS E ⊂ S M be a set of (sequences of) genuine
signatures submitted during the enrollment phase, and GS V

and FS ⊂ S be sets consisting of the genuine signatures and
forged signatures presented during the verification phase.

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers
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Fig. 1 Basic online signature verification algorithm.

Let U be a feature space, and E : S → U be feature ex-
tracttion from the set S to a set U. Define �E : S M → UM

by

�E(�s) = (E(si))1≤i≤M (1)

= (ui)1≤i≤M ∈ UM

for any �s = (si)1≤i≤M ∈ GS E . For any s ∈ GS V (or FS ) and
any �s ∈ �S , let Dscore(s, �s;E) denote a dissimilarity score s
presented during the verification phase for the enrolled on-
line signature reference data �s, associated with feature ex-
traction.

2.1.1 Enrollment Phase

In this phase, a user provides signatures for enrollment.
From these signatures, �s are obtained, and time-series fea-
ture vectors �u are extracted and enrolled as reference data.

2.1.2 Verification Phase

In this phase, a user submits a signature s. Then a time-
series feature vector u is extracted, and a decision is made
as to whether s is{

accepted if Dscore(s, �s;E) < ΘNS

rejected otherwise
, (2)

where θNS is a threshold for decision making.

2.2 Hill-Climbing Attack

A schematic diagram of the hill-climbing (HC) forged data
attack is shown in Fig. 2. This attack is an offline attack;
thus, there are two systems: a targeted system and an HC-
attacked system.

Targeted system This system is the one that attackers want
to attack.

Fig. 2 Hill-climbing forged data attack.

HC-attacked system This system is a physically different
one from the targeted system. Hill-climbing attacks are
performed against this system to generate hill-climbing
forged data (HC forgery).

The hill-climbing forged attack is performed in two steps:
an HC-forgery generation step and an attack step.

2.2.1 HC-Forgery Generation Step

Let s f ∈ FS and sg ∈ GS V be a forged signature and a
genuine signature, respectively. Let �s be a genuine signa-
ture set used for reference generation in the HC-attacked
system and �s′ be a genuine signature set used in the target
system. Let E and E′ be feature extraction schemes used in
the HC-attacked system and the target system, respectively.
The forged signature s f is input to the HC-attacked system,
and an HC forgery is generated using hill-climbing methods.
Let H : S → S be a modification from the set S to S , and
let s f (i)

E (�s) be the i-th modified signature from s f , described
by

s f (i)
E (�s) = H(s f (i−1)

E , �s;E)

= H (i)(s f , �s;E). (3)

The modification is designed so that

Dscore(s f (i+1)
E (�s), �s;E)<Dscore(s f (i)

E (�s), �s;E). (4)

By repeating the modification, an attacker can decrease
the dissimilarity score to a converged score, obtaining con-
verged hill-climbing forged data s f

(Icvg)
E (�s) described by

s f
(Icvg)
E (�s) = H (Icvg)(s f , �s;E).

Here,

Icvg = min
i

{i|Dscore(s f (i)
E (�s), �s;E) = Dscore(s f (i−L)

E (�s), �s;E)},
and L is a parameter for the convergence test.

2.2.2 Attack Step

The generated HC forgery s f
(Icvg)
E (�s) is input to the targeted
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system only once. No hill-climbing method is performed in
this step. Thus, countermeasures for a direct hill-climbing
attack (e.g. [3], [12]) are not useful against a hill-climbing
forged data attack. The decision is made based on (2); thus,
s f

(Icvg)
E (�s) is falsely accepted if Dscore(s f

(Icvg)
E (�s), �s′;E′) is

less than the threshold.

2.3 Robust Algorithm for Hill-Climbing Attack

The reason why a hill-climbing forged data attack
becomes a menace is that the dissimilarity scores
Dscore(s f

(Icvg)
E (�s), �s′;E′) of many s f

(Icvg)
E (�s) generated from

s f are less than the dissimilarity scores Dscore(sg, �s′;E′)
of genuine signatures sg. Therefore, the system cannot
make decisions correctly by using (2). If there is a way
to make the dissimilarity scores of genuine signatures less
than Dscore(s f

(Icvg)
E (�s), �s′;E′), a robust algorithm against a

hill-climbing forged data attack can be generated.
We applied a hill-climbing method to modify genuine

signatures sgi ∈ GS V , i = 1, 2, . . . , 5 and observed changes
of the dissimilarity scores†. Figure 3 shows changes of dis-
similarity scores as a function of iteration number. Solid
lines indicate the changes of dissimilarity scores of sg. For
comparison, changes of dissimilarity scores of random forg-
eries s fi ∈ FS , i = 1, 2, . . . , 5 are also illustrated in bro-
ken lines. Initial dissimilarity scores (iteration number =
0) of sgi and s fi represent those of raw genuine signatures
Dscore(sgi, �s′;E′) and raw forgeries Dscore(s fi, �s′;E′). All
dissimilarity scores of both types of signatures are improved
and converged. However, hill-climbing methods cannot find
a global optimum, but only a local optimum. The con-
verged scores of s fi are exactly Dscore(s f

(Icvg)
iE′ (�s′), �s′;E′).

Although the initial dissimilarity scores Dscore(sgi, �s′;E′)
are larger than Dscore(s f

(Icvg)
iE′ (�s′), �s′;E′), the converged dis-

similarity scores of sgi (dissimilarity scores of hill-climbing
genuine sg

(Icvg)
iE′ (�s′) Dscore(sg

(Icvg)
iE′ (�s′), �s′;E′) are less than

Dscore(s f
(Icvg)
E′ (�s′), �s′;E′). Converged scores can be useful

for rejecting hill-climbing forged data.
Therefore, we propose an algorithm that uses a hill-

climbing method, as depicted in Fig. 4. The difference be-
tween the proposed algorithm and the basic one depicted
in Fig. 1 is that a data modification step is incorporated
into the verification phase and this data modification is per-
formed repeatedly. In the data modification step, a time-
series feature vector is modified so as to decrease a dissimi-
larity score, and the data modification and dissimilarity cal-
culation are repeated until the dissimilarity score converges.
By repeating these steps, hill-climbing is performed, and
a converged dissimilarity score is calculated. Then, using
the converged dissimilarity score, a decision is made as to
whether s is{

accepted if Dscore(H (Icvg)(s, �s′;E′), �s′;E′)<ΘHS

rejected otherwise
, (5)

where θHS is a threshold for decision making.

Fig. 3 Changes of signature dissimilarity scores.

Fig. 4 Proposed online signature verification algorithm.

3. Simulation

3.1 Online Signature Verification Algorithm

3.1.1 Raw Data

Trajectories of pen position, pen pressure, and pen inclina-
tions are acquired from a tablet. However, only pen position
trajectories are considered in this paper. The raw data s ∈ S
acquired from the tablet is

s = (xt, yt), t = 1, 2, . . . ,T,

where T is the number of the sample points.
†Details of the online signature verification algorithm and the

hill-climbing algorithm used in this simulation are described in
Sects. 3.1 and 3.2.



MURAMATSU: ROBUST ONLINE SIGNATURE VERIFICATION ALGORITHM AGAINST HILL-CLIMBING ATTACKS
451

3.1.2 Feature Extraction

Several features can be extracted from a signature s. In this
paper, we considered three feature extractions: EXY , EV xVy,
and E|V |θ. In each feature extraction, a time-series feature
vector u = (u1t, u2t) is extracted:

(EXY ):

u1t = xt

u2t = yt, t = 1, 2, . . . ,T

(EV xVy):

u1t = vxt

= xt+1 − xt

u2t = vyt

= yt+1 − yt, t = 1, 2, . . . ,T − 1

(E|V |θ):

u1t =

√
vx2

t + vy2
t

u2t = tan−1

(
vyt

vxt

)
, t = 1, 2, . . . ,T − 1.

3.1.3 Dissimilarity Calculation and Decision Making

The extracted feature data u is compared with reference data
�u = (ui)1≤i≤M , and dissimilarity scores Dscore(s, �s′;E′) are
calculated. Comparing the two signature data items is not
easy because the length and shape of the signatures differ
every time they are written, even if they are generated by
the same user. Thus, dynamic time warping (DTW) [24] is
used for the distance calculation. Figure 5 shows details
of the dynamic time warping algorithm used in this paper.
By using this, a minimum distance between two time-series
features D(·, ·) is calculated.

The dissimilarity score Dscore(s, �s′;E′) is calculated
by

Let the two time-series features to be compared be

a = {(ai)}TI
i=1 = {(a1i, a2i)}TI

i=1,

b = {(b j)}TJ
j=1 = {(b1 j, b2 j}TJ

j=1

1.Initialization

dist(0, 0) = 0

2.Recursion

dist(i, j) =

= min

⎧⎪⎪⎪⎨⎪⎪⎪⎩
dist(i − 1, j − 1) + d(ai, b j)
dist(i − 1, j) + d(ai, b j)
dist(i, j − 1) + d(ai, b j)

where d(ai, b j) = (|a1i − b1 j | + 1) × (|a2i − b2 j | + 1) (6)

3.Termination

D(a, b) = dist(TI ,TJ)

Fig. 5 DTW algorithm.

Dscore(s, �s′;E′) =
M∑

i=1

D(E′(s),E′(s′i))
Ti

, (7)

where Ti is the duration of the data u′i = E′(s′i). A decision
is made based on (2).

3.2 Hill-Climbing Algorithm

Let Z = {(zt)}Tt=1 = {(zxt, zyt)}Tt=1 be a two-dimensional time-
series vector to be modified gradually in the hill-climbing
method. The following steps are repeated until the dissimi-
larity score converges.
Step 1 t = 1
Step 2-1 Target point (� in Fig. 6) to be modified is zt =

(zxt, zyt).
K candidate points czx∗(k)

t , k = 0, 1, . . . ,K − 1 (• in Fig. 6)
are set as follows:

czx∗(k)
t = (zx∗(k)

t , zyt)

zx∗(k)
t = zxt +

(
−

[K
2

]
+ k

)
,

where [q] is the largest integer that does not exceed q. Using
these candidates, K items of data cZ∗(k)

x are produced:

cZ∗(k)
x = {z1, .., zt−1, czx∗(k)

t , zt+1, .., zT }.
A distance D(cZ∗(k)

x , ui) is calculated. Then, the best candi-
date czx∗t is determined based on:

czx∗t = czx∗(k̂)
t

k̂ = argmin
k

D(cZ∗(k)
x , ui).

Step 2-2 K candidates cz∗(k)
t , k = 0, 1, . . . ,K −1 (	 in Fig. 6)

are set as follows:

cz∗(k)
t = (zx∗(k̂)

t , zy∗(k)
t )

zy∗(k)
t = zyt +

(
−

[K
2

]
+ k

)
.

Then, K items of data cZ∗(k) are produced:

cZ∗(k) = {z1, . . . , zt−1, cz∗(k)
t , zt+1, . . . , zT }.

Fig. 6 A target point and candidate points.
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Then, distances D(cZ∗(k), ui) are calculated, and the best can-
didate cz∗t is determined based on:

cz∗t = cz∗(
ˆ̂k)

t

ˆ̂k = argmin
k

D(cZ∗(k), ui).

Step 3 Set zt ← cz∗t .
If t � T : t ← t + 1 and return to Step 2-1.
If t = T :

If distance has converged, go to Step 4.
If distance has not converged, return to Step 1.

Step 4

HC forgery = {(zt)}Tt=1.

3.3 Experimental Settings

3.3.1 Database and Experimental Settings

The public database SVC2004 [15]† task 2 was used for per-
formance evaluation. Signatures associated with 40 persons
in SVC are open to the public, and 20 genuine signatures for
each person are available.
Genuine data Let GS E be {sg1, sg2, . . . , sg5}, and GS V be
{sg6, sg7, . . . , sg20} of each person. The first genuine signa-
ture sg1 was used for generating reference data of a target
system, four consecutive genuine signatures (sgi)2≤i≤5 were
used for adjusting the threshold, and sgi ∈ GS V for each
person were used for evaluation. In this setting, M = 1.
HC forgery The seriousness of the threat of a hill-climbing
forged data attack depends on three items: the initial forgery,
reference data, and a dissimilarity criterion.

Initial forgery Signatures generated by using the hill-
climbing method depend on the initial signature. Thus,
random forgeries were used as preliminary forgeries
for HC-forgery generation. Genuine signatures sg1 of
others were used as random forgeries (39 signatures
were used as an initial forgery for each person).

Reference data Let �sa be a signature set used for generat-
ing reference data in the target system. Two settings
are possible:

• The reference data enrolled in the HC-attacked
system are generated from the same signature set
�sa.

• The reference data enrolled in the HC-attacked
system are generated from a different signature set
�sb (�sa � �sb). In this experiment, �sa = (sg1) and
�sb = (sg6)

Dissimilarity criterion The hill-climbing method modifies
signatures so as to improve the dissimilarity criterion.
Thus, whether or not the dissimilarity criterion used for
HC-forgery generation is the same as that of the target
system has a major impact on the performance. More-
over, the similarity of the dissimilarity criteria also has

an impact on performance. To simplify the experimen-
tal settings, we used the same equation, but used three
different feature extractions to achieve different dissim-
ilarity criteria: EXY , EV xVy, and E|V |θ. Note that V xVy
and |V |θ are more similar than XY and V xVy or XY and
|V |θ. Thus, we can consider the degree of “dissimilarity
criteria’s similarity” by using these three feature sets.

The following six types of HC forgeries were considered in
this experiment.

Type 1 H (Icvg)(s fi, �sa;EXY ): Reference data extracted from
�sa was used for HC-forgery generation, and EXY was
used for feature extraction. Hill-climbing was per-
formed in X − Y space.

Type 2 H (Icvg)(s fi, �sb;EXY ): Reference data extracted from
�sb was used for HC-forgery generation, and EXY was
used for feature extraction. Hill-climbing was per-
formed in X − Y space.

Type 3 H (Icvg)(s fi, �sa;EV xVy): Reference data extracted
from �sa was used for HC-forgery generation, and EV xVy

was used for feature extraction. Hill-climbing was per-
formed in V x − Vy space.

Type 4 H (Icvg)(s fi, �sb;EV xVy): Reference data extracted
from �sb was used for HC-forgery generation, and EV xVy

was used for feature extraction. Hill-climbing was per-
formed in V x − Vy space.

Type 5 H (Icvg)(s fi, �sa;E|V |θ): Reference data extracted from
�sa was used for HC-forgery generation, and E|V |θ was
used for feature extraction. Hill-climbing was per-
formed in |V | − θ space.

Type 6 H (Icvg)(s fi, �sb;E|V |θ): Reference data extracted from
�sb was used for HC-forgery generation, and E|V |θ was
used for feature extraction. Hill-climbing was per-
formed in |V | − θ space.

Samples of initial forgeries and HC forgeries are shown in
Figs. 7–12, together with target reference data items.

The parameter L for the convergence test was set to
L = 5, and the number of candidate points was set to K = 9
in the experiments.

3.4 Menace Analysis for Systems with the Same Dissimi-
larity Criterion

First, we evaluated the performance of target systems that
use the same dissimilarity criterion as the HC-forgery gen-
eration. This menace is equivalent to that for an online hill-
climbing attack.

We used error trade-off curves and false accept rates
(FARs) at the thresholds Θ to achieve false reject rates
(FRRs) of 5% and 10% as criteria for measuring the men-
ace. If HC forgeries are cleverly generated, dissimilarity
scores become smaller. Then, FARs of HC forgeries be-
come worse than those of random forgeries, leading to per-
formance degradation.

†The database can be download directly from
http://www.cse.ust.hk/svc2004/download.html
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Fig. 7 HC forgery sample (Type 1) in X − Y space.

Fig. 8 HC forgery sample (Type 2) in X − Y space.

Fig. 9 HC forgery sample (Type 3) in V x − Vy space.

Fig. 10 HC forgery sample (Type 4) in V x − Vy space.

Fig. 11 HC forgery sample (Type 5) in |V | − θ space.

Fig. 12 HC forgery sample (Type 6) in |V | − θ space.

The FAR of the HC forgery calculated in this experi-
ment is defined by

FARB,H,S
Θ

=
1

#FS

×
∑

s f∈FS

Pr[Dscore(H (Icvg)(s f , �s;E′), �s′;E′) < Θ], (8)

and the FAR of the random forgery is defined by

FARB,R
Θ
=

1
#FS

∑
s f∈FS

Pr[Dscore(s f , �s′;E′) < Θ] (9)

where #FS is the number of random forgeries; in this ex-
periment #FS = 39 × 40. The false reject rate (FRR) is
calculated by

FRRΘ =
1

#GS V

∑
s∈GS V

Pr[Dscore(s, �s;E) ≥ Θ]. (10)

Figures 13–18 show error trade-off curves, and FARs
are summarized in Table 1.

Figures 13–18 show that the performance of all three
systems was degraded drastically. In the worst case, the
FAR@FRR = 10% was degraded from 0.1% to 98.4% (in
Fig. 17). The performance of Types 1 and 2 (or Types 3 and
4, or Types 5 and 6) have little difference; therefore, the dif-
ference of the reference data items had a minor impact on
this evaluation.

3.5 Menace Analysis for System with a Different Dissim-
ilarity Criterion

Second, we evaluated the performance of a target system
that used a different dissimilarity criterion from the HC-
forgery generation. In this experiment, the target system
with a dissimilarity criterion based on EV xVy was used as a
target system. Let E ∈ {EXY ,EV xVy,E|V |θ} and �s, �s′ ∈ {�sa, �sb}
be a feature extraction scheme and signature data items used
for HC-forgery generation, respectively. The FAR in this ex-
periment is defined by

FARB,H,R
Θ

=
1

#FS

×
∑

s f∈FS

Pr[Dscore(H (I′cvg)(s f , �s;E), �s′;E′) < Θ], (11)

and the FRR is the same as (10).
Figure 19 shows the error trade-off curves of each type

of HC forgery, together with a curve of random forgeries.
The performance against Type 3 was by far the worst, be-
cause HC forgeries of this type were generated using the
same system as the target system (�s = �s′ = �sa and E = E′ =
EV xVy).

The performance against Types 4 and 5 was better than
that against Type 3. However, the performance was de-
graded relative to that against random forgeries. Type 4 was
generated using the system with the same feature extraction
(E = E′, �s � �s′), and Type 5 was generated using the sys-
tem whose reference data were extracted from the same data
(�s = �s′ = �sa, E � E′).

The performance against other types of HC forgeries
was much better than that for Types 3, 4, and 5, though the
performance was slightly worse than that against random
forgeries.

From these observations, a hill-climbing method can
improve the pre-determined score, but it cannot restore the
original data perfectly. However, the performance against
Types 3, 4, and 5 was much worse than that against random
forgeries. Therefore, a suitable countermeasure is necessary.
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Fig. 13 Error trade-off curve (Type 1). Fig. 14 Error trade-off curve (Type 2). Fig. 15 Error trade-off curve (Type 3).

Fig. 16 Error trade-off curve (Type 4). Fig. 17 Error trade-off curve (Type 5). Fig. 18 Error trade-off curve (Type 6).

Table 1 FARs of a target system (E = E′) [%].

Θ@FRR=5% Θ@FRR=10%

setting HC forgery Random HC forgery Random
Type 1 100 56.9 99.9 39.0
Type 2 100 57.8 99.9 39.6
Type 3 99.6 15.4 99.2 7.6
Type 4 99.3 17.5 98.8 10.3
Type 5 99.0 0.9 98.4 0.1
Type 6 98.5 3.1 97.6 1.0

3.6 Robustness of Proposed System

We evaluated the proposed online signature verification al-
gorithm using the HC forgeries and genuine signatures. In
this experiment, the system with a dissimilarity criterion
based on EV xVy was used as a target system.

The FAR and FRR of the proposed system are defined
by

FARP,H,R
Θ
=

1
#FS

×
∑

s f∈FS

Pr[Dscore(H (Icvg)(s f
(I′cvg)

E (�s), �s′;E′), �s′;E′) < Θ],

(12)

and the false reject rate (FRR) is defined by

Fig. 19 Menace of HC-forged data attack.

FRRP
Θ=

1
#GS V

×
∑

s∈GS V

Pr[Dscore(H (I′cvg)(sg, �s′;E′), �s′;E′) ≥ Θ].

The EERs are summarized in Table 2. Error trade-off
curves are shown in Figs. 20–25. In the table and the fig-
ures, the proposed algorithm is indicated by “With HC”. For
comparison, experimental results of an algorithm without
hill-climbing were also evaluated as a baseline system. This
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Fig. 20 Error trade-off curve (Type 1). Fig. 21 Error trade-off curve (Type 2). Fig. 22 Error trade-off curve (Type 3).

Fig. 23 Error trade-off curve (Type 4). Fig. 24 Error trade-off curve (Type 5). Fig. 25 Error trade-off curve (Type 6).

Table 2 EERs of proposed system [%].

type of proposed baseline
HC forgery (with HC) (without HC)

Type 1 8.2 16.3
Type 2 7.9 12.0
Type 3 12.1 88.0
Type 4 11.9 38.6
Type 5 20.3 37.1
Type 6 13.8 16.3

baseline system is indicated by “Without HC” in the table
and figures. The FAR and FRR of the system without HC
were calculated using (11) and (10).

The experimental results of “Without HC” show the
performance of the online signature verification algorithm
without any countermeasures for hill-climbing forged data
attacks. The EERs of the algorithm were 88.0% for Type
3, 38.6% for Type 4, and 37.1% for Type 5. These results
show that the hill-climbing forged data attack is a menace
for basic online signature verification algorithms.

On the other hand, the EERs of the proposed algorithm
were 12.1% for Type 3, 11.9% for Type 4, and 20.3% for
Type 5, and the EERs of other types of data were also im-
proved. Therefore, a robust online signature verification al-
gorithm for hill-climbing forged data attacks can be gener-
ated by incorporating a hill-climbing method into the basic
online signature verification algorithm.

The reason why the proposed algorithm can improve
the performance against a hill-climbing forged data attack
is that converged dissimilarity scores are used for verifica-
tion. Though hill-climbing methods modify the input data
and can improve the score, it is extremely difficult to find
a global optimum in high dimensional problems. In many
cases, hill-climbing methods find a local optimum, and the
value of the local optimum depends on the initial setting
(initial input). This dependence on the initial input is im-
portant in the proposed algorithm. As shown in Fig. 3, con-
verged dissimilarity scores of genuine signatures are smaller
than those of forgeries. It can be considered that genuine
signatures are better initial inputs than forgeries and can
produce better local optima. Furthermore, converged dis-
similarity scores of genuine signatures become smaller than
those of many HC forgeries because HC forgeries are gener-
ated using the hill-climbing method, and because the initial
inputs for HC-forgery generation are forgeries. Thus, con-
verged dissimilarity scores of HC forgeries become the same
as or similar to those of the initially input forgeries because
of the dependence on initial inputs. We utilized this charac-
teristic of hill-climbing methods, namely, that local optima
(converged scores) depend on the initial inputs, in this pro-
posed algorithm.
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4. Conclusions

In this paper, we focus on an offline hill-climbing attack
against online signature verification algorithms. To gener-
ate a countermeasure against offline hill-climbing attacks for
online signature verification, first we generated several types
of HC forgery using the public database SVC2004 and ana-
lyzed their degree of menace. Then, based on the analysis,
we proposed a robust online signature verification algorithm
that uses a dissimilarity score converged by hill-climbing for
verification. Several experiments were performed for eval-
uating the proposed algorithm, and the experimental results
show that the proposed algorithm is promising.

Though, the proposed algorithm is a promising solu-
tion for offline hill-climbing attacks, repeated calculation of
the dissimilarity score is necessary, which increases the pro-
cessing time. Thus, a fast hill-climbing algorithm for verifi-
cation should be developed.

Moreover, the performance of the proposed system
against non hill-climbing forgeries may degrade because all
input signatures are modified so as to make the dissimilar-
ity scores small. To reduce this possible degradation, we
need to select the signatures to be modified. A possible ap-
proach for this solution is to modify only signatures that are
accepted as being genuine signatures.

In this paper, we only applied the proposed scheme to
a basic online signature verification algorithm. This scheme
can be applied to more sophisticated online signature ver-
ification algorithms such as [25], [26]. Thus, our future
projects will include evaluation of the scheme in such al-
gorithms.
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