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SUMMARY In wireless sensor networks, preserving location privacy
under successive inference attacks is extremely critical. Although this
problem is NP-complete in general cases, we propose a dynamic program-
ming based algorithm and prove it is optimal in special cases where the
correlation only exists between p immediate adjacent observations.
key words: wireless sensor networks, location privacy, algorithms, dy-
namic programming

1. The Successive Location Privacy Problem

Since Kamat’s seminal work in 2005 [1], so far several liter-
atures have been concentrated on analyzing, modeling and
building the location privacy concerns in WSNs (wireless
sensor networks) [2]–[4]. These schemes mainly focus on
protecting the current location of interested objects. How-
ever, to date, given a sequence of past observations, abun-
dant techniques are available to infer successive locations
of an object, such as particle filter [6], mobility pattern pre-
diction [7], etc. With location inference techniques listed
above, the adversary is able to infer current location via suc-
cessive disclosed locations, which bring serious successive
location privacy threat to WSNs.

To deal with the aforementioned successive privacy
threats, by analyzing classical location inferring techniques,
we aim at depicting the basic characteristics of these infer-
ence techniques. Intrinsically, each past observation will
contribute to the accuracy of the inference of the future
locations. The more observations, the higher the accu-
racy. Therefore, we generalize it into a weighted representa-
tion model for the successive location privacy problem [5].
Within this model, given that the base station has the obser-
vation sequence Z = (z1, z2, . . . , zn), we have the following
observations:

1. Each observation zi is associated with a weight wi

which denotes the impact of this observation on the in-
ference of zn+1.

2. There is a cross weight for a set of observations, e.g.,
we have wi, j for zi and z j. Intuitively, publishing both
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zi and z j will contribute more to the final inference of
zn+1 than the combined weight of publishing them in-
dividually.

3. The joint weights usually have higher impact if the ob-
servations are taken closer in a time period, i.e., the
wi j > wik if |ti − t j| < |ti − tk |.
We call it a publishing subsequence or publishing se-

quence for a subset of the observation sequence that are pub-
lished to the users. Formally, we define indicator variables
xi, such that

xi =

{
1, zi is published
0, otherwise

(1)

Note that the sensor network is deployed for monitor-
ing the objects’s locations. Therefore, the objective is to
maximize the number of observations that can be published
to the public; after all, the sensor network is deployed for
data collection. However, the weights of the observation
sequence indicate the inference capability of the adversary.
Consequently, there is a trade-off between the number of
observations that can be released to the public and the suc-
cessive privacy of the object. Accordingly, motivated by the
classical K-anonymity model, we can formulate it into the
maximum publishing sequence problem (MPS) as follows:

Maximize :
∑

1≤i≤n

xi (2)

s.t.
∑

∀ jl∈[1,...,n],1≤k≤n

wj1,..., jk x j1 · · · x jk ≤ K (3)

∀1 ≤ j ≤ n x j ∈ {0, 1} (4)

Where K denotes the pre-determined threshold value,
and wj1,..., jk represents the weight for x j1 . . . x jk . For a pub-
lishing sequence P, if the combined weight of these obser-
vations is greater than a pre-determined threshold value K,
we say that the location privacy (i.e., next location) of the
object is broken; otherwise, the location privacy of the ob-
ject is maintained.

This is a typical non-linear Integer Programming prob-
lem. Since the parameters of weights are generic, this prob-
lem is NP-complete [8]. We can apply several general non-
linear Integer Programming solutions, such as introducing
penalty functions, using relaxation, etc [9], [10].

As the problem is intractable, we are more interested in
developing optimal solutions for special cases together with
heuristics for common cases.
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2. Our Proposed Optimal Algorithm

We first consider a simple variant of the MPS problem where
all the observations are independent in the contribution of
the inference, i.e., there is no cross weights. This problem
can thus be solved by a greedy algorithm where the obser-
vations are selected in the order (from low to high) of their
associated weights, until the summation of the weights ex-
ceeds K.

2.1 The p-Relation Observation Sequence

We consider a special case where the correlation only exists
between p immediate adjacent observations. Formally, let Q
be a set of observations that has property such that ∀zi, z j ∈
Q, |ti − t j| ≤ p. Thus,

Definition 1: p-relation observation sequence: An ob-
servation sequence Z = (z1, z2, . . . , zn) is defined to be p-
relation observation sequence if ∀Q ⊆ Z, the weighted func-
tion w on Z has the following feature:
{

w(Q) ≥ 0, Q ∈ Q
w(Q) = 0, otherwise

Two examples for 2-relation and 3-relation observation
sequences are shown in Fig. 1 (a) and (b), respectively.

In what follows, we study the 2-relation observation se-
quence for MPS problem (in short, the 2-relation MPS prob-
lem). Similar techniques can be used for p-relation MPS
problem. The following theorem shows that optimal solu-
tion exists for 2-relation MPS problem.

Theorem 1: 2-relation MPS problem is solvable by dy-
namic programming.

Fig. 1 The p-relation observation sequence.

proof Let Qi = (z1, z2, . . . , zi), i.e., a subsequence of Z from
z1 to zi. Let Vi = (v1, v2, . . . , vi) be the (sub)-assignment of
X = (x1, x2, . . . , xi). Let W(Vi) be the total weight of this
assignment.

Let h(Qi,K, vi) be the maximum utility function for
subsequence Qi with privacy constraint K and xi = vi. For-
mally,

h(Qi,K, vi) = max

⎧⎪⎪⎪⎨⎪⎪⎪⎩
∑

1≤ j≤i

v j

∣∣∣∣∣∣∣W(Vi) ≤ K & xi = vi

⎫⎪⎪⎪⎬⎪⎪⎪⎭
The optimal data utility is thus

max{h(Qn,K, 0), h(Qn,K, 1)}
Notice that in 2-relation, the cross weight only exists

between observations zi−1 and zi. We first consider the case
when xi = 0. In this case, the corresponding weight wi and
wi−1,i has no impact on the result. Hence, h(Qi,K, 0) can be
calculated by:

h(Qi,K, 0) = max{h(Qi−1,K, 0), h(Qi−1,K, 1)} (5)

We then consider xi = 1. We have:

h(Qi,K, 1) = max{h(Qi−1,K − wi, 0),

h(Qi−1,K − wi−1,i − wi, 1)} + 1

We add one additional to the maximum utility as xi will be
published. To make sure that h(·) takes valid values, we
finally have:

h(Qi,K, 1) = max
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

1 + max{h(Qi−1,K − wi, 0),
h(Qi−1,K − wi−1,i − wi, 1)} K ≥ wi−1,i + wi

0, K < wi

h(Qi−1,K − wi, 0) + 1, wi ≤ K < wi−1,i + wi

(6)

Clearly the 2-relation MPS problem shows optimal
substructure and thus is solvable by dynamic programming.

2.2 Dynamic Programming Algorithm and Its Complexity

To develop a dynamic programming-based algorithm, we
initialize the h(·) function for the following special cases:

h(Q0, i, 0) = 0 ∀0 ≤ i ≤ n, (7)

h(Qj, 0, 0) = 0 ∀0 ≤ j ≤ K, (8)

h(Qi, j, 0) = −∞ ∀i, j < 0, (9)

h(Qi, j, 1) = −∞ ∀i, j < 0, (10)

h(Q0, i, 1) = 0 ∀0 ≤ i ≤ w0, (11)

h(Q0, i, 1) = 1 ∀w0 < i ≤ K, (12)

h(Qj, 0, 1) = 0 ∀0 ≤ j ≤ K, (13)

Where Eqs. (7), (8), (11)–(13) denotes the starting values;
Eqs. (9) and (10) denotes that the utility is infinity when
there is no feasible solution. Then, h(·) can be iteratively
solved as shown in Fig. 2.

We estimate the complexity of the DP-2 algorithm.
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Fig. 2 DP-2 algorithm for 2-relation MPS problem.

Since it should maintain two tables for h(Qi,K, 0) and
h(Qi,K, 1), the time complexity for initialization process of
line 1 is 2 × n × K. From line 2 to line 4, the complexity
maintains 2 × n × K. Hence, the time complexity of DP-2
is O(n × K). Note that although dynamic programming pro-
vides optimal solutions for 2-relation problem, it occupies
two tables to store intermediate data. Therefore, the space
complexity required is (2 × n × K).

The above dynamic programming can be easily ex-
tended to the p-relation MPS problem.

Theorem 2: p-relation MPS problem is solvable by dy-
namic programming.

We further consider the space complexity of our pro-
posed algorithm. When we consider the case for p-relation
MPS problem, more tables should be stored. General speak-
ing, the number of equations for DP-p corresponding to
Eqs. (5) and (6) are increased to 2 × p. As a result, the time
and space complexity are O(2p × n × K).
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