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PAPER

Reasoning on the Self-Organizing Incremental Associative Memory
for Online Robot Path Planning

Aram KAWEWONG†a), Yutaro HONDA†, Manabu TSUBOYAMA†, Nonmembers,
and Osamu HASEGAWA†,††, Member

SUMMARY Robot path-planning is one of the important issues in
robotic navigation. This paper presents a novel robot path-planning ap-
proach based on the associative memory using Self-Organizing Incremen-
tal Neural Networks (SOINN). By the proposed method, an environment is
first autonomously divided into a set of path-fragments by junctions. Each
fragment is represented by a sequence of preliminarily generated common
patterns (CPs). In an online manner, a robot regards the current path as the
associative path-fragments, each connected by junctions. The reasoning
technique is additionally proposed for decision making at each junction to
speed up the exploration time. Distinct from other methods, our method
does not ignore the important information about the regions between junc-
tions (path-fragments). The resultant number of path-fragments is also less
than other method. Evaluation is done via Webots physical 3D-simulated
and real robot experiments, where only distance sensors are available. Re-
sults show that our method can represent the environment effectively; it
enables the robot to solve the goal-oriented navigation problem in only
one episode, which is actually less than that necessary for most of the Re-
inforcement Learning (RL) based methods. The running time is proved
finite and scales well with the environment. The resultant number of path-
fragments matches well to the environment.
key words: neural networks, associative memory, path-planning, rein-
forcement learning (RL)

1. Introduction

A robot path planning is an important and attractive topic of
the robotic research field. Reaching a previously unknown
destination in unfamiliar environments in the shortest time
is the most common objective. Approaches based on vari-
ous frameworks and having their respective advantages and
disadvantages have been proposed to solve the problem.

Path planning can be done in various ways. Reinforce-
ment Learning (RL) formulates this problem as a robot in-
teracting with either a fully or partially observable Markov
Decision Process (MDP or POMDP) [3], [4]. With the ap-
propriated reward and value functions, the shortest path, if it
exists, is guaranteed to be found. However, the reward func-
tion is not always easy to specify manually [30]. Moreover,
RL fundamentally requires numerous episodes for max-
imum reward convergence [7]–[9], [21], [22] although the
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number varies depending on the complexity of environments
and the functions. Probabilistic Roadmaps (PRM) randomly
samples a robot’s C-Space, and constructs a roadmap graph
that captures the free space connectivity [27]. The key to
PRM is the sampling: some methods have been proposed
to improve the sampling strategy [28]. Nonetheless, sam-
pling is not appropriate for the navigation of real robots with
low degrees of freedom (DOFs) in a completely unknown
map. Sensorimotor Mapping (SM) has recently been re-
ported as successful in performing predictive motor control
by coupling sensor and motor signals in a joint representa-
tional layer [29]. Actually, SM is proposed for simulation
in the brain: it must perform random exploration to cou-
ple the sensor and motor, which generally costs many iter-
ation (100,000 iterations in a previous study [29]). Rapidly
Expanding Random Trees (RRT) is another popular means
for robot path planning ([11] and [12]). A recent study [12]
uses a viability filter to improve the random sampling so
that the running time is reduced drastically. However, RRT
is suited to planning for complex robots such as humanoid
robots [37], [38]. To expand the node randomly into poten-
tial paths means that the robot must move numerous times.

Another approach to solve the navigation problem is to
create the map and then find the shortest path. By this ap-
proach, main concern lays in finding the most effective way
to map the environment while simultaneously localizing the
robot’s position relative to the map. If just the accurate map
were acquired, then the shortest path would be easily obtain-
able from the occupancy grid map [16]. However, to acquire
such map in an unknown environment is not easy. This call
into the popular Simultaneous Localization and Mapping, or
SLAM, problem [19]. The SLAM problem generally pos-
sesses a continuous and a discrete component, giving rise
to two sources of problems: (1) the high dimensionality of
the continuous parameter space (curse of dimensionality),
and (2) numerous discrete correspondence variables (curse
of history). These problems render the metric SLAM as ne-
cessitating high memory consuming and difficult for loop
closing.

The Topological Map (TM) is a map-building approach
which consumes considerably less memory than that of met-
ric map and suits to solving the loop closing problem [13],
[14], [17], [36]. It requires junctions, or places, to be dis-
tinctive and that they must be detected correctly whenever
the robot passes close to them. However, the pure TM is
unsuitable to the SLAM problem because most sensory data
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are simply ignored. This motivates researchers to propose
hybrid maps in which topological nodes contain local met-
ric information [15], [16], [18], [20]. The hybrid is currently
considered as state-of-the-art for the SLAM problem [23],
[24].

Nevertheless, most of the described methods pose
some drawbacks. Metrical approaches consume much com-
putational cost. The hybrid map-building capture only the
information of the topological node (i.e. junction), while
ignoring most of information about the edge [13], [16] (re-
gions between junctions). Reinforcement learning requires
a number of episodes for trial and errors. Also, to move from
place-to-place, most of these method, except for Spatial Se-
mantic Hierarchy (SSH) based method, needs to generate
the proper action by some means, i.e. visual servoing [37].
This requires the robot to keep a number of raw images as
the reference images for servoing. By considering all of
these drawbacks, we want to achieve the path-planning sys-
tem which can

1) keeps all information both for junction and path-
fragments, while consuming memory less than pure
metrical approach,

2) divide the path-fragments reasonably so that the num-
ber of fragments matches well to the environment,

3) reasonably plan the path so that the exploration time is
shortened.

4) be combined with the spatial semantic hierarchy (SSH)
so that it does not need to rely on a large database of
reference images for visual-servoing.

As a solution, we combine the concept of Spatial Se-
mantic Hierarchy (SSH) [31] with the associative memory to
address this issue. First, we employ the Self-Organizing In-
cremental Neural Networks [5] as the online clustering tools
for generating the “common patterns”, or CP for short, for
representing the path. Each obtained observation along the
path is represented by the most appropriated CP. In other
words, robot’s “path” consists of a sequence of CPs. The se-
quence is further divided into sub-sequences, which we call
“path-fragment”, by junction (a single path comprises a se-
quence of path-fragments connected by junctions). Repre-
senting path with these common patterns saves much mem-
ory. This satisfies the first requirement. Dividing the path-
fragments based on detected junction results in reasonable
number of fragments. This solves the second problem. Rea-
soning function is proposed to enable the robot to reason-
ably determine the way to continue, so that the exploration
time could be shortened. This satisfies the third requirement.
By letting the basic movement be controlled by lower mod-
ules, our method becomes the SSH-based method. Since
the robot can autonomously follow the path, and partition
the path into fragments based on junctions, reference im-
ages are no longer needed for visual-servoing. This satisfies
the last requirement.

Figure 1 show the simple example of reasoning at junc-

tion. Given A
ΔAB−→ B

ΔBC−→ C
ΔCD−→ D

ΔDA−→ A as the path
taken by the robot where A, B, C and D are path-fragments

Fig. 1 The reasoning technique for generating the new transitions be-
tween the path-fragments.

(divided by dash line), the new transitions ΔBA, ΔCB, ΔDC,
ΔAD, ΔDB, ΔBD (marked in gray color) can be generated by
reasoning. This technique is simple but effective for speed-
ing up the exploration time. The technique is specifically
compatible with SSH.

2. Related Works

Recently, path planning and SLAM shares a number of com-
mon problems and objectives, and thus we need to clearly
contrast our method to theirs. Comparing to reinforcement
learning based methods, out method is considerably faster
because the reasoning and SSH concept allow us to skip
the complexity in movement generation. Our work seems
to share some similar concept with the hybrid SSH of [31];
path fragments are divided by junctions, and the basic move-
ments of robot are assumed to be controlled by other mod-
ule. However, the main difference is that our method tries
to keep the information about both the junctions and path-
fragments (regions between junctions). In other words, our
method uses the common patterns to compress the repre-
sentation so that it, like metrical approach, does not lose im-
portant information between nodes, while, like topological
approach, consumes less memory.

The common pattern which is used to represent the
path in this work share the same concept as that of popular
Bag-of-words in computer vision [32]. A dictionary must be
generated either online or offline. In vision, the scene is rep-
resented by the set of words. In this work, we treat a single
path-fragment as a single scene. A single path-fragment are
converted into the sequence of common patterns in the same
spirit as a single scene is represented by a set of unordered
visual words.

Again, we confirm that this paper focus on the fast
path-planning system by using associative memory and the
reasoning at junction. We do not specifically address the
problem of perceptual-aliasing (two different places which
look very similar). What we achieve here is the success in
applying the associative memory to represent the path, so
that the shortest path can be retrieved successfully. Repre-
senting the path-fragments with common-patterns allow us
to save memory in keeping all information both about junc-
tions and path-fragments. The result show that the proposed
method can successfully navigate the robot to the goal for
every trials in all mazes. Also, the system has been success-
fully implemented on the real mobile robot.
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3. Backgrounds

From among related works described in Sect. 2, some other
works contributed to development of the proposed method.

3.1 Overview of SOINN and SOINN-AM

The Self-Organizing and Incremental Neural Networks,
SOINN [5], is an two-layered unsupervised clustering
method proposed for data clustering (unsupervised classi-
fication) and topology learning. The first layer is used to
generate a topological structure of presented patterns. The
second layer outputs the number of clusters and gives pro-
totype vectors of the distribution of presented patterns. The
learning algorithms of both layers are almost identical, but
the inputs into them are different. The input to the first
layer is the data presented to SOINN. After the first layer
finishes learning them, the second layer obtains exactly the
same vectors as the weights of the nodes which have been
generated in the first layer. The distance are derived both be-
tween the input and the nearest node and between the input
and the second-nearest node when each layer obtains input.
A new node with equal weight to that of the input is gener-
ated if the distance are sufficiently large. Otherwise, a new
edge is generated between the nearest and the second near-
est node; the weights of the nearest node and its neighbors
are updated.

Network growth is an important feature to adapt to
non-stationary environments. Many conventional clustering
algorithms such as k-means demand that a user predeter-
mine how many clusters are to be generated. For a topology
learning problem, a user of many conventional methods like
Kohonen Feature Map (KFM) [10] must decide the number
of nodes in advance. However, SOINN chooses the number
both clusters and nodes adaptively during learning. SOINN
not only generate new nodes but also eliminates unnecessary
nodes. This property renders SOINN immune to noise.

Later, Sudo et al., [33] proposed the SOINN-based as-
sociative memory named SOINN-AM. This method is capa-
ble of retrieving the right associated patterns given only one
pattern. SOINN-AM offers main advantage of the highly
compact memory because it does not need to store a num-
ber of associations of the similar patterns. Also, the use of
SOINN-AM, does not require determination of the number
of directions in advance (see [33] for more detail). In this
work, we modify the SOINN-AM to be suitable to robotic.
Unlike the original SOINN-AM, our method does not limit
to associative pairs. Specifically, our method create the as-

sociation A
ΔAB−→ B

ΔBC−→ C
ΔCD−→ D · · · instead of A → B,

B → C, C → D, . . . . This association can be regarded as
the path. This association can be duplicated according to
the walks of the robot, and so that the optimization process
is needed.

Fig. 2 Proposed method and its relation to SSH&SA.

3.2 Overview SA and SSH

The idea of Subsumption Architecture (SA) [6] has been
well known in the robotic research field. According to the
SA concept, a problem is divided into multiple layers. Each
layer does its own task independently in parallel. The sig-
nals from the upper layers can suppress those from lower
layers.

Later, Kuipers [38] propose the spatial semantic hier-
archy (SSH) for using in mobile robot. The SSH is devel-
oped upon the former SA. It becomes more practical for
real mobile robot. Based on the concept of SSH, we assume
that the robot is controlled by the basic layers (or the con-
trol laws in [38]): layers 0 and layer 1. Layer 0 prevents
the robot from colliding with obstacles and moves the robot
away from oncoming objects. Layer 1 forces the robot to
wander aimlessly in the forward direction. The proposed
method resides in layer 3: the task of path planning.

Figure 2 shows where to put our method in the Sub-
sumption Architecture of a mobile robot. The proposed
method would be located in layer 3 module. Because it is
at layer 3, the method functions based on layers 0 and 1;
namely, the robot is at least capable of following the path
without collision. Layer 3 sleeps until it either is interrupted
by layers 0 and 1, or obtains the bizarre input. Once ac-
tivated, it makes a decision for the robot, and collects the
path-fragment representation. It repeats this until the goal
is found, then it finally optimizes the map. This is called
offline Common Pattern-Based Map, or CPM for short. The
online CPM is described in Sect. 6.

4. Proposed Method

We believe that almost all environments share some com-
mon characteristics. Using the same concept, if the robot
were able to recognize such common characteristics, it
would be able to represent an unfamiliar environment as
a combination of such characteristics, which results in
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compact memory for representation. However, the robot
must realize these characteristics in an unsupervised man-
ner, which can be done using an unsupervised clustering
tool. For our choice, we select the Self-Organizing and In-
cremental Neural Networks (SOINN) [5] because it is suit-
able to noisy environment and is easily implemented. These
common characteristics are called Common Patterns or CPs.
For later reference, we designate the set of these CPs as C.
Note that our CP is based on the same concept as the word
in Bag-of-words (BoW) approach. Because BoW is gener-
ally used with visual data, we use the term “CP” instead of
“word”.

Based on the generated CPs, the robot can represent the
path with a sequence of CPs. More precisely, at every time
step, given a sequence of observation obtained up to time t,
each observation is classified to the corresponded CP. Once
the “critical” CPs are detected (i.e. junction in this paper),
layer 3 activates and wraps up all obtained sequential CPs
and divide the path into fragments. That is to say, the junc-
tion detection signal from the lower layers is used to divide
the path fragment. Then, layer 3 suppresses the signal of
lower layers and directly instructs the robot to perform some
specific action (i.e. turn left or right until spotting space);
then it lets the lower layers regain the control of the robot.
This process can be stopped under either one of two con-
ditions: (1) the goal has been reached or found (so that the
map is sufficient for navigation), or (2) all path-fragments
in the map have been explored (Goal must also be found).
A map generated based on CPs is called a Common-Patterns
Based Map or CPM.

The number of CPs for representing any path fragments
could vary depending on the size of the fragment and the
behavior of lower layers. Namely, if the path fragment was
short while the robot makes observation too frequently, then
the number of required CPs would be high. On the contrary,
if the robot made the observation only a few times while the
fragment is very large, then the number of CPs would be
too small and contains too less information. As such, the
behavior of layers (i.e. observing rate) should match to the
size of the robot and the environment, and this, for the time
being, must be set by users. If all sensors of the robot are
sufficiently accurate and informative, then only a few obser-
vations are enough. Otherwise, the robot should frequently
make observations to gain enough information.

Figure 3 shows an outline of the proposed approach.
The approach is consisted of four layers of network. The
first layer obtains the raw inputs and clusters them to form
the CPs. The generated CPs are put into the second layer.
During the path planning, the robot get the observation by
the first layer and pass it to the second layer to obtain the
nearest CPs, and generate a new CP, if necessary. The third
layer is the space of path-fragment. Each fragment com-
prises a sequence of CPs. The fourth layer is introduced for
the case in which the robot must experience more than one
environment. A single environment is represented by the
associated path-fragments.

Fig. 3 (Left) The illustration of our proposing system. (Right) The illus-
tration of how the proposed architecture can be applied to the navigation in
maze.

4.1 Generating CPs

Because the testing environment in this work is not large-
scale, we generate the dictionary of CPs in an unsupervised
offline manner. An additional environment (different from
those used for testing in Sect. 5) is provided for the robot to
create the CP-dictionary. In this environment, the robot in-
crementally observes feature vectors corresponding to every
time step t. In each observation, the robot sweeps its eight
distance sensors 360◦ (see www.e-puck.org) with angular
velocity of θ rad/s (θ = 2π rad/s in this work, thereby 1 s is
sacrificed for making observations). After the observation,
the robot moves forward for an additional 0.5 s. Therefore,
ca. 1.5 s is required for a single step. It is important to note
that this observation method is not fixed. Any other observa-
tion technique would also be fine as long as it yields the in-
put vectors. For each sensory input (which come from 360◦

sweeping), the robot samples the sensor value (0–3800) 100
times (i.e. for 1 s of one sweep, the robot takes input every
1/100 s). Therefore, the robot gains eight 100-dimensional
vectors (from eight sensors) in each observation. These vec-
tors are reduced to one single 100-dimensional vector �v by
averaging. Then, �v would be segmented based on the drop-
ping rate of its elements’ values. Given the following:

�v: The nv-dimensional input vector (nv = 100)

δ: The estimated error set by the user

S max = maxk=1:nv (|v(k) − v(k+1)|)
S min = mink=1:nv (|v(k) − v(k+1)|)

fp =

∑δ
j=1 |v(i) − v(i+ j)|

δ
, where ∈ I+, i ≤ nv − δ,

Then i is the segmentation point if fp >
S max+S min

2 . This
process is repeated until all possible segmentation points are
obtained. The vector is then segmented corresponding to
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the number of segmentation points. Each segment’s size is
pruned down to one by averaging all values; thereby, only
one real value represents one segment. We arbitrarily as-
sume that the number of segments for the real-world nav-
igation problem would be less than 10 (five-way junction
at most). The vector’s size might be more than ten if the
junction size is larger than five ways. For that reason, a 10-
dimensional vector is generated by concatenating all seg-
ments’ averaging values. When the number of segmentation
is less than the designated size of the vector, i.e. 10, all un-
defined elements are set to zero. The additional dimension
of vector is added for landmark detection value. This re-
sults in 11-d vector. In this work, unless the robot reaches
the start or goal, this value would be set to zero (no land-
marks). These 11-dimensional vectors are input continu-
ously to SOINN in an on-line manner. For SOINN, λ and
agedead are both set to 20 according to a previous report [5].
After a period of time, the robot stops wandering and a set
of clusters is derived. A representative vector of each cluster
is a common-pattern CP.

By this feature extraction, the junction can be simply
detected by considering those CPs that have spaces more
than two. The dead-end can be detected by considering
those CPs that have only one space. In other words, a single
path-fragment is represented by a sequence of CPs, while
the junction is represented by only single CP. The branches
of the junction is numbered counter-clockwise starting from
the robot’s current direction.

4.2 Mapping the Environment

As the robot is capable of segmenting the path into path-
fragments, the robot gradually and incrementally represents
a new path fragment until either all fragments have been ex-
plored or the goal has been found. Figure 4 illustrates the
simple path-fragment representation. Given that the robot
start from the 3-junctions and walk in the direction indi-
cated by the arrow, the robot constantly make and obser-
vation and represent each observation by the corresponding
CP. The robot repeats this until the junction CP is spot-
ted (i.e. 4-junctions represented by CP-5 in this example).
Thus, the first path-fragment is represented by the CP se-
quence 2-3-4-3, and the second fragment is represented by
3-3-3-6-3-7-4-7-3-3-3-3-3-3. Note that, in addition to CP-
junctions, other CP (some extra landmarks) might also be
used to divide fragment as well.

Let C be the set of CPs; C = {c1, c2, . . . , cnc }, nc is the
number of CPs in the dictionary. In the first episode, the
robot wanders until it finds the goal. While searching, the
part fragment is represented using a sequence of CPs called
A-Pattern.
Definition 1: Given a sequence of CPs, S = {s1, s2, . . . , sns },
where si ∈ C, i ∈ I+, i ≤ ns, and J as a set of junction CPs,
where J ⊆ C, S is the A-Pattern denoted by A = S if and
only if

1) s0, sns+1 ∈ J , and

Fig. 4 Path-fragment representation. The number indicate the index of
CP in the dictionary. Black points are the observation points done by robot.
The dashed circle is the typical radius of sensor sweeps. The robot walks
in the direction indicated by the arrows.

2) For every i, {si} ∩ J = ∅.

Once the goal is found, the robot derives the Common-
Patterns Based Map, abbreviated as CPM and denoted by
M; M = {A1, . . . ,Anp }, where np is the number of all dis-
tinctive path-fragments.

Using no prior information about position, the robot
has no other way but to search randomly for the unknown
destination while mapping the environment. The observa-
tion is made every time step. From the start point, the robot
follows the path under the control of layer 0 and 1. The ob-
servation is made constantly and represented by the corre-
sponding CP. Once the CP-junction is detected, layer 3 ac-
tivates, divides the path-fragment, and stores the fragments
into the map. The new fragment and the previous fragment
are connected by junction together with the performed tran-
sition. The robot repeats this until the goal has been found.
The map would be considered as completed, if the robot has
traversed every path-fragment before the goal is found (ev-
ery way of every junctions have been explored). However,
the map might be incomplete if the robot found the goal be-
fore disclosing all path-fragment. It is noteworthy that only
the complete map can guarantee the shortest path. However,
in some cases where the environment is very large, explor-
ing all path-fragments may consume more time than simply
follow the path optimized from the uncompleted map.

The robot searches for the unknown destination and
gradually represents the path-fragment. Once the goal is
found, the CP-Map (CPM) would be obtained. The robot
optimizes this CPM based on reasons and then plan the
shortest path based on the optimized CPM.

4.3 Planning the Path

Now that the robot has found the goal and obtained the
CPM, it must optimize the CPM. The optimization is done
after the goal has been found. Therefore, this is called an
offline CPM. The online CPM is described in Sect. 6. Be-
fore continuing this explanation in greater detail, some as-
sumptions must be clarified. According to the scope of this
study, the robot has only eight distance sensors (no vision),
the environment must satisfy the following constraints.
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1) Every path-fragment in the environment is distinctive:
we assume that, in the real world, even very similar
places always include some differences which distin-
guish them from each other. This constraint might
seem to be too strict as some may argue that the real-
world always contain many place which look similar,
and the perceptual-aliasing problem is very common.
However, this paper proposes the architecture for ap-
plying SOINN-AM for path-planning and the reason-
ing at the junction which improve the path-planning
behavior. We do not focus on the SLAM problem. Any
path-fragment can be made distinctive in a number of
ways. Combining proximity sensors and cameras en-
able to robot to efficiently capture the unique charac-
teristics of the place which looks similar, so that they
become distinguishable. Another good choice is to add
the odometry data, so that the robot can also localize
itself. This can further enable the robot to find get the
distinctive path-fragment.

2) Every path-fragment in the environment is asymmet-
rical. It is assumed that the entrance and the exit of
any path-fragment would differ somehow to be precise.
Particularly, the plus/minus (+/−) signs can be assigned
toA to distinguish its entrance and exit. This constraint
can also be relaxed in the same way as the previous
constraint.

Given M = {A1,A2, . . . ,Anp } as the CPM, the minus
sign (−) denotes the entrance direction of the path-fragment
Ai, where i ∈ I+, i ≤ np, whereas a plus sign (+) denotes the
exit direction. For any path-fragment, the signs are assigned
only at the first time of traversal. Given junc() as the junc-
tion; junc(A−i ) is the junction before Ai, and junc(A+i ) is the
junction after Ai. According to Def. 1, each Ai is connected
by the junction. The transitions (decision made by layer 3)
which bring the robot from Ai to Ai+1 have been realized by
the robot. Namely, from Ai to Ai+1, there exists a transition
Δi, where i ∈ I+, i < np. A transition Δ can be either a real
value or vector. However, in this study, we simply define the
transition as the integer value indicating the index of choice
made by Layer 3 at the junction. The algorithm is divided
into two steps.

First, 1) based on the derived M, in which its ele-
ment Ai is connected by the initial transition Δi, the robot
finds the inversed transition Δ−1

i using the function Λ1.
Given Nw as the number of the spaces at the junction,
junc(A+i ), where

junc(A+i ) = junc(A−i+1), (1)

Λ1(Δi) = Nw − Δi + 1 = Δ−1
i , (2)

Second, (2) now that the robot knows all bidirectional
transitions for A, it starts to search for the duplicated A
in M. The real world usually contains multiple loops.
Therefore, it is likely that the robot passes the same junction
more than once. Those similar junctions must be unified to
reconnect A and eliminate all duplicated A.
Definition 2: GivenM = {A1,A2, . . . ,Anp },M is optimized

if and only if, for every Ai in M, Ai is distinctive, where
i ∈ I+, i ≤ np. The optimizedM is denoted asM∗.
Definition 3: Given M∗ = {A1,A2, . . . ,Anp }, and a set
of corresponding junctions T = {T1,T2, . . . ,Tnp−1}, where
Ti ∈ J , i ∈ I+, i < np,M∗ is complete if and only if

1) every port (gateway) of Ti, where i ∈ I+, i < np, has
been filled, and

2) M contains an A-Pattern which represents the goal
path-fragment.

To recognize similar junctions, it must consider from
connected A. Specifically, given that A1 is approximately
identical to A2, then junc(A+1 ) = junc(A+2 ) and junc(A−1 ) =
junc(A−2 ). The similarity between A1 and A2 is determined
by similarity function fS given the following.

�(A1): length of A = {a1, a2, . . . , a�(A1)}, a ∈ C
�(A2): length of A = {a′1, a

′
2, . . . , a

′
�(A2)}, a′ ∈ C

dmax: maximun distance among all CPs

εb =

∑min(�(A1),�(A2))
i E

min(�(A1), �(A2))
(3)

E =

√∑min(�(A1),�(A2))

j=1

(
a j − a′j

)2
(4)

fS = 1 − εb

dmax
, δ ∈ [0, 1] (5)

Then A1 � A2 if fS > μ. Parameter μ is determined by
the user. In this work, our Webots simulated robot contains
10% slip noise at its wheels, we simply set μ = 0.9. The
inverse of A2, namely A−1

2 , must also be compared with A1.
Figure 5 (a) illustrates this. Two path-fragments, Ai and A j,
are detected as similar. If Ai � A j, then the connecting is
performed in the left branch. If Ai � A−1

j , then the connect-
ing is performed in the right branch. Given the following:

M: A CPM (sequence of all gained A-Pattern)

A1: The A-Pattern being considered, A1 ∈ M
A2: The similar A-Pattern comparing with A1,A2 ∈M
njunc(A−1 ): a number of spaces of junc(A−1 )

U{−,+}: a set of A-Pattern connected to junc
(
A
{−,+}
1

)
U− =

{
U
−
1 ,U

−
2 , . . . ,U

−
n(U−)

}
,

U+ =
{
U
+
1 ,U

+
2 , . . . ,U

+
n(U+)

}
, where U ∈ M.

n(U{−,+}): a number of member inU{−,+}

n
(
U{−,+}

)
∈ I+, n

(
U{−,+}

)
< njunc

(
A
{−,+}
1

)

R
{−,+}: a A-Pattern connected to junc

(
A
{−,+}
2

)
ΔX→Y: a transition bringing X to Y, where X, Y ∈ M
Λ2: a transition function between A-Pattterns

Λ2(X,Y) = ΔX→Y (6)

Considering A1, if there already existed k1 path-
fragments connected to junc(A−1 ), and k2 path-fragments
connected to junc(A+1 ) at the time A1 is being considered,
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Fig. 5 (a) The A-Pattern A j is considered to be similar to Ai either in inversed or non-inversed. The
left branch is for non-invert similarity and the right branch is for the invert similarity. (b) The typical
path representation from Fig. 1.

then the transitions ΔU−i →A1 , for every i ∈ I+, i ≤ k1, and
transitions ΔA1→U+j , for every j ∈ I+, j ≤ k2, have already
been realized. Also, according to inversed transition func-
tion of (2), the invert transitions are also derived as follows:-

Λ1

(
ΔU−i →A1

)
= Δ−1

U−i →A1
= ΔA1→U−i (7)

Λ1

(
ΔA1→U+j

)
= Δ−1

A1→U+j
= ΔU+j→A1 (8)

In case of A1 � A2, there existed two sub-cases.

1) First, if U−i � R
− for every i, then R− would be added

to the junction: junc(A−1 ).
2) Second, if U+j � R

+ for every j, then R+ would be
added to the junction: junc(A+1 ).

Regarding to A2, there exists two forward transitions;
ΔR−→A2 and ΔA2→R+ , and two inversed transitions derived by
the inversed function (2); ΔA2→R− and ΔR+→A2 .

For the first sub-case, the following pertains.

ΔU−i →R− = Λ2(U−i ,R
−).

= (ΔU−i →A1 + ΔA2→R−) mod(njunc(A−1 )) (9)

ΔR−→U−i = Δ
−1
U−i →R−

= Λ1(ΔU−i →R− )

ΔR−→A1 = ΔR−→A2

ΔA1→R− = ΔA2→R−

Because R− is connected to the junc(A−1 ), we assign

R− = U−k1+1 and add it to the setU−;U− ∪
{
U−k1+1

}
.

The second sub-case includes the following.

ΔU+j→R+ = Λ2(U+j ,R
+)

= (ΔU+j→A1 + ΔA2→R+) mod(njunc(A+1 )) (10)

ΔR+→U+j = Δ
−1
U+j→R+

= Λ1(ΔU+j→R+ )

ΔR+→A1 = ΔR+→A2

ΔA1→R+ = ΔA2→R+

As in the first sub-case, R+ is connected to the junc(A+1 )
and R+ is assigned to U−k1+1. Then, we make a union: U+ ∪{
U+k2+1

}
.

ForA1 � A−1
2 (invert similarity), the connection is done

in mostly the same way as that of the first case: junc(A+1 ) =
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junc(A−2 ) and junc(A−1 ) = junc(A+2 ).
The robot repeats checking the similar A-Pattern and

fills the new path-fragments to the junction. The robot
then considers the next pattern Ai+1 and fills the junction
junc(A+i+1) and junc(A−i+1). This process is repeated until no
similar pattern remains.

After the optimization, the path would be represented
in form of associative path-fragments. Figure 5 (b) show
the typical sample of optimized CPM (path) representation
based on the given walks in Fig. 1. Each path-fragment node
contains three properties. The CP sequence is used for path-
fragment matching for loop-closure detection. The length
of the fragments is used to estimate how many observa-
tion the robot can skip, so that it can travel directly from
junction-to-junction. The transitions stored in the node let
the robot know which way it need to select in order to reach
the expected fragment. The junction node keeps only the
fragments connecting to it, including the direction (−, +).
Based on this representation, the robot can plan the path in
the similar way as human. For example, given C as the start-
ing point, and A as the goal. Two path exist: C → B → A
and C → D → A. The first path take about 10 CPs to
pass B, plus some more steps in A, while the second path
take only 3 CPs to pass D. Thus, the shortest path is the
latter one. Once the shortest path has been retrieved, the
corresponding transitions ΔC+→D− and ΔD+→A+ are retrieved.
These information can be finally interpreted as start from C,
follow the path until reaching the junction, perform ΔC+→D− ,
follow the path by skipping the observation for 3 CPs until
reaching another junction, perform ΔD+→A+ , and make ob-
servation again to confirm the correct destination.

5. Experiment1: Simulation

The simulated experiment is described in this section. This
experiment is conducted to prove that our system can suc-
cessfully navigate the robot from the start to the goal with
markedly short time. The results would show the improve-
ment of path done by our method. The 3-D physical simula-
tor used in this experiment is Webots [1], a realistic physical
3-D simulator that enables a straightforward transfer to real
robots [2]. Figure 7 (a) shows the simulated e-puck. Instead
of the real value of distance sensors used by the real e-puck,
we increased the sensor range slightly from ca. 12.8 cm to
ca. 25 cm. For CP-dictionary generation, a robot is given
a simple simulated learning maze shown in Fig. 6 (a). Ac-
cording to the setup, the robot can learn the CPs for ca.
1500 s; thereby 1000 steps are taken and 1000 input vectors
are processed by SOINN. Regarding the results, 31 clusters
are obtained with 102 nodes (neurons) in all. This requires
only a small amount of memory.

The testing is done 10 times corresponding to each
maze (Maze-1, Maze-2, and Maze-3 as shown in Fig. 6 (b-
c)). The result of a typical CPM generated from Maze-3
of 6th Trial is depicted in Fig. 8 (a). The optimized CPM is
also shown. In Fig. 8 (b) and (c) show the path optimiza-
tion based on reasoning. The path-fragment which has been

Fig. 6 Mazes simulated by Webots. Illustrated in the second row is the
side-view of the simulated mazes. (a) A maze for CRPs generation in the
Learning Process. (b) The first maze for living with 1 × 1 m2. (c) The
second testing maze containing both a T-junction and Cross-junction. The
size is 3 × 3 m2. (c) The last testing complex maze with size 3 × 3 m2.

Fig. 7 Simulated e-puck and the real e-puck.

passed in only one direction (i.e., A3) could be reasoned to
generate the transition of another direction. Results of nav-
igation problem solving are shown by the graphs in Fig. 9,
where panels (a–c) show results in the aspect of time, and
panel (d) shows the quality of improvement.

In the aspect of robotic mapping, the loops can be
closed properly with neither false negative nor positive. As
depicted in Fig. 8, the path that is taken is created by arbi-
trary exploration: it therefore contains some loops (dupli-
cated path-fragments). Consequently, the map is optimized.
Finally, the optimized CPM, M∗, is derived (lower left of
Fig. 8 (a)). In this typical case, based on Def. 3,M∗ is com-
plete. For every trial of each Maze, map optimization can
be done. Considering the right picture of Fig. 8 (a), for in-
stance, path-fragments A3 and A5 can be detected as du-
plicated (loop-closing) and the junctions are unions. How-
ever, it is noteworthy that some trials exist for which CPM
is not complete. For example, in the 4th trial of Maze-3,
the robot fortunately selected the shortest route to find the
goal (As → A5 → A3 → AG of Fig. 8 (a)); in this case, the
obtained CPM contains As, A3, A5 and AG.

Regarding navigation problems, reasoning on CPM of-
fers many advantages. The improvement shown in pan-
els (d) of Fig. 9 is considerable. Considering time, the re-
duction rate is more than 50%, perhaps more than 90%. For
instance, in some trials, the robot unfortunately spent a long
time searching for the goal in the first episode (Fig. 9 (c)-
6th trial of M3-EP1). In such cases, the robot can reduce
the time based on this “unlucky path” by 95% (Fig. 9 (d)-
6th trial of M3-T). Based on the fact that the robot has no
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Fig. 8 The illustration of result of 6th trial in Maze-3. (a) The CPM is
generated and then optimized. (b) The route in the first episode. (c) The
route in the second episode optimized by reasoning.

guessing ability, although the total time for solving the prob-
lem is greater than 600 s (Fig. 9 (c)-6th Trial of Maze3), the
reduction rate is also as high as 95%. Consequently, if the
robot fortunately found the goal quickly, the reduction rate
of time is greater than 50%, but if the robot unfortunately
took a long time to find the goal in the first episode, the
reduction is consequently increased to 90%. This result un-
derscores the phenomenon of path improvement: the perfor-
mance benefits from serendipity.

The comparison between our method and the random
walk may seem to be non-surprising. However, this result
shows that the shortest path can be successfully retrieved for
every trials. The approximated length of CPs for skipping
can significantly speed-up the walks in the second episode.
Regardless of how the robot walk in the first episode, the
path can be optimized, resulting in reliable shortened path
in the second episode. The retrieved path in also in the form
which is very suitable to the SSH-based methods.

Comparing to reinforcement learning-based method,
out method is clearly faster as it always require only

Fig. 9 Results of mazes with simulated Webots. The x-Axis for all
graphs shows the trial index. (a–c) The result is shown in the aspect of
time corresponding to each individual maze. Mi-EP j denotes Maze-i in
Episode- j. (d) The rate of time reduction between episode 1 and 2 is shown.
T denotes Time. The reduction rate shows the quality of path improvement.

2 episodes for finding the best path in respect to the path
it took in the first episode. This does not mean that our
method outperforms the RL in general cases. RL is a gen-
eral method for general paths or motion planning. It can
also efficiently deals with very complex motion planning.
Our method, however, is especially suitable to simple path-
planning.

Nonetheless, by analyzing the proposed method in de-
tail, two disadvantages of our method are readily apparent.
First, (i) the search performed in the first episode might be
locked in infinite loops of duplicated path-fragments. Con-
sidering graphs depicted in panels (c) of Fig. 9 in trial no. 6,
the robot unfortunately repeated the same path-fragment too
many times, which results in a long time used for search-
ing. Second, (ii) if the goal was reached before all path-
fragments were disclosed, then the path may probably not
the real shortest path, though the robot can walk on such
path faster in the second episodes. These drawbacks can be
eliminated using Online CPM.

6. Online Mapping

The Map Optimization Algorithm processes the obtainedM
only after the end of episode 1. Unfortunately, it cannot
be guaranteed that the goal would always be found in ac-
ceptable time as long as the robot searches in an arbitrary
manner. The probability of being stuck in a loop, although
very small, exists. For a solution, the robot is expected to
consider the obtained map Mt at any current time (online)
for making a decision at the junction to find the goal as
quickly as possible and avoid traversing to duplicated path-
fragments.

Figure 8 shows a typical CPM generated from Maze-3
in the 6th trial. The map contains too many non-essential
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Fig. 10 Illustration of online CPM-building. (a) Duplication detected
(b) Robot localization (c) Explore node X2 and reach the goal (d) Explore
node X3 and found two more unexplored path-fragment (e) The complete
optimized CPM (f) Explore node X4 or X5. Both of them lead to junc(A−1 ).

duplicated path-fragments (i.e. A3). Consider Fig. 10, if
the map were considered before the robot makes a deci-
sion (for entering a new path-fragment), it would know
that A2 is duplicated, as shown by the black arrows in
panel (a). Consider panel (b): the robot connects path-
fragment A4 to junc(A+1 ) = junc(A−2 ) and localizes itself
at the path-fragment A2 where it is going to make a deci-
sion at junc(A+2 ). At this step, the map contains three un-
explored path-fragments connecting to junc(A+S ), junc(A+2 )
and junc(A+3 ); namely, X1, X2 and X3 (A3 is not available as
a choice because it has already been realized). The robot can
randomly choose one to explore: it might walk back to A1

and explore X1, or it might pass A3 to explore X3. How-
ever, in this study, we let the robot move forward, so that
it chooses either X2 or X3. If X3 is chosen, the new path-
fragment is A5 (shown by the arrow in panel (d)) and two
more unexplored path-fragments are found: X4 and X5. By
continuing exploration, either to X4 or X5, the robot ends
at junc(A−1 ) and they are both revealed simultaneously (in-
dicated by arrows in panel (f)) with only unexplored path-
fragments left: a goal. After exploration, the map would
be completed as shown in panel (e). Then the robot luckily
finds the goal, as depicted in panel (c) if X2 is chosen. In
this case, the robot might stop and remain satisfied with the
incomplete map, which is the case of our study, where the
main task is navigation. However, if the task is to obtain the

complete map, the robot can continue exploration on X3 and
it will finally end up at the complete map in panel (e).

Using the online path planning technique, it can be
guaranteed that the robot will always find the goal within
a finite time according to the following theorem.
Theorem 1: Given that all path-fragments in the environ-
ment are distinctive and asymmetrical, the time required for
reaching the unknown goal is finite, as

t =
∑np

i=1
(Ti) +maxi(Ti) ·

[
nA(nA + 1)

2
−

np(np + 1)

2

]
,

where nA is the number of path-fragments in the environ-
ment, np is the number path-fragments the robot passes be-
fore detecting duplication, and Tk is the time required for
passing the kth path-fragment.

For the second disadvantage, based on the solution de-
scribed in the previous paragraph, the robot can always find
the shortest path. Once the goal is found, the robot would
derive the optimized CPM,M∗, either complete or incom-
plete. If the map is complete, then the robot can exactly
retrieve the shortest path from the map. Hence, we focus on
the latter case. For the incomplete CPM, the current path
may not be the shortest one. As for the solution, during
the way back of the robot, it would be worthwhile to ex-
plore the map more to see if there would be another shorter
path. Particularly, assume that the robot finds the goal at
time step t and that map Mt is derived, given nJ as the
number of junctions J = {J1, J2, . . . , JnJ

} corresponding to
Mt = {A1,A2, . . . ,An+1} before the robot follows the map
pass from Ai+1 to Ai where i ∈ I+, i ≤ n, the robot tries to
enter another different path-fragment A′i at junction Ji. As
long as the new path length is less than the old path length,
the robot continues moving along the new path. In contrast,
if the robot spent more steps to seek the goal in the new
path than on the old path, it would exactly realize that this
path will never be shorter than the previous one. There-
fore it stops and goes back to the old path. In simpler view,
this technique would be mostly like the creation of complete
CPM as long as the length of path is not longer than the cur-
rent one.

7. Experiment2: Real Robot

The experiment is done on the real e-puck robot. The setting
differs slightly from that of the simulated experiment. Dis-
tinct from the first experiment, this experiment is conducted
to show that out method is applicable to the real-robot. The
maze would not be much complex. Also, the online map-
ping has been implemented. The velocity is set to 3π

5 rad/s;
thereby, one observation takes ca. 3 s. The learning time of
90 min (5400 s) is provided to the robot to learn the environ-
ment presented in Fig. 11 (a) Regarding testing, the maze is
modified from the learning maze. According to Fig. 11 (c),
the start point is at the upper right, whereas the goal is at the
lower right dead-end.

For the result, the robot moves from the start point to
search for the goal, which takes 20 CPs (ca. 121 s). After
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Fig. 11 (a) The real environment for learning CRPs (Learning Process).
The line shows the available path-fragment. (b) Depiction of CRP genera-
tion using a real e-puck. (c) The testing environment. (d) The CPM result.

the robot locates the goal, it must walk back (independently)
to the starting point to try reaching the goal again. On the
way back, the robot tries a new path-fragment. However,
the robot found that the length of the new path-fragment will
never be shorter than the latest one and it gives up. The robot
moves back to the junction and follows the path back to the
starting point. Therefore, the robot spends 33 CPs in all to
seek the goal (20 CPs for reaching the goal and 13 CPs for
traveling back including trying new path-fragments). Then
the robot moves to the goal again. The movement becomes
smooth. The number of steps is reduced to 4 (ca. 44 s). Con-
sidering the time, the robot reduces the time from ca. 121 s
to ca. 44 s. Regarding the aspect of improvement, the robot
reduces the number of steps by 80% and time by 63.636%.
The rate of reduction increases according to the maze com-
plexity. Figure 11 (b) shows CPs generated by SOINN.

The CPM result is presented in Fig. 11 (d). This envi-
ronment contains four path-fragments which are connected
by two junctions. Each path-fragment is represented us-
ing a sequence of CP. The task is goal-oriented naviga-
tion. Therefore, the robot allocates no interest to path-
fragment which lead to a longer path to the goal than those
already found (gray color). Considering Fig. 11 (d), once
the robot reaches the goal, it must go back to As. On the
way back, it tries a new path-fragment at junc(A−G) (gray
path-fragment in Fig. 11 (d)). However, it was found that
the path-fragment’s length is greater than that of A1, so the
robot stops and follows the route back. At junc(A+S ), it does
not try the new path-fragment because the junction connects
to As.

8. Discussion

Combining the application of SOINN-AM, the reasoning
technique for decision making at junction, and the SSH ar-
chitecture has been shown to be effective for robotic path

planning. The use of CP enables the robot to remem-
ber all information like that of metric map, but with much
lower storage. Advantages of using the common pattern
for compact representation has been proved successful both
in computer vision [32] and robotic appearance based nav-
igation [34]. In our method, instead of image, we repre-
sent a whole path-fragment with a set of “ordered” CPs (or
words). There is a room for improvement here. In this paper,
we simply determine the similarity between path fragments
by direct comparison because the maze is not too com-
plex. One can use the ‘term frequency-inverse document
frequency’, tf-idf, for path-fragment matching in more com-
plex environment. Because the implementation of CP is, in
some sense, similar to that of text retrieval approach, any
techniques of such approach can be used with our method.

Additionally, the path partitioning at junction allows
the robot to be free from the problem of large image
database for visual-servoing. Many other methods divide
the path fragment based on the appearance [35], so that the
robot needs to keeps the images for action generation. Also,
dividing the fragment in such manner may result in too great
number of node in the topological map [35], which seriously
affect the image retrieving time in long run. In contrast, our
method output the number of fragments which matches well
to the environment. According to theorem 1, if distinctive
path-fragments in the environment, nA, were numerous, then
the environment would generally be considered complex be-
cause the number of junctions nJ directly depends on nA:
nJ ∝ nA. In addition, if the robot were unfortunate, it would
end up in the duplicated path-fragments too early; thereby,
the initial length of incomplete path np would be small. It
would take time in finding the goal. On the other hand, if
the environment is not too complex and the robot is not too
unfortunate, the goal would be located quickly; a short path
would be derived. In addition, the luck of the robot in max-
imizing np might be done in various ways such as adding
guessing capability to the robot or activating a camera. Our
method divides the path fragment based on junction like the
work of Kuipers [16]. However, our method did not ignore
the information of the path-fragment.

One may question about how well the current robot can
detect the junction, especially in the outdoor scenes where
the obstacles does not always exist. Our method in its cur-
rent form cannot be applied to the path-planning in widely
opened area in outdoors. For example, navigating the robot
in the football field where there is no clear path of streets,
the junction cannot be detected. This will results in failure in
our path fragment definition. In other words, our proposed
method works well in the environment where the junction
can be detected and the clear path or road exists. Otherwise,
the method cannot segment the map into path-fragments.

Another question arises with regard to the SOINN’s re-
sistance against sensory noises and motor noise. The ex-
periments conducted in this study includes both sensory and
motor noise. Generally, motor-noise can results in sensory-
noise. The trajectories of the robot is very unlikely to be
exactly similar in the real-world environment. Our method
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can cope with these noises by using SOINN. Our system
can correctly identify the robot’s location regardless of the
small difference in the position of the robot because it takes
into account many observations to identify the path frag-
ment. In other words, our system does accurately localize
the robot’s position by the exact coordinate but the path-
fragment the robot is visiting. Doing this can eliminate both
the noise from observation and the noise from different ob-
serving position. This also explains why representing the
path fragment in this manner works well even under the per-
turbation of robot trajectory. Even though the length of the
same path-fragment is slightly different because of motor
perturbation, the fragment can still be correctly recognized
as long as most of the CPs are similar. For example, the
path-fragment represented by an A-Patterns 1-2-2-3-4-4 can
still be recognized as similar to 2-2-3-4-4 because the num-
ber of matched CPs are sufficient in respect to Eq. (5) for
being the same path-fragment. The result of clustering as
shown in Fig. 5 shows that the noise generated from robot’s
motor can be eliminated by SOINNs.

Furthermore, considering the problem in which the
starting point is changed, it is solvable based on our method.
Because the robot has already obtained the complete opti-
mized CPM,M∗, it can find the shortest path between any
pairs of path-fragments. However, there might be one re-
maining problem if the robot is left to start at the middle
of path-fragment. In this case, the robot will not be able
to recognize the path-fragment correctly and therefore can-
not localize itself in CPM. Fortunately, the robot can solve
this problem easily by starting the discovery process from
a junction. Namely, if it is left at the middle of the path-
fragment, then the representing CPs would not be junction
CPs and the robot continues moving forward until the first
junction is found. Once found, it can arbitrarily select the
next path-fragment to enter and discover it. Once the robot
becomes oriented in that manner, it can find the shortest path
to reach the goal. This causes a small overhead in which the
robot needs to neglect the first path-fragments and start ob-
serving from the next junction. However, the overhead time
required for doing this will always be less than the time nec-
essary for traversing the largest (longest) path-fragment.

Another point that should be further described about is
the comparison between our method and the others. As de-
scribed previously, our method is especially suitable to path-
planning for simple-shape robotics. Reinforcement lean-
ing and RRT [37], [38] is usually used for complex path-
planning. It requires the good low-level controller to effi-
ciently drive the robot along the path. Conceptually, our
method can also be applied to 3-dimensional world in some
senses. The path fragment is represented by a set of CPs.
Each CP is obtained by clustering a number of feature vec-
tors. These feature vectors are the observations the robot
observes from the environment. These observations can
be observed regardless of the dimensions of the environ-
ments. In other words, our proposed method can be ap-
plied to either 2-D or 3-D world depending on the designed
low-level controller. However, in this study, the controller

is a simple controller designed for 2-D environment so that
the system is application to only 2-D path-planning. Nev-
ertheless, we expect that our method can also be combined
with the more efficient 3-D controller. Our method makes
use of the reasoning on connection between path-fragments,
so that it can automatically generate some new previously
unvisited paths and can speed up the robot movement by es-
timating the length of each path-fragments. That is to say,
as long as the junction detection can be efficiently done,
our method would clearly perform faster that other path-
planning method. Nonetheless, our method is based on the
high-level concepts (assuming that low-level controller per-
forms well), so that it might be currently not applicable to
complex environment with complex robots, since such good
controllers are very difficult to obtain.

The proposed method, although it has been adapted to
online path planning, retains an important disadvantage. As
described previously, the CPs are not incrementally learnt.
Although it might be said that the junction with size of more
than five-way is rare, such path-fragments do exist. For the
most suitable solution, the CPs must be learned incremen-
tally. When the robot detects any new environment, it is ex-
pected to be capable of deciding if the current path-fragment
is best represented by the existed CP, or if a new CP is best
added. Solving the problem in this manner will enable the
robot incrementally to gain CP unlimitedly, which is suited
to life-long planning.

We believe that one can integrate the proposed path-
planning the post-processing of the mapping method. The
proposed simple reasoning technique would be very efficient
for the SSH-based SLAM.
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Appendix

Proof of Theorem 1: Given nA as the number of all dis-
tinct path-fragments in the environment, let T be the set of
macro-time-steps T required for passing path-fragments cor-
responding to the sequence of path-fragments in the mapM.
Starting from the start point, the robot randomly makes de-
cisions until it passes the duplicated path-fragment at macro
time step Tk; it means that T = {T1,T2, . . . ,Tk−1}, M =

{A1,A2, . . . ,Ak−1}, J = {J1, J2, . . . , Jk−2}. Because np is the
length of map M, it is inferred that np = k − 1. Conse-
quently, the number of unknown path-fragments is nA − np

and the time spent for the first search is
∑np

i=1 Ti. Every time
the robot passes the duplicated path-fragment, it performs
either of the following.

1) If the current junction has some remaining unknown
ports, it randomly chooses one and moves on.

2) If the current junction has no unknown ports left, it con-
tinues forward until reaching a junction that has some
remaining unknown ports.

In doing so, every time the robot finds duplicated path-
fragments, it is guaranteed that one more unknown path-
fragments would be revealed. Namely, M ∪ {Anew} within
maximum time

∑np

i=1 Ti. Therefore, if the path-fragments
in closed environment nA are finite in number, then n(M)
equals nA within time
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∑nA−np

j=1

(∑np j

i=1
Ti

)
≤
∑nA−np

i=1

(
npj ·max1≤i≤np j

Ti

)
.

The number of path-fragments is finite. Therefore, the
maximum length of M, npj is finite. Because every path-
fragment has limited length, the time for passing each path-
fragment is limited, as is the maximum value. Furthermore,
noticing that n(M) increases by 1 for each iteration, it can
be inferred that∑nA−np

i=1

(
npj ·maxi(Ti)

)
= maxi(Ti) ·

∑nA−np

i=1
(npj )

= maxi(Ti) ·
(nA − np)(nA + np + 1)

2

= maxi(Ti) ·
[
nA(nA + 1)

2
−

np(np + 1)

2

]
.

We conclude that the time for searching is bounded to lim-
ited time.
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