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An Unsupervised Model of Redundancy for Answer Validation

Youzheng WU†a), Hideki KASHIOKA†b), Nonmembers, and Satoshi NAKAMURA†c), Member

SUMMARY Given a question and a set of its candidate answers, the
task of answer validation (AV) aims to return a Boolean value indicating
whether a given candidate answer is the correct answer to the question.
Unlike previous works, this paper presents an unsupervised model, called
the U-model, for AV. This approach regards AV as a classification task
and investigates how effectively using redundancy of the Web into the pro-
posed architecture. Experimental results with TREC factoid test sets and
Chinese test sets indicate that the proposed U-model with redundancy infor-
mation is very effective for AV. For example, the top@1/mrr@5 scores on
the TREC05, and 06 tracks are 40.1/51.5% and 35.8/47.3%, respectively.
Furthermore, a cross-model comparison experiment demonstrates that the
U-model is the best among the redundancy-based models considered. Even
compared with a syntax-based approach, a supervised machine learning ap-
proach and a pattern-based approach, the U-model performs much better.
key words: question answering, answer validation, unsupervised model,
Web mining, support vector machine

1. Introduction

Given a question and a set of candidate answers,
the task of answer validation (AV) is to return a
Boolean value for each candidate answer, indicating
whether the candidate is the correct answer to the
question. This is an emerging topic in question an-
swering (QA) (http://nlp.uned.es/QA/ave/). Au-
tomatic techniques for AV are of great interest for
the development of open-domain QA systems.Spurred
by TREC (http://trec.nist.gov/), CLEF (http://
www.clef-campaign.org/), and NTCIR (http://
research.nii.ac.jp/ntcir/), manyapproaches have
been presented, such as the retrieval-based model [14],
the pattern-based model [8], [21], the deep NLP-based
model [7], [9], [10], [20], and the machine-learning-based
model [2], [12], [15], [18], [19], [27]. Many of these ap-
proaches independently process the candidate-bearing snip-
pets and do not use information on data redundancy among
these snippets to help select the correct answer from the
candidate answers. For example, the machine-learning-
based model independently estimates the probability p(ci|s)
of generating answer ci from each candidate-bearing snippet
s and then selects the candidate c∗i with the highest proba-
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bility as the correct answer. As a result, answers cannot
always be identified in cases in which the answers occur in
snippets with low similarities with respect to the question.
Our proposed unsupervised model of using redundancy in-
formation learned from the Web automatically can partially
resolve this problem.

Considering the test questions of TREC, however, we
find that candidate-bearing snippets containing the same
candidate answer include roughly the same sub-meaning.
Table 1 lists some Google snippets in response to the query
that is composed of the candidate answer “1969” and the
keywords from the TREC04 test question When was the
first Crip gang started. This table indicates that most of
these Google snippets (such as e1, e2, e3, and e4) express
the same meaning, i.e., the time of establishment of the
first Crip gang. By considering these snippets together
and using them to help select answers to questions, an
AV system might achieve better performance than that of
systems that independently process these candidate-bearing
snippets. Approaches based on this observation are called
redundancy-based models. Some pioneering studies [3],
[4], [16], [22]–[24] have investigated redundancy from the
Web for the AV in QA.

This paper presents a novel redundancy-based model
incorporating data redundancy from the Web for the AV
task. Our approach is an unsupervised model, called the
U-model, which has the following characteristics:

• It regards the AV task as a kind of classification task;
• The training data required by the classifier can be

learned automatically;
• It is independent of language and can be implemented

with limited resources.

To the best of our knowledge, no research on the kind
of study we discuss here has been reported. To validate the
proposed U-model, we performed extensive experiments in
terms of TREC English test data sets and Chinese test data
sets. Our major findings include the following:

1). The U-model can achieve very competitive perfor-
mance with top@1/mrr@5/top@5 scores for the
TREC05 and 06 sets of 40.1/51.5/71.9%, and
35.8/47.3/ 66.8%, respectively (as described in
Sect. 4.2).

2). The overlap, Boolean, candidate, and context features
(as described in Sect. 3.2) play more important roles (as
described in Sect. 4.3).

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers
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Table 1 Some Google snippets containing answer candidate “1969” to question When was the first
Crip gang started.

e1 . . . like the Bloods and Crips that are well-known today. It is believed that the first Crip gang was formed in late
1969. During this time in Los Angeles there . . .

e2 . . . Not long after the first Bloods and Crips gangs started forming in Los Angeles in late 1969, the Island Bloods
sprung up in north Pomona and . . .

e3 . . . formed by 16 year old Raymond Lee Washington in 1969. Williams joined Washington in 1971 . . . be called the
Crips. It was initially started to eliminate all street gangs . . .

e4 . . . In three years, after the first Crip gang was established in 1969, the number of black gangs in Los Angeles had
grown to 18. Table 1 reveals that in each . . .

e5 . . . the first writer to win . . . the infamous CRIP gang. . . . The father gave Tookie a . . . started his gang. It appears that
the young people . . . . Hall takeover of 1969 by students demanding . . .

3). The U-model is independent of Web search engines
because the performance with different search engines
does not significantly vary (as described in Sect. 4.4).

4). A cross-model comparison demonstrates that the U-
model statistically significantly outperforms previous
redundancy-based models [3], [16] (as described in
Sect. 4.5).

5). Even compared with the conventional syntax-based
model [9], a supervised machine learning approach
and a pattern-based approach, the U-model can achieve
much better performance (as described in Sect. 4.6, 4.8
and 4.9).

2. Comparison among Models

The characteristic of the redundancy-based approaches is
the use of Web redundancy for more reliable answer val-
idation. This section introduces some closely related
redundancy-based approaches.

2.1 Magnini Model

Magnini model [3] incorporates Web data redundancy into
an answer validation score that assesses the correctness of
a candidate answer a with respect to a question q. The best
performance is obtained with the answer validation score
computed as,

CCP(Qsp, Asp) =
h(Qsp NEAR Asp)

h(Qsp) × h(Asp)2/3
× Mp2/3 (1)

where Qsp is a question sub-pattern composed by combin-
ing keywords in question q by using the proximity operator
NEAR and OR; Asp is an answer sub-pattern composed by
combining keywords in candidate answer a by using NEAR
and OR; h(A) is the number of pages retrieved by AltaVista,
in which pattern A appears, with A denoting Qsp, Asp, or
the answer validation pattern Qsp NEAR Asp; and Mp is the
maximum number of pages indexed by the search engine.

2.2 Aranea Model

The Aranea model [16] is a complete re-implementation,
with additional refinements, of the original askMSR sys-
tem [23]. Its performance in TREC 2002, 2003, and 2004

Fig. 1 Architecture of the aranea model.

tracks was competitive. The main contribution of the Aranea
model is a new QA architecture in which there is no need
to extract candidates, which is necessary in the traditional
QA architecture. Figure 1 illustrates the architecture of the
Aranea model. In this architecture, Rewrite Query generates
a set of weighted rewrites of the question, which are likely
substrings of declarative answers to the question. According
to the snippets returned by the Web search engine, Gener-
ate N-grams extracts all N-grams in the snippets as possi-
ble answers. Filter N-grams scores the N-grams according
to the weights of the rewrite rules that generated them and
the numbers of unique snippets in which they occurred, and
it filters out N-grams whose scores are under a predefined
threshold. In Combine N-grams module, unigrams are used
as evidence to boost the scores of longer answer candidates.
Finally, the Rerank N-grams module selects the top-ranked
N-grams as answers.

The disadvantages of both the Magnini model and the
Aranea model include: 1). They heavily depend on the oc-
currences of the candidates, few other features are incorpo-
rated. 2). Much noise is introduced into the models, even
though some heuristic rules are used in the Aranea model.
The snippet e5 in Table 1, for example, is a noise snippet
because it does not express the meaning, i.e, the time of es-
tablishment of the first Crip gang. The two models, however,
treat it equally as the other four snippets, which will lead to
lower performance.

In response to this situation, this paper presents the U-
model for answer validation in open-domain QA system that
can partially solve the problems.

In addition, [22], [24] incorporated the web-boosting
features of exploiting redundancy on the Web to improve
their conventional QA system that is based on syntactical
and lexical similarity.
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Fig. 2 Architecture of our question answering system.

3. U-Model

Different from the above two models, the proposed U-model
proposes a novel way of exploiting the redundancy of Web
information. In brief, our-model can partially resolve the
noise problem by incorporating multiple features extracted
from the candidate-bearing snippets and treating them dis-
criminately.

Figure 2 illustrates the architecture of our QA system
that is a cascade of the following modules.

• Question Processing analyzes the given natural lan-
guage question, identifies the question types (or the
desired answer types) and the question focus (e.g.,
“CEO” in question Who is the CEO of IBM). We use
some handcrafted heuristic rules to identify question
types in English QA system. The SVM-based method
proposed by [31] is adopted for Chinese QA. To iden-
tify question focus, both Chinese and English QA sys-
tems adopt some handcrafted heuristic rules.
• Document Retrieval uses keywords from the ques-

tion to retrieve documents related to the question from
a large-scale document set. In our implementation,
Indri toolkit (http://www.lemurproject.org/) is
adopted for document retrieval.
• Answer Candidate Extraction extracts answer candi-

dates {ci|i = 1, 2, . . . , n} from the retrieved documents
that match the question types, n is the number of can-
didates.
• The other three modules, i.e., Learning Training Ex-

amples, Training Classifier, and Selecting Answer,
are designed to select a candidate answer c∗i from can-
didates {ci, i = 1, 2, . . . , n} as the correct answer to
the given question, which are called answer validation
(AV).

The AV is the kernel of question answering system and
the research focus. We refer to our proposed solution to

the AV as the U-model that differs from the previous ap-
proaches. In the following sections, we will focus on the
details of the U-model.

3.1 Main Idea of the U-Model

Given a natural language question q and a set of its candidate
answers {ci|i = 1, 2, . . . , n}, the U-model states the problem
of selecting a candidate answer c∗i as the correct answer as
follows.

Most sentences express a sequence of sub-topical dis-
cussions that can be characterized by highly correlated
terms [5]. In this paper, we assume that the n candidates
{ci|i = 1, 2, . . . , n} generated by the answer candidate ex-
traction module represent that there exists n topics {ti|i =
1, 2, . . . , n} related to the given question; and the n can-
didates are the topic signatures of the n defined topics.
Namely, this assumption defines n topics {ti|i = 1, 2, . . . , n}
and their topic signatures {ci|i = 1, 2, . . . , n}.

We assume that there exists an ideal/pseudo answer-
bearing snippet to any given question q. This ideal/pseudo
answer-bearing snippet is also assumed to express a topic
(tagged as ta) and the correct answer (tagged as a∗) can be
used to represent its topic signature. If the topic ta is same
as one of the defined topic tk, it is logical to assume that the
topic signature ck of topic tk is equal to the topic signature
a∗ of topic ta, that is, a∗ = ck. Therefore, ck is the correct
answer to the question. That is, we define the following
inference rule:

ta = tk ⇒ a∗ = ck (2)

Accordingly, the AV task becomes the task of classifying
the ideal/pseudo answer-bearing snippet into one of n topics
{ti|i = 1, 2, . . . , n}.

We employ SVM-based classifier to classify the
ideal/pseudo answer-bearing snippet into one of n topics.
Unfortunately, there are no training examples for the n de-
fined topics. Here, we present the Algorithm-1 below to
learn training examples for each topic.
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Table 2 Some training examples of selected topics.

topic signature training examples

1969 It is believed that the first Crip gang was formed in late 1969. During this time in Los Angeles there were . . .
. . . the first Bloods and Crips gangs started forming in Los Angeles in late 1969, the Island Bloods sprung up in north Pomona . . .
. . . formed by 16 year old Raymond Lee Washington in 1969. Williams joined Washington in 1971 . . . had come to be called the
Crips. It was initially started to eliminate all street gangs . . .

August 8, 2005 High Country News – August 8, 2005: The Gangs of Zion
2004 2004 main 1 Crips 1.1 FACTOID When was the first Crip gang started? 1.2 FACTOID What does the name mean or come . . .
1972 One of the first-known and publicized killings by Crip gang members occurred at the Hollywood Bowl in March 1972.
1971 Williams joined Washington in 1971, forming the westside faction of what had come to be called the Crips.

The Crips gang formed as a kind of community watchdog group in 1971 after the demise of the Black Panthers. . . .
. . . formed by 16 year old Raymond Lee Washington in 1969. Williams joined Washington in 1971 . . . had come to be called the
Crips. It was initially started to eliminate all street gangs . . .

1982 Oceanside police first started documenting gangs in 1982, when five known gangs were operating in the city: the Posole Locos . . .
mid-1990s Street Locos; Deep Valley Bloods and Deep Valley Crips. By the mid-1990s, gang violence had . . .

1970s The Blood gangs started up as opposition to the Crips gangs, also in the 1970s, and the rivalry stands to this day . . .

Algorithm-1
for each candidate ci do

Combine candidate ci and the question keywords
{q j| j = 1, 2, . . . , k} to form a Web search query;

Submit this Web query to a Web search engine and
download the top M snippets returned by the search
engine;

Retain those snippets {si,1, si,2, . . . , si,ki } that contain
candidate ci and at least one question keyword as
the Web redundancy data of candidate ci, ki is the
number of snippets for ci, and ki ≤ M.

endfor

For better understanding, Table 2 shows some train-
ing examples of selected topics for TREC 2004 test ques-
tion When was the first Crip gang started. Using the train-
ing examples {si,1, si,2, . . . , si,ki |i = 1, 2, . . . , n} of the topics
{ti|i = 1, 2, . . . , n} learned by the Algorithm-1, we train a
n-topic classifier. Section 3.2 introduces the classification
features. This step is implemented by the training classifier
module.

The selecting answer module constructs the vector
of the ideal/pseudo answer-bearing snippet (described in
Sect. 3.3) and determines the topic of the ideal/pseudo
answer-bearing snippet by using the n-topic classifier. The
classifier outputs n < tk, pk > pairs †, meaning that the prob-
ability of the ideal/pseudo answer-bearing snippet belong-
ing to topic tk is pk. The U-model finally selects candidate
c∗i with the largest probability as the correct answer.

To summarize, the U-model considers answer valida-
tion as a kind of classification task. The hypothesis un-
derlying this model is that candidate-bearing snippets con-
taining the same candidate answer express the same sub-
meaning and thus belong to the same topic. That is, can-
didates are topic signatures. Similarly, there exists an
ideal/pseudo answer-bearing snippet that also expresses a
topic that can also be characterized by the answer. Hence,
if the ideal/pseudo answer-bearing snippet belongs to one
topic, a candidate answer in this topic is the correct answer
to the question.

The U-model adopts an SVM as a classifier,
and extracts multiple features to form training vec-

tors. For our implementation, we select LIBSVM toolkit
(http://www.csie.ntu.edu.tw/˜cjlin/libsvm/) and
one-against-one strategy for multi-class classification,
where the kernel is the radical basis function with the pa-
rameter gamma = 0.001.

3.2 Features

The U-model extracts the following six categories of fea-
tures for the SVM classifier.

• Overlap features include three features, i.e., percent-
age of matched question keywords (KWs); percent-
age of mismatched question KWs; and percentage of
matched question Bi-grams.
• Semantic feature is the percentage of matched the-

saurus words. To compute the value of this feature,
synonyms and immediate hypernyms of KWs in Word-
Net are used for English QA system; TONGYICI-
CILIN (a Chinese Thesaurus Lexicon) is employed
for Chinese QA system to find synonyms of Chinese
words.
• Boolean features capture the similarities between the

test question and the snippets in terms of certain spe-
cific keywords. The Boolean features includes: 1. a fo-
cus word †† or its thesauruses of the test question match
or do not match; 2. the test question does or does not
match the word, which forms a bi-gram with the can-
didate contained in the snippet; 3. the capitalized key-
words, and time and numeric keywords in the question
match or do not match. The value of each feature is
computed as,

scoreBi =

{
θ1 if Bi matches in snppets
0 else

(3)

where Bi means a Boolean feature, θ1 is set to 0.5 ac-
cording to the development set.

†Usually, support vector classification predicts only class label
but not probability information. To extend SVM for probability
estimates, the approach proposed in [25] is adopted.
††When no focus word can be identified using the heuristic

rules, this feature does not fire.
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• Candidate feature indicates that candidate has or does
not have desired answer type. For example, answers
to numerical or time questions should contain numeric
or time expressions; answers to personal, locational,
and organizational questions should contain at least one
word starting with a capital letter † . The value of this
feature is computed as,

score =

{
θ1 if candidate feature fires
0 else

(4)

where θ1 is also set to 0.5.
• Context features is a set of words preceding
{wi−m, . . .wi−1} and following {wi+1, . . . ,wi+m} the can-
didate answer. Each context feature is weighted as,

score(wj,Ci) =
N(wj, ti) + δ

N(wj) + δ
(5)

where N(wj) is the total number of snippets containing
word feature wj, and N(wj, ti) is the number of snippets
in topic ti that contain wj, δ is used for smoothing.
• Other features include distance feature (DIST) and

frequency feature (FREQ). The DIST denotes the nor-
malized distance between candidates and question key-
words in snippets. The value is computed as,

scoreDIS T =

∏
j=1,...,k 2

1
1+dist(q j ,ci)

2k
(6)

where dist(q j, ci) means the number of words between
question KW q j and candidate ci, which is set to the
length of the snippet when q j does not appear, and k is
the number of question KWs.
The FREQ denotes the normalized number of training
examples in topic ti containing candidate ci, which is
weighted as,

scoreFREQ =
count(ti)∑
t j

count(t j)
(7)

where count(ti) is the number of the learned training
examples in topic ti.

3.3 Selecting Answer

We assume that the ideal/pseudo answer-bearing snippet
contains all of the question words and the words in the con-
text features. Therefore, the values of the matched question
KWs and the matched bi-grams in the overlap features, and
the semantic feature are set to 1; the mismatched question
KWs in the overlap features is set to 0; the values of the
context features are set using Eq. (5). Similarly, we assume
that all of the Boolean features and the candidate feature fire,
thereby their values are set to θ1. About the other features,
we set the values to the maximum estimated in Eq. (6) and
(7).

4. Experiments and Results

In our experiments, we validate the U-model in terms of En-
glish TREC test data sets and Chinese test data sets.

The experimental results are measured in terms of
two kinds of scores, top@n and mrr@n. Here, top@n
is the rate at which at least one correct answer is in-
cluded in the top n answers, while mrr@n indicates the
average reciprocal rank (1/n) of the highest rank of the
correct answer to each question. In addition, we mea-
sure performance by using Ken Litkowski’s answer pat-
terns (http://trec.nist.gov/data/) and NIST’s scor-
ing script. ‡ indicates a statistically significant difference
in performance at the 1% level according to a two-sided
paired-sample t-test, while † indicates a statistically signifi-
cant difference at the 5% level.

4.1 English Test Sets

The English test data sets consists of factoid test questions
from the TREC 2002, 2003, 2005, 2006 QA tracks. The
TREC 2001 test questions are used as development data set.
For each test question, the candidates come from the TREC
QA participants’ systems. These candidates are available on
the TREC website (http://trec.nist.gov/data/). Ta-
ble 3 summarizes the test sets, including the average number
of candidates. Note that NIL questions are excluded from
our test sets, because TREC does not supply answer patterns
for them, #1 and #2 denote the number of test questions and
the average number of candidates to each question, respec-
tively. From Sect. 4.1 to Section 4.5, the experiments are
based on English test sets.

4.2 Overall Performance of the U-Model

Unless specified, otherwise, the search engine is Google.
The value of M in the Algorithm-1 of learning training ex-
amples (in Sect. 3.1) is very important. If M is too large,
the quality of training examples decreases, otherwise, the
quantity of training examples can be insufficient. Accord-
ing to our experiments, the best value of M is set to 50.
A frequency-based AV approach, selecting candidates as
correct answers simply according to the FREQ feature in
Sect. 3.2, is implemented as the baseline. Table 4 lists the
performance results of the baseline, U-model.

Table 4 demonstrates that the U-model significantly
outperforms the baseline. The improvements of all metrics
with respect to the baseline system are over 20%, which is

Table 3 Statistic of English test data sets.

tracks TREC02 TREC03 TREC05 TREC06
#1 444 380 352 386
#2 25.0 19.1 25.1 20.7

†Here, personal, locational and organizational entities are not
disambiguated because Named Entity Tagger is not employed.
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Table 4 Performance of U-model.

TREC05 TREC06

top@1
Baseline 10.2% 10.9%
U-model 40.1%‡ 35.8%‡

mrr@5
Baseline 22.7% 23.6%
U-model 51.5%‡ 47.3%‡

top@5
Baseline 47.7% 48.4%
U-model 71.9%‡ 66.8%‡

Fig. 3 Wrongly answered questions.

statistically significant at the 1% level. In fact, there is much
noise in the candidates from all of the participants’ systems.
If more semantic information, like named entities, is incor-
porated into this architecture, the performances could be fur-
ther improved.

This table also indicates that 28.1% of the questions are
not ranked in the top five on the TREC05 test data set. We
analyze the reasons for this failure and classify them into
five categories, as showed in Fig. 3.

This figure shows that:

• Error-1 refers to questions that are probably answered
wrongly because of data sparseness. Even though we
retrieve candidate-bearing snippets from the Web, data
sparseness is still possible. Thirty of the questions
classified in Error-1 have no answer-bearing snippets,
while the remaining nineteen questions have less than
five answer-bearing snippets.
• The learned answer-bearing snippets by using the

Algorithm-1 sometimes express different meanings
from their questions. For example, most of the re-
trieved snippets containing the answer New York to the
question Where did Woody Guthrie die do not express
the place of his death. As a result, our model fails to
answer this kind of questions, classified as Error-2.
• Error-3 refers to questions wrongly answered because

of different phrases in the question and the candidate-
bearing snippets. For a question like What is the com-
pany’s web address, most snippets contain answer us-
ing expressions like for more info about this company,
visit www.merck.com. Answering this kind of questions
requires incorporating prior knowledge.
• Error-4 refers to questions that are not correctly an-

swered because the current features cannot distinguish
the answers from noise candidates.
• All other wrongly answered questions are classified

Table 5 Contributions of different features.

TREC05(%) TREC06(%)
overlap 20.2/33.0/55.4 16.3/30.5/53.1
+Boolean 27.6‡/39.1‡/60.5‡ 22.0‡/36.4‡/61.4‡
+candidate 34.4‡/45.9‡/66.8‡ 26.7‡/40.7‡/64.5†
+context 39.5‡/50.8‡/70.5† 34.7‡/46.4‡/66.1
+semantic 40.1/51.5†/71.9† 35.8/47.3†/66.8
+other 38.1/49.6†/70.5 32.6†/45.8†/66.8

into Error-5.

4.3 Impact of Features

Classification features play very important roles in our
model. Table 5 lists the contributions of different features
to top@1/mrr@5/top@5 scores by gradually adding them,
in order to understand the effectiveness of these features.

This table demonstrates that:

• Using the overlap features only achieves top@1/
mrr@5 scores of 20.2%/33.0% for TREC05 and
16.3%/30.5% for the TREC06.
• The Boolean, candidate, and context features are statis-

tically significant at either the 1% or 5% level, which
improves top@1 scores by 7.4%, 6.8%, and 5.1%, re-
spectively, for the TREC05, and by 5.7%, 4.7%, and
8.0%, respectively, for the TREC06.
• The semantic feature gives quite limited improvement.

For example, adding this feature only increases top@1
score for the TREC05 from 39.5% to 40.1%, and
top@1 improvement for the TREC06 is only 1.1%.
This might be because the semantic feature is incorpo-
rated after adding the Boolean, candidate and context
features, which dominate the similarities between the
snippets and the questions. Consequently, the semantic
feature does not largely contribute.
• The other features have negative influences that de-

crease top@1 scores for TREC05 and TREC06 by
2.0% and 3.2%, respectively. Therefore, the other fea-
tures will not be used in our final QA systems.

4.4 Impact of Search Engines

The above experiments are based on retrieving results from
Google. The performance might be not exactly the same if
the underlying search engine is changed. To understand this,
we compare the performance of the U-model with AltaVista
(A, http://www.altavista.com), Google (G), and both
search engines (G + A). G + A means that the snippets
learned from Google and AltaVista are simply combined †.
Table 6 summarizes the top@1/mrr@5/top@5 scores.

This experimental result demonstrates that the U-
model is independent of the Web search engines, because

†This combination of the snippets does not mean that we
simply double the snippets from Google or AltaVista, because
the search engines and the snippet-generation approaches used in
Google and AltaVista are different.
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Table 6 U-model with different search engines.

TREC05 TREC06
G 40.1/51.5/71.9 35.8/47.3/66.8
A 40.6/51.2/68.8 35.0/46.6/67.4
G+A 41.8/52.4/72.2 38.6/48.5/66.1

Table 7 Comparison of redundancy-based models.

top@1 mrr@5 top@5
Aranea 45.0% 51.2% 61.7%

TREC02 Magnini 34.2%‡ 45.9%† 66.2%
U-model 54.7%‡ 65.7%‡ 82.7%‡

Aranea 30.8% 36.0% 44.5%
TREC03 Magnini 30.5% 43.9%‡ 66.6%‡

U-model 43.4%‡ 55.1%‡ 71.1%‡

the performance does not significantly differ between Al-
taVista and Google. There is no doubt that the combination
of results from different search engines achieves better per-
formance than when the search engines are used individu-
ally. The improvement, however, is not statistically signifi-
cant. This might be because the top 50 results returned by
different search engines complement each other to a certain
degree.

4.5 Cross-Model Comparison

In Sect. 2, we introduced two related redundancy-based AV
models. To investigate the effectiveness of these mod-
els, we conduct a cross-model comparison of the U-model,
the Magnini model, and the Aranea model. [16] provides
the source code for the Aranea model, and our experi-
mental setup uses basic.google.nolookup.modules configu-
ration. For the Magnini model, we implement it ourselves.
Because the Aranea model cannot be directly evaluated on
the TREC05 and 06 series questions, the TREC02 and 03
test data sets are employed in this comparison. The other
setups are as follows:

• The U-model and Aranea model are based on re-
trieval results from Google † , while the Magnini model
uses AltaVista, which supports the proximity operators
NEAR and OR.

• The U-model and Magnini model adopt candidates
from the TREC participants’ systems, but the Aranea
model does not use these candidates, because it can
generate candidates itself. This is the main advantage
of the Aranea model over the other models.

Table 7 †† reports the comparative performance of these
redundancy-based AV models. This experiment indicates
that:

• The U-model significantly outperforms both the
Aranea and Magnini models at the 1% level, with
top@1 improvements for the TREC03 of 12.6% and
12.9%, respectively.
• The performance of the Aranea and Magnini mod-

els do not appear to be consistently stable. For the

Table 8 U-model vs. Shen, et al.’s model.

TREC05 TREC06

top@1
Shen, et al. 24.7% 20.7%
U-model 28.1% 25.6%
TREC-b 71.3% 57.8%

mrr@5
Shen, et al. 32.5% 26.9%
U-model 34.6% 30.2%

top@5
Shen, et al. 43.5% 38.6%
U-model 45.2% 37.6%

TREC02, the improvement in top@1/mrr@5 score of
Aranea over Magnini is statistically significant, while
mrr@5/top@5 scores of the Magnini model for the
TREC03 increase, outperforming the Aranea.
• This comparison proves that our model can resolve the

problems of the other models mentioned in Sect. 2. Our
model, however, is slower, because we have to train a
classifier for each question.

4.6 U-Model vs. Syntax-Based Model

Shen, et al. presented a syntax-based model [9] representing
the conventional deep NLP-based technique in the AV task.
They did not use any redundancy information and indepen-
dently estimated the similarities between each candidate-
bearing sentence and test question from the viewpoint of a
syntax tree. We thus seek to experimentally compare our
redundancy-based model with this traditional syntax-based
model. To make the comparison more effective, both mod-
els use the same candidates provided by [9]. Table 8 reports
the results. As a reference, TREC-b (the best TREC QA
participant’s system) on TREC05 and 06 [11], [13] are also
listed.

The top@1/mrr@5-score increase of 3.4%/2.1% for
the TREC05 and of 4.9%/3.3% for the TREC06 indicate
that the U-model is more effective than the model of Shen, et
al. This comparison shows that a redundancy-based model
can even achieve better performance than that of a conven-
tional NLP-based model if we can effectively mine and use
the redundancy information. The TREC-b [6], [24] is a deep
NLP-based QA system, which make it outperform all par-
ticipates’s systems and our U-model significantly. However,
it is hard for us to follow because the TREC-b incorporates
many deep NLP information such as syntactic, semantic in-
formation, lexical chain, etc.

4.7 Experiments of Chinese Test Sets

To prove that the proposed U-model is a language-
independent model, we conduct extensive experiments in
terms of Chinese test data sets. In Chinese QA systems,
all candidates are extracted automatically using our Chinese

†As Sect. 4.4 indicated, our model based on Google is slightly
better than that based on AltaVista. While the source code of the
Aranea model is based on Google.
††We re-run the source code provided by [16], which make the

results different from [16].
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Fig. 4 Statistics of CTREC04 and CTREC05.

NER tool [32].
Three Chinese data sets, i.e., CTREC04, CTREC05,

and CTEST05, are employed. CTREC04 is a set of 178
Chinese questions translated from TREC 2004 FACTOID
testing questions. CTREC05 is a set of 279 Chinese ques-
tions translated from TREC 2005 FACTOID testing ques-
tions. Although the U-model is independent of the ques-
tion types, for convenience in the answer candidate extrac-
tion [32], only those questions whose answers are named en-
tities are selected. Figure 4 breaks down the types of ques-
tions (manually assigned) in the CTREC04 and CTREC05
data sets. Here, PER, LOC, ORG, TIM, NUM, and CR re-
fer to questions whose answers are a person, location, or-
ganization, time, number, and book or movie, respectively.
CTEST05 is a set of 178 Chinese questions found in [30]
that are similar to TREC testing questions except that they
are written in Chinese.

4.8 U-Model vs. S-SVM

As we mentioned, our U-model is a kind of unsupervised
algorithm for AV. This U-model differs from the super-
vised techniques for AV [1], [2], [12], [15], [18], [19], [27],
in which a large number of hand-tagged training <question,
answer-bearing snippet> pairs are required. This exper-
iment is to compare our unsupervised U-model with su-
pervised model (S-SVM) in terms of the CTREC04 and
CTREC05 test sets.

To collect <question, answer-bearing snippet> training
data for the S-SVM, we submitted 807 Chinese questions to
Google and extracted the candidates for each question from
the top 50 Google snippets. We then manually selected the
snippets containing the correct answers as positive snippets,
and designated all of the other snippets as negative snippets.
Finally, we collected 807 hand-tagged Chinese <question,
answer-bearing snippet> pairs as the training data of S-SVM
called CTRAINDATA. The training data includes 140 LOC,
251 PER, 45 ORG, 90 NUM, and 281 TIM questions.

To explore the effectiveness of our unsupervised model
as compared with the supervised model, we conduct a cross-
model comparison of the S-SVM and the U-model. Note
that the context and other features are hard to incorporate
into the S-SVM [2], [18], therefore, this comparison is based
on the overlap, semantic, Boolean, and candidate features

Table 9 Comparison of U-model and S-SVM on the CTREC04 and
CTREC05.

CTREC04 CTREC05

top@1 S-SVM 39.18% 33.33%
U-model 53.61% 50.00%

mrr@5 S-SVM 53.54% 48.67%
U-model 66.25% 62.38%

top@5 S-SVM 79.38% 74.67%
U-model 88.66% 82.67%

Fig. 5 Statistics of CTEST05.

described in Sect. 3.2. The U-model results are compared
with the S-SVM results for the CTREC04 and CTREC05
in Table 9. The S-SVM is trained on CTRAINDATA. This
table shows that the proposed U-model significantly outper-
forms the S-SVM for all measurements and all test data sets.
For the CTREC04, the top@1 improvement is about 14.4%.
For the CTREC05, the top@1 score increases from 33.3%
to 50.0%. In the S-SVM, all questions share the same train-
ing data, while the U-model uses the unique training data
learned by the Algorithm-1 (in Sect. 3.1) for each question.
This is the main reason why the U-model performs better
than the S-SVM does.

4.9 U-Model vs. Pattern-M vs. S-SVM

The pattern-based models (Pattern-M) [8], [21], [26] are also
widely used for QA system. This approach first classi-
fies the question into predefined categories, and then val-
idates whether the extracted candidates are the exact an-
swers or not by using answer patterns learned off-line. The
pattern-based model can obtain high precision for some pre-
defined types of questions, it is difficult to define question
types in advance for open-domain question answering. The
CTEST05 contains 14 different question types that are suit-
able for the pattern-based models. Figure 5 lists the statistic
of the CTEST05, and Table 10 gives examples of each type
of questions, which is labeled manually.

The Pattern-M uses the dependency syntactic answer
patterns learned in [28] to extract the answer. Each syntactic
pattern is associated with a probability indicating the preci-
sion of the pattern. When multiply answers are matched by
the patterns, the probability of the pattern is used to rank
them.

This experiment is to compare the U-model with the



632
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.3 MARCH 2010

Table 10 Examples of questions in the CTEST05.

Question type Examples
Inventor Stuff Who invented telephone?
Book Author Who is the author of Harry Potter?
Per Nickname Who is the father of music?
Old Name What is the full name of Newton?
Job Position Who is the CEO of Microsoft?
Loc Nickname What is the alias of New York State?
Address Where is the Statue of Liberty?
Birth Place Where was Michael Jordan born?
Capital Country Which city is the capital of Japan?
Birth Time When was Michael Jordan born?
Death Time When did Marilyn Monroe die?
Eventday When is World Day for Water?
Length What is the height of Mount Everest?
Population What is the population of china?

Table 11 Comparison of U-model, Pattern-M and S-SVM on CTEST05.

S-SVM Pattern-M U-model

top@1 44.89% 53.14% 59.09%
mrr@5 56.49% 61.28% 67.34%
top@5 74.43% 73.14% 81.82%

Pattern-M and the S-SVM in terms of the CTEST05 data
set. Table 11 summarizes the performances of the U-model,
Pattern-M, and S-SVM models on the CTEST05. The re-
sults in the table show that the U-model significantly out-
performs the S-SVM and Pattern-M, while the S-SVM un-
derperforms the Pattern-M. Compared with the Pattern-M,
the U-model increases the top@1/mrr@5/top@5 scores by
5.95%/ 6.06%/8.68%, respectively. The reasons may lie in
the following:

• The Chinese dependency parser influences dependency
syntactic answer-pattern extraction, and thus degrades
the performance of the Pattern-M model.
• From the cross-model comparison, we conclude that

the performance ranking of these models is: U-model
> Pattern-M > S-SVM.

5. Discussion

Even though the U-model can achieve satisfying perfor-
mance, there are some problems with this framework. First,
the training data for the SVM classifier are learned automati-
cally by the Algorithm-1 in Sect. 3.1, which inevitably intro-
duces noise that can negatively influence the performance.
Second, we have to train the classifier for each test question,
which can result in a heavily time-consuming model. This
section discusses these two problems.

5.1 Noise Reduction

Some candidates {c j} cannot be used to represent topics, in
which cases the corresponding topics {t j} are noise, called
topic noise. To reduce this noise, such candidates must be
filtered out. The second noise is snippet noise, meaning
that snippets in correct topics are noise. For the example
in Table 1, not all snippets containing the candidate 1969

Table 12 U-model after noise reduction.

topic noise reduction snippet noise reduction
top@1 52.8% 38.9%
mrr@5 65.8% 50.2%
top@5 86.9% 70.1%

express the time of establishment of the first Crip gang. We
thus conduct an experiment to examine the impacts of these
noise.

To overcome topic noise, candidates from the TREC
top ten participants’ systems are adopted. As compared with
the candidates from all participants’ systems, the noise in
the candidates from the top ten systems is greatly reduced,
because the average number of candidates in TREC05 is 5.8.
Actually, it is impossible to have candidates from top 10
groups for any new test question, this experiment, however,
helps us find the future work.

To reduce snippet noise, we adopt one additional con-
dition in the Algorithm-1, requiring that the snippets must
include at least one capitalized question keyword or time or
numeric keyword when the question contains one of them.
With this restriction, the problem of snippet noise can be
partially resolved.

Table 12 reports the performance of our model on
TREC05 after reducing the topic noise and snippet noise.
Comparing this table with Table 4, we observe that the per-
formance on the snippet-noise-reduced data falls off some-
what, because 14 questions’ answers are filtered out from
candidates. Before the snippet noise reduction, 141 ques-
tions are correctly answered; however, only 137 questions
are correctly answered after snippet noise is reduced. This
means that although some noise can be removed, at the
same time, correct answers can also be filtered out. Per-
haps snippet noise does not greatly, adversely impact the
performance, at least reducing snippet noise in a simply
way is certainly not helpful. Table 12 also shows that topic
noise greatly impacts the performance. Reducing of the
topic noise sharply increases top@1 score from 40.1% to
52.8%, and the improvements in mrr@5/top@5 scores are
14.3%/15.0%.

5.2 Time Problem

The experiment investigating how much time our model re-
quires shows that an average time per question used in train-
ing the classifier is about 3.5 seconds. Compared with NLP-
based approaches, the U-model is not a time-consuming
model. This is because our model does not require any
deep natural language processing. Moreover, training data is
not huge: about 20 candidates multiplied by 25 training in-
stances for each question (the average ki in the Algorithm-1
is 25).

6. Conclusion

Given the observation that candidate-bearing snippets with
the same candidate usually express the same sub-meaning,
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this paper has presented an unsupervised SVM classifier
for the AV task. The essence of our approach is to ex-
ploit data redundancy information from the Web for the
AV task. Our model, called U-model, achieves satisfac-
tory performance on TREC test sets. Cross-model exper-
iments indicate that the U-model outperforms the related
redundancy-based models with statistical significance. The
top@1/mrr@5/top@5 improvements over the Aranea model
and the Magnini model on TREC03 are 12.6/19.1/21.0%
and 12.9/11.2/4.5%, respectively. Moreover, our model
achieves better performance than do the syntactic-based
model, a supervised machine learning model, and a pattern-
based model. From the results reported in this paper, we can
conclude that effectively exploiting redundancy information
can greatly improve the performance of an AV task.

In our future work, we plan to improve the U-model by
removing noise in the training data, which is the main prob-
lem of this architecture. Furthermore, we intend to adapt
our model for other types of questions, such as definition
and biography questions.
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