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Real-Time Human Detection Using Hierarchical HOG Matrices

Guan PANG†a), Student Member, Guijin WANG†b), Member, and Xinggang LIN†c), Nonmember

SUMMARY Human detection has witnessed significant development
in recent years. The introduction of cascade structure and integral his-
togram has greatly improved detection speed. But real-time detection is
still only possible for sparse scan of 320 × 240 sized images. In this
work, we propose a matrix-based structure to reorganize the computation
structure of window-scanning detection algorithms, as well as a new pre-
processing method called Hierarchical HOG Matrices (HHM) in place of
integral histogram. Our speed-up scheme can process 320 × 240 sized im-
ages by dense scan (≈ 12000 windows per image) at the speed of about
30 fps, while maintaining accuracy comparable to the original HOG + cas-
cade method.
key words: human detection, real-time detection, HOG, window-scanning,
multi-detector

1. Introduction

Human detection is important for many applications in the
field of computer vision such as visual surveillance, image
retrieval and driver assistance system. Human detection is
a challenging task because of the variations in appearance,
articulation, posture and illumination condition.

Among various algorithms of human detection, the
window-scanning-based type of algorithms is probably the
most popular. These algorithms combine local image fea-
tures into a strong classifier, which is then applied to all pos-
sible sub-windows in the input image to detect humans. Vi-
ola et al. [3] proposed an algorithm using Haar wavelet fea-
tures with the Adaboost and cascade training framework [4].
Dalal and Triggs [2] presented a new feature called His-
togram of Oriented Gradient (HOG), which is notably more
effective for human detection than Haar wavelet.

Recently, the detection accuracy has been further en-
hanced by new feature types. Wu and Nevatia [5] pro-
posed a silhouette oriented features called edgelet, which
was trained for both part detectors and full-body detector to
detect inter-occluded humans. Sabzmeydani and Mori [6]
described a mid-level feature set called shapelet, trained by
two levels of Adaboost. Tuzel et al. [7] suggested utilizing
covariance matrices as object descriptors and a learning al-
gorithm on Riemannian manifolds. Lin et al. [8] introduced
a multiple instance feature to mitigate the problem of feature
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misalignment.
Meanwhile, some researchers have attempted to im-

prove the time efficiency of human detection algorithms,
which is another important factor for practical applications.
Zhu et al. [1] combined HOG feature with the cascade struc-
ture, thereby reducing scanning detection time significantly.
Wu and Nevatia [9] tried to address the efficiency issue by
integrating multiple heterogeneous features with activation
priorities. As complex feature like covariance matrix were
also included, its time efficiency was still limited.

However, even for the fast HOG and cascade [1] algo-
rithm, real-time detection speed is feasible only for sparse
scan on 320 × 240 sized images. In this paper, we pro-
pose a novel matrix-based feature-scanning structure in
place of the traditional window-scanning structure. A new
pre-processing method named Hierarchical HOG Matrices
(HHM) is also presented to replace integral histogram. We
introduce a multi-detector framework to better handle multi-
scale human detection. After integrating our propositions
with Zhu et al.’s HOG and cascade [1], the detection pro-
cess triples in speed, achieving 30 frames per second when
dense scanning (≈ 12000 windows per image) 320 × 240
sized images. In addition, the proposed matrix-based detec-
tion structure and HHIM can be further extended to state-of-
the-art detection algorithms to achieve both robustness and
efficiency.

2. The Matrix-Based Detection Structure

First let’s revisit traditional window-scanning human detec-
tion structure. A scanning window cuts out an image region
from the input image to evaluate its probability of containing
a human, as shown in Fig. 1. Then the detector computes n
different features (e.g. HOG features) at pre-trained location
and size consecutively and sends the feature value or vector
into corresponding weak classifiers wci (i = 1, · · · , n). The
outputs of each weak classifier are combined, with voting
weights αi, into a strong classifier sc, which provides the
final evaluation result of the current image region:

sc =
n∑

i=1

αi · wci (1)

Finally, the scanning window slides by certain offset to the
next image region. The whole process will be repeated until
the window has scanned all across the input image.

As the window scan through the input image, we ob-
serve that each individual features are also extracted all
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Fig. 1 In traditional window-scanning detection structure, for each candidate window region, several
pre-trained features are evaluated and combined into a final estimation. Then the detection window
moves on to the next candidate region.

Fig. 2 Scanning with windows is equivalent to scanning with each feature across the entire input
image individually, and adding up the results together to obtain the final estimations for all the candidate
windows at once.

across the image, as illustrated in Fig. 2. Thus we propose
a new feature scanning style, using a matrix-based compu-
tation structure, to replace the traditional window scanning
style. For each feature in the ensemble of the strong classi-
fier, the corresponding weak classifier wci is first evaluated
for the entire image, producing a matrix output WCi(x, y).
Suppose the i-th feature has a relative offset (xi, yi) within
the detection window. The output matrices WCi(x, y) are all
shifted by this offset as WCi(x+xi, y+yi), so they are aligned
to the same origin. The shifted matrices are then weighted
by the pre-trained voting weight αi of each weak classifier,
as in Eq. (1). Finally, all matrices are added together into a
matrix S C:

S C(x, y) =
n∑

i=1

αi ·WCi(x + xi, y + yi) (2)

Observe a specific element of matrix S C:

S C(x0, y0) =
n∑

i=1

αi ·WCi(x0 + xi, y0 + yi) (3)

Notice that (x0 + xi, y0 + yi) is the location of the i-th fea-
ture for detection window at (x0, y0), which means Eq. (3)
is equivalent to Eq. (1) for this specific window. Therefore,
elements of matrix S C are just the strong classifier outputs,
namely the evaluation results, of all candidate window re-
gions.

The benefits of such a matrix-based detection struc-
ture are threefold. First, the feature data are processed in
the order of data storage in the memory, saving consider-
able amount of time for data accessing compared to the tra-
ditional window-by-window computing order. Second, the
detection process is reorganized into matrix operations, en-
abling the possible utilization of matrix optimizing methods.
Finally, the matrix-based structure is suitable for hardware

implementation, thereby enhancing the practicality of detec-
tion algorithms.

3. Hierarchical HOG Matrices (HHM)

To effectively arrange feature data into matrices for the
matrix-based detection structure, we propose an alternative
to integral histogram in order to pre-process the input im-
age. We name the new pre-processing method as Hierarchi-
cal HOG Matrices (HHM).

In our detection framework, the minimum scanning
step size is set to 4 pixels, which is dense enough for
320 × 240 or larger images. The minimum size of HOG
block used is 8× 8, meaning that the minimum size of a sin-
gle HOG cell is 4×4 (we use 2×2 cells for all HOG blocks).
As a result, only HOG information at a 4-pixel step size both
horizontally and vertically should be recorded during pre-
processing. The first step of our pre-processing algorithm is
to compute the HOG data for each 4 × 4 image patch and
store them in a matrix H4×4. H4×4 will then serve as a index
for acquiring HOG data of any 4 × 4 image patch (at a step
size of 4 pixels). Start from H4×4, we can derive matrices
for larger HOG size in a hierarchical order, as illustrated in
Fig. 3, until we reach the maximum possible HOG size (lim-
ited by the size of detection window). Each matrix can be
calculated via simple matrix addition from two matrices for
smaller HOG size. The results of the whole pre-processing
step will be matrices for various HOG size in a hierarchi-
cal order, just as indicated by the name Hierarchical HOG
Matrices (HHM).

Analysis of computational cost† shows that the time re-

†Detailed analysis is not presented here due to space limitation.
Please contact us if you are interested.
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Fig. 3 The construction of Hierarchical HOG Matrices (HHM): Hm×n

denotes the matrix storing HOG data for all m × n image patches at a step
size of 4 pixels. For illustration, suppose the image size is 16 × 16, H4×4

would contain 4 × 4 = 16 elements. Each element in H8×4 is the sum of
two horizontally adjacent elements in H4×4, so it has 3 × 4 = 12 elements.
Similarly, H8×8 has 3 × 3 = 9 elements, and so on.

quired for the construction of HHM is comparable with that
of integral histogram. However, integral histogram demands
3 extra addition operations for each HOG value, while HHM
does not, because HHM already organized all the useful
HOG values for simple data accessing. Considering that
thousands of HOG features will be computed for a single
image, HHM can lead to considerable speed-up on the de-
tection phase. Note that the tradeoff of the reduced de-
tection time is an increased memory requirement. Experi-
ments show that when pre-processing an 320 × 240 image,
with all data stored as 32-bit floating point format, integral
histogram occupies 3 MB memory, while our HHM need
6.5 MB.

More importantly, HHM arranges the HOG data into
matrices according to block size, making it suitable to work
in conjunction with the matrix-based detection structure in-
troduced in Sect. 2. The detection process is converted into
matrix shift and addition operations, further reducing the de-
tection time by avoiding time wasted on random data access-
ing.

A potential disadvantage of using HHM is that it’s not
convenient for multi-scale human detection. As HHM only
store data for specific HOG sizes, the calculation of resized
HOG blocks (for detection window size other than the de-
fault 64 × 128) will be difficult. We solved this problem
by the introduction of a multi-detector framework. Differ-
ent detectors are trained for different sizes of detection win-
dow. During training, all detectors only select those HOG
features contained within HHM. We compute about 30 dif-
ferent HOG sizes during pre-processing to assure a large
enough HOG feature pool for selection. This way, in multi-
scale detection, each detector will only need to scan with a
specifically sized window, without the need to resize it. Val-
ues for all encountered HOG features can be fetched directly
from HHM. In practice, we only need to train 5 different
detectors. Each detector is 1.1 − 1.2 times larger than the
previous detector. Therefore, the 6th detector will be twice
as large as the 1st detector and can be obtained by simply
resizing the 1st detector. The resized HOG features, which
are also twice as large as before, will be included in HHM
because of the hierarchical structure. Such multi-detector

framework might slow down the training process; but it also
enables the usage of HHM, which will greatly accelerate the
crucial detection phase.

4. Experiments

To evaluate the performance of our proposed algorithm, we
implemented it with the support of the Intel OpenCV library
using a PC running on a 2.4 GHz Intel CPU. Except for our
original matrix-based detection structure and Hierarchical
HOG Matrices (HHM), other components of training and
detection algorithm are implemented according to what was
described in [1] in order to demonstrate the improvement of
our algorithm over traditional methods.

We used the INRIA dataset [2] as our training sam-
ples. There are 2416 positive training samples in the dataset.
For negative samples, we bootstrapped new training samples
from the negative training images in the INRIA dataset at
the beginning of training each cascade level. As in [1], we
chose HOG as feature, linear SVM as the weak classifier,
and Adaboost + cascade as the training framework.

Table 1 compares the detection time of our algorithm
with several other algorithms, including HOG + SVM by
Dalal and Triggs [2], HOG + cascade by Zhu et al. [1], co-
variance feature by Tuzel et al. [7], integrated feature by
Wu and Nevatia [9] and multiple instance feature by Lin et
al. [8]. The comparison is carried out in 3 aspects: sparse
scan time on a 320 × 240 sized image (≈ 800 windows),
dense scan time on a 320 × 240 sized image (≈ 12000 win-
dows) and windows scanned per second. The comparison
demonstrates the time efficiency of our algorithm, especially
for dense scan, because dense scan requires evaluation of
much more windows and thus computation of much more
HOG features. The huge advantage in the number of win-
dows scanned per second also shows the superiority of our
algorithm on large-scale window-scanning.

Figure 4 provides some typical detection results of our
algorithm. Raw detection results are merged together based
on their overlapping ratios. The accuracy of our algorithm is
about the same as what was reported by Zhu et al. [1], which
means the improvement in detection speed does not lead to
any degradation on performance. Theoretically, our new al-
gorithm only reorganizes the computation structure, without
any simplification or approximation. Therefore, it will not
lead to any difference in performance compared to the al-
gorithm we based on. Our matrix-based detection structure
and Hierarchical HOG Matrices (HHM) should be easily ex-
tended to any other latest detection algorithms [8], [9] using
a window-scanning style and HOG-like features.

5. Conclusion

In this paper, we propose a matrix-based detection struc-
ture and a new pre-processing method called Hierarchical
HOG Matrices (HHM) to replace the traditional window
scanning structure and integral histogram. Our goal is to
improve the time efficiency of detection algorithms. Experi-
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Table 1 A comparison of detection time on a 320 × 240 sized image among various algorithms. For
other algorithms, only the data provided by the authors are listed in the table (n/a means no correspond-
ing data). Note the processing time for dense scan.

Sparse scan Dense scan Windows scanned
(≈ 800 windows) (≈ 12000 windows) per second

HOG + SVM [2] 500 ms 7000 ms n/a
HOG + cascade (L1 norm) [1] 26 ms 106 ms n/a
HOG + cascade (L2 norm) [1] 30 ms 250 ms n/a

Covariance feature [7] n/a n/a 3000
Integrated features [9] n/a n/a 24000

Multiple instance feature [8] 300 ms n/a n/a
Our algorithm 21 ms 33 ms 800000

Fig. 4 Some detection results (after post-processing) of our algorithm.

ments demonstrate that our algorithm can process 320×240
sized images by dense scan (≈ 12000 windows per image)
in real time, while maintaining a competitive performance.
It’s possible to extend our method to state-of-the-art detec-
tion algorithms for speed enhancement.
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