
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010
693

PAPER Special Section on Knowledge-Based Software Engineering

A Generation Method of Alternative Scenarios with a Normal
Scenario

Atsushi OHNISHI†a), Member and Koji KITAMOTO†∗, Nonmember

SUMMARY This paper proposes a method to generate alternative sce-
narios from a normal scenario written with a scenario language. This
method includes (1) generation of alternative plans and (2) generation of al-
ternative scenario by a user’s selection of these plans. The proposed method
enables users to decrease the omission of the possible alternative scenarios
in the early stages of development. The method will be illustrated with
some examples.
key words: requirements elicitation, scenario analysis, scenario genera-
tion

1. Introduction

Scenarios are important in software development, partic-
ularly in requirements engineering, by providing concrete
system description [19]. In particular, scenarios are useful
for system developers in defining system behaviors and val-
idating the customers’ requirements. In many cases, scenar-
ios are foundation for system development. Incorrect sce-
narios will have a negative impact on the overall system de-
velopment process. However scenarios are informal and it is
difficult to verify the correctness of scenarios. The errors in
incorrect scenarios may include (1) vague representations,
(2) lack of necessary events, (3) extra events, and (4) wrong
sequence among events.

The authors have developed a scenario language for de-
scribing scenarios. In this scenario language, simple action
traces are embellished including typed frames based on a
simple case grammar of actions and for describing the se-
quence among events [12], [20]. Since this language is a
controlled language, the vagueness of the scenario written
in this language can be reduced. Furthermore, the scenario
with this language can be transformed into internal repre-
sentation. In the transformation, both the lack of cases and
the illegal usage of noun types can be detected, and con-
crete words will be assigned to pronouns and omitted indis-
pensable cases [11], [20]. As a result, the scenario with this
language can avoid the errors typed 1 previously mentioned.

Scenarios can be classified into (a) normal scenario, (b)
alternative scenario, and (c) exceptional scenario. A normal
scenario represents the normal and typical behavior of the
target system, while an alternative scenario represents nor-

Manuscript received July 1, 2009.
Manuscript revised October 16, 2009.
†The authors are with the Faclty of Information Science

and Engineering, Ritsumeikan University, Kusatsu-shi, 525–8577
Japan.

∗Presently, with the NTT Data Corporation.
a) E-mail: ohnishi@cs.ritsumei.ac.jp

DOI: 10.1587/transinf.E93.D.693

mal but untypical behavior of the system and an exceptional
scenario represents abnormal behavior of the system. In or-
der to grasp whole behaviors of the system, not only normal
scenarios, but also alternative/exceptional scenarios should
be specified in the requirements definition phase. However
it is difficult to detect alternative scenarios and exceptional
scenarios, whereas it is easy to think of normal ones.

Since we have already established a generation method
of exceptional scenarios from a normal scenario [14], this
paper focuses on how to generate alternative scenarios from
a normal scenario. The similarity between a normal scenario
and alternative scenarios is that they have the same purpose
and achieve it finally. The difference between them is that
their event sequences to achieve the purpose are different
each other.

We adopt our scenario language prepared beforehand
to write scenarios, because previously proposed scenario
language is a control language and it is easy to analysis sce-
narios with that scenario language.

2. Scenario Language

2.1 Outline

The scenario language has already been introduced [12],
[20]. In this paper, a brief description of this language will
be given for convenience.

A scenario can be regarded as a sequence of events.
Events are behaviors employed by users or the system for
accomplishing their goals. It is assumed that each event has
just one verb, and that each verb has its own case struc-
ture. The scenario language has been developed based on
this concept. Verbs and their own case structures depend on
problem domains, but the roles of cases are independent of
problem domains. The roles include agent, object, recipient,
instrument, source, etc. [6], [11].

Requirements frames were provided previously, in
which their verbs and own case structures are specified. The
requirements frame depends on problem domains. Each ac-
tion has its case structure, and each event can be automati-
cally transformed into internal representation based on the
frame. In the transformation, concrete words will be as-
signed to pronouns and omitted indispensable cases. With
Requirements Frame, users can detect both the lack of cases
and the illegal usage of noun types [11].

It is assumed that four kinds of time sequences among
events, that is, 1) sequential, 2) selective, 3) iterative, and

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers



694
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

4) parallel. Actually most events are sequential events.
This scenario language defines the semantic of verbs

with their case structure. For example, data flow verb
has source, goal, agent, and instrument cases. Since our
scenario language provides limited vocabulary and limited
grammar, there exist two benefits, namely, (1) homonym
problem can be solved, because limited vocabulary does not
permit such problem and (2) the abstraction level of any sce-
narios becomes almost same, because case structures of ac-
tions depend on a certain abstraction level.

2.2 Scenario Example

In this subsection, a scenario of train ticket reservation of a
railway company is employed. Figure 1 shows a scenario of
customer’s purchasing a ticket of express train at a service
center of a railway company. This scenario is written in our
scenario language based on a video that records behaviors
of both a user and a staff at a service center of a railway
company [15].

A title of the scenario is given in the first line of the
scenario in Fig. 1. Viewpoints of the scenario are specified
in the second line. In this paper, viewpoints mean active
objects such as human, system appearing in the scenario.
There exist two viewpoints, namely staff, and customer. The
order of the specified viewpoints means the priority of spec-
ified viewpoints. In this example, the object of the first pri-
ority is staff, and the second one is customer. In such a case,
the first priory object becomes the subject of an event. Pro-
nouns are available and pronouns will be assigned with con-
crete nouns in analysis. If there are several candidates for
the assignment, scenario describer will select one of them.

In this scenario, almost all events are sequential, ex-
cept for just two selective events (the 9th event and the
12th event). Selection can be expressed with if-then syn-
tax like program languages. Actually, event number is only
for reader’s convenience and not necessary.

2.3 Analysis of Events

Each event is transformed into internal representation. For
example, the 2nd event “He sends the customer’s request to
reservation center via private line” can be transformed into
internal representation shown in Table 1.

In this event, the verb “send” corresponds to the con-
cept “data flow.” The data flow concept has its own case
structure with four cases, namely source case, goal case, ob-
ject case and instrument case. Sender corresponds to the
source case and receiver corresponds to the goal case. Data
transferred from source case to goal case corresponds to the
object case. Device for sending data corresponds to the in-
strument case. In this event, “customer’s request” corre-
sponds to the object case. Since the pronoun “he” in the
event should be “staff,” concrete noun “staff” is assigned in
the source case.

Let us consider other surface representations of the
event, “Customer’s request is sent from staff to reservation

Fig. 1 Scenario example (payment with cash).

Table 1 Internal representation of the 2nd event.

Concept: Dataflow
source goal object instrument

staff reservation customer’s private line
center request

center via private line” and “reservation center receives cus-
tomer’s request from staff via private line.” These events are
syntactically different but semantically the same. Each of
these two events can be transformed into the same internal
representation shown in Table 1. In this sense, the internal
representation is independent of surface representation of an
event.

3. Generation of Alternative Scenarios

When a customer buys a ticket, there exist several alterna-
tives of payment, such as pay with cash, credit card, per-
sonal check, banking card, money order, and so on. When
data is transmitted, there exist several alternatives, such as
sending via e-mail, postal mail, FAX, FTP, and so on. These
alternatives arise from the diversity of methods. In identi-
fication, there exist several ID, such as company ID card,
driver’s license card, and passport. In this case, alternatives
arise from data variations. As for the first case, the diver-
sity of payment method causes the alternatives. As for the
second case, the diversity of sending method causes the al-
ternatives. As for the third case, the diversity of data for
identification causes the alternatives. These alternatives ap-
pear in a certain case of the case structure of a concept. For
example, the diversity of sending method appears in the in-
strument case of the cases structure of data flow concept. In
case of payment with cash, there exist alternatives, such as
(1) credit card, (2) personal check, and (3) prepaid card.

We provide users with such alternatives using a
database whose contents are (a) possible methods including
an ordinary method and its alternative methods for a certain



OHNISHI and KITAMOTO: A GENERATION METHOD OF ALTERNATIVE SCENARIOS WITH A NORMAL SCENARIO
695

case of a specified concept as plans and (b) each of event
sequences for these methods as scenario templates. We call
this database “alternative scenario DB.” For example, possi-
ble payment methods are (1) credit card, (2) personal check,
(3) prepaid card, and (4) cash in the instrument case of the
concept, “payment.” For each method, corresponding event
sequence is stored. For example, an event sequence of the
payment with credit card is shown in Fig. 2.

We assume that alternative scenario DB is already
given, but describe how to construct it briefly. Alternative
scenario DB consists of (1) plans and (2) scenario templates
of the plans. In order to clarify plans including normal plan
and alternative plans, first of all, we have to describe a nor-
mal scenario and corresponding alternative scenarios for a
certain system.

An alternative scenario is a scenario that achieves the
same goal of the normal scenario with different events, so
the difference between an alternative scenario and the nor-
mal scenario will be (a) events whose one of the cases [6]
are different each other between these two scenario, while
actions are same and (b) deleted events from the perspec-
tive of the normal scenario and (c) added events from the
perspective of the normal scenario.

As for (a) events whose one of the cases are different
each other, say, when payment with cash in the instrument
case is an event of normal scenario, payment with credit card
and payment with check in the instrument cases may be al-
ternative plans of the payment. In such a case, (1) the action
concept, (2) its case name that distinguish the normal sce-
nario from alternative scenarios, and (3) nouns assigned to
the case as methods of the normal scenario and alternative
scenarios are stored in the alternative scenario DB as plans.
Figure 5 (b) shows the alternative plans of the payment when
the payment with cash is a normal behavior.

As for (b) deleted events, they are events related to the
payment with cash in the above example. As for (c) added
events, they are three event sequences that are related to
the payment with credit card, the payment with check, and
payment with prepaid card, respectively. In these event se-
quences, some nouns are variable, but the others are not. For
example, actor of the payment is variable, but credit card is
not variable when he pays with credit card.

By DB constructor’s identifying the variable nouns,
these nouns will be replaced by the cases [6]. Figure 2 shows
event sequences of the payment with credit card whose vari-
able nouns are replaced by the cases. We call such event se-
quence scenario template. Scenario templates for both nor-
mal and alternative behaviors and corresponding methods
are stored into the DB, too.

When scenario templates of payment with credit card,
payment with cash, payment with check, and payment with
prepaid card are stored in the DB, any possible alternative
scenarios can be generated, if one of the methods is given
as a normal plan. Then user can select one or more plans
from the possible alternatives. Suppose a normal scenario of
the payment with credit card and payment with check as an
alternative plan. After the scenario template of the payment

with credit card can be deleted from the normal scenario
and the template of the payment with check can be added
to, then concrete nouns will be assigned to the cases, we can
get an alternative scenario of the payment with check.

As described above, users first specify a normal sce-
nario, then possible alternatives are provided to the users.
By users’ selecting alternatives, alternative event sequence
will be generated. By replacing the original event sequence
with the alternative event sequence and by assigning con-
crete nouns to the cases, an alternative scenario will be au-
tomatically generated.

3.1 Generation Method of Alternative Scenarios

Our generation method of alternative scenarios is shown as
follows. We assume that a normal scenario is written with
our scenario language in advance as shown in step 0.

0: Scenario writer describes a normal scenario with our
scenario language.

1: The normal scenario is transformed into internal repre-
sentation. In this step each events is transformed into
internal representation based on requirements frame. If
there is an event whose concept and whose specified
case is same ones stored as a plan in the alternative
scenario DB. For example, there exists an event whose
concept is payment and credit card is specified in the
instrument case, we can detect that this event has alter-
natives of the payment methods.

2: Possible alternative methods are automatically gener-
ated and provided to the scenario writer. He/she selects
appropriate alternatives. The describer can select one
or more alternatives, or no alternatives.

3: Scenario templates can be derived from alternative sce-
nario DB in accordance with the selected alternatives.
There exist several lacks of cases in the scenario tem-
plate, but the lacked cases are automatically compen-
sated using the internal representation of the event. De-
tails of compensation are in ([11]). Some events will be
automatically deleted in the normal scenario, because
these events depend on the normal behavior, but do not
depend on the alternative behavior. Such events to be
deleted are also stored in the alternative scenario DB.

4: Alternative scenarios are provided to the scenario
writer. He/she can revise or customize them.

3.2 Example of Generating Alternative Scenario

The above 5 steps are illustrated with the example shown in
Fig. 1. In the step1, two events are selected as alternative
events. The 2nd event, “ He sends the customer’s request
to reservation center via private line” can be transformed
into internal representation shown in Table 1. Since the con-
cept of the event is data flow, and since its instrument case
is “private line,” there exist several alternative events. The
11th event, “the customer paid for the ticket by cash.” can



696
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 2 Internal representation of the 11th event.

Concept: Payment
agent object instrument goal
customer ticket cash staff

Fig. 2 Scenario template of the payment with credit card.

be transformed into an internal representation shown as Ta-
ble 2. There is no noun for the goal case in this event, but
analyzer compensates with a noun, “staff” for the goal case
object.

Since the concept of the event is payment, there exist
several alternatives for this event. In the step 2, alternatives
are shown with alternative scenario DB. In case of sending
data via private line, there exist alternatives, such as (1) pub-
lic line, (2) FAX, (3) e-mail, (4) postal mail, and (5) FTP. A
describer can select one or more alternatives. If he/she can-
not find any appropriate alternatives, he/she may not select
any alternatives. Here, we assume that no alternatives are
selected.

In case of payment with cash, there exist alternatives,
such as (1) credit card, (2) personal check, (3) banking card,
and (4) money order. Here, we assume credit card is selected
as alternative payment.

In the step 3, a scenario template for the payment with
credit card is derived from the alternative scenario DB. This
template is shown in Fig. 2. In this step, the 11th event and
the 12th event in the normal scenario is deleted, because
these two events are registered as a scenario template of the
payment with cash.

In this template, the goal case and the agent case are not
specified. Since the goal case of the 11th event in the normal
scenario and the agent case of the event are “staff” and “cus-
tomer” respectively, both the goal case and the agent case in
the template will be “staff” and “customer” respectively. By
compensating with these two nouns, the scenario becomes
as follows.

In the step 4, alternative scenario shown in Fig. 4 is pro-
vided to the scenario writer. The 11th event of normal sce-
nario in Fig. 1 is expanded with the compensated scenario
template of Fig. 3.

Last, the scenario writer checks the alternative scenario
and revises it if necessary.

Fig. 3 Compensated scenario template of the payment with credit card.

Fig. 4 Alternative scenario for the normal scenario in Fig. 1.

3.3 Supporting Tool for Making Alternative Scenario

We have developed a supporting tool based on our method
with VisulaBasic.NET 2003. Figure 5 (a) shows display im-
age of the tool. The left side of Fig. 5 (a) shows alternatives
of payment methods. Figure 5 (b) shows the list of alter-
natives of payment in English. The right side of Fig. 5 (a)
shows a normal scenario. Figure 5 (c) shows a normal sce-
nario in English. We use a transformer from scenario with
our scenario language to scenario with XML format. Our
system accepts a scenario with XML format.

In the left side of Fig. 6 (a), user selected the first pay-
ment method. This method is payment with credit card. The
right side of Fig. 6 (a) shows an alternative event sequence
generated by compensating scenario template with the pay-
ment method using credit card.

Figure 6 (b) shows the alternative event sequence in En-
glish. Since Fig. 3 shows alternative events for payment with
credit card, Fig. 3 and Fig. 6 (b) are mostly same. The differ-



OHNISHI and KITAMOTO: A GENERATION METHOD OF ALTERNATIVE SCENARIOS WITH A NORMAL SCENARIO
697

(a)

(b)

(c)

Fig. 5 (a) Original scenario and list of alternatives. (b) List of alternative methods of the payment.
(c) Original normal scenario.

ence between them is system’s viewpoint is included in the
scenario or not. In Fig. 6 (b), the 3rd and the 4th events that
state system’s behavior are included. By replacing the 7th
event of Fig. 5 (c) with the events in Fig. 6 (b), an alternative
scenario can be automatically generated.

4. Evaluation

In order to evaluate our method, we adopt a normal sce-
nario and its alternative scenarios of a real project [4] and
discuss whether these alternative scenarios can be generated
from the normal scenario with our method. A normal sce-
nario of purchasing goods has 8 exceptional scenarios and
5 alternative scenarios [4]. We focus on the 5 alternative
scenarios. Both the five normal plans and corresponding al-
ternative plans are shown in Table 3.

As for the first alternative plan, alternative scenario

can be generated with our method by providing a verb “de-
scribe” and its object case in the scenario language and by
regarding the diversity of the object case of this verb as al-
ternatives.

Actually, “Clerk describes all of the items” in normal
scenario can be transformed into a representation shown in
Table 4. Table 5 shows alternative plans for the diversity of
the object case of the concept, “write.”

Figure 7 (a), (b) and (c) show scenario templates for
the corresponding plans. If the second plan in Table 5 is
selected, the above event will be replaced by the scenario
template shown in Fig. 7 (b) and then clerk which is the
agent case in Table 4 will be assigned in the (Agent) case
of Fig. 7 (b). As a result, alternative event sequence can be
generated as shown in Fig. 7 (d).

As for the second alternative plan, alternative scenario



698
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

(a)

(b)

Fig. 6 (a) Compensated scenario template of the selected payment method. (b) Alternative events for
payment with credit card.

Table 3 Normal plans and thier alternative plans in a real project.

normal plan alternative plan
Clerk fills all of Clerk fills a part of items.
the items Purchasing department fills

unfilled items
Manager approves the Superior person except for
request manager approves the request
Purchasing department Purchasing department checks
checks the stock and the stock, delivers goods
orders goods in stock and orders the remains

of the goods
Purchasing department Purchasing department orders
orders goods to a vendor goods to multiple vendors
Receiver checks the Receiver checks a part of the
goods. He records the goods. He records the delivery
delivery of the goods of a part of the goods

can be generated by providing a verb “approve” and its agent
case in the scenario language and by regarding the diversity
of the agent case as alternatives.

Table 4 Internal representation of the 1st normal plan.

Concept: write, Verbs: write, describe, fill
agent object instrument
clerk all of items -

Table 5 Alternative plans.

Concept: write, Case: object
plan1 plan2 plan3

all of items a part of items none

In case of the third plan, we cannot generate this alter-
native scenario. However we can write this normal event se-
quence and its alternative plan as an integrated normal event
sequence as shown in Fig. 8.

As for the fourth plan, alternative scenario can be gen-
erated by providing a verb “order” and its goal case in the
scenario language and regarding the diversity of the goal



OHNISHI and KITAMOTO: A GENERATION METHOD OF ALTERNATIVE SCENARIOS WITH A NORMAL SCENARIO
699

(a)

(b)

(c)

(d)

Fig. 7 (a) Scenario template of the 1st plan. (b) Scenario template of the
2nd plan. (c) Scenario template of the 3rd plan. (d) Generated alternative
events of the 2nd plan.

Fig. 8 Integrated plans into a normal event sequence.

case as alternatives.
As for the last plan, alternative scenario can be gener-

ated by providing a verb “check” and its object case in the
scenario language and regarding the diversity of the object
case as alternatives.

In the above discussion, we can generate 4 alternative
scenarios from a normal scenario of a real project. Just one
scenario cannot be generated, but the alternative plan of the
not generated scenario can be described as a normal sce-
nario. We are sure that our method is useful to generate
alternative scenarios in real scenario-based software devel-
opments.

As another evaluation, the following experiment was
performed. We adopted a scenario based software project of
developing a bill management system of an insurance com-
pany. In this project, analysts wrote not only a normal sce-
nario, but also other scenarios, that is, alternative scenar-
ios and exceptional scenarios. We applied our method to
the normal scenarios and got alternative scenarios. Then we
compared alternative scenarios that developed at the projects
with automatically generated scenarios. Since original nor-
mal scenarios are written with natural language, we rewrote
the normal scenarios with our scenario language prior to the
experiments.

Table 6 Result of alternative scenarios of the project.

Total Same New Not generated
Original 4 3 - 1
Method 5 3 2 -

In this project, one normal scenario, 4 alternative sce-
narios, and 5 exceptional scenarios are specified. By ap-
plying our method, we could get 5 alternative scenarios. By
comparing original alternative scenarios with generated sce-
narios, we found that 3 scenarios are same respectively, 2
scenarios are newly generated and effective, and 1 scenario
is not generated. Table 6 shows the above result.

The not generated scenario is regarded as an alterna-
tive scenario at the project, but it should be categorized into
a normal scenario, because this scenario specifies normal
behavior of the bill management system and has a differ-
ent purpose from that of the corresponding normal scenario.
Actually, an event “A clerk registers a damage in the sys-
tem.” is in the normal scenario, while an event “A clerk
changes registered damage into different one in the system”
is alternative. In this case, the normal scenario treats newly
registration, but the alternative one treats modification of
registered damage. Since the purposes of these two scenar-
ios are quite different, these scenarios should be written as
two normal scenarios.

5. Related Works

Ben Achour proposed guidance for correcting scenarios,
based on a set of rules [2]. These rules aim at the clarifi-
cation, completion and conceptualization of scenarios, and
help the scenario author to improve the scenarios until an ac-
ceptable level in terms of the scenario models. Ben Achour’s
rules can only check whether the scenarios are well written
according to the scenario models, while we propose a gen-
eration method of alternative scenarios from a normal sce-
nario.

Derek Cramp claimed the importance of alternative
scenarios. He proposed a model to create alternative sce-
narios [5]. However, his model strongly depends on a spe-
cific domain. Our method for generating alternative scenar-
ios can be applied to several different domains by switching
alternative scenario DB.

Ian Alexander proposed a scenario-driven search
method to find more exceptions [3]. In his approach, a
model answer was prepared with knowledge of all excep-
tion cases identified by stakeholders. For each event, related
exceptions are listed as a model answer. His model answer,
however, strongly depends on a specific domain.

Neil Maiden et al. proposed classes of exceptions for
use cases [9]. These classes are generic exceptions, per-
mutations exceptions, permutation options, and problem ex-
ceptions. With these classes, alternative courses are gener-
ated. For communication actions, 5 problem exceptions are
prepared, that is, human agents, machine agents, human-
machine interactions, human-human communication, and
machine-machine communication. They proposed a gener-



700
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

ation method of alternative paths for each normal sequence
from exception types for events and generic requirements
with abnormal patterns [17]. We focus on generation of al-
ternative scenarios by providing more precise model based
on both case structure of actions and actor types.

In the author’s previous work [11], we proposed to
build software requirements from textual requirements in
Japanese, based on a typology of concepts very similar to
the semantic roles of the case grammar [6]. Another re-
lated work is Ben Achour’s use of case grammar in scenario
analysis [1], [2]. Ben Achour focuses on how textual scenar-
ios could be integrated into different existing methods, and
proposes guidance for writing scenarios. He provides style
and content guidelines referring to conceptual and linguis-
tic model of scenarios, based on the case grammar. These
works demonstrate that the case grammar is suitable to the
semantic characterization of any design models as well as
the semantic characterization of any natural language sen-
tence.

6. Conclusion

The authors have proposed a generating method of alterna-
tive scenario. We provide plans of normal and alternative
behaviors and their templates with an alternative scenario
DB. By selecting plans, a template corresponding to the se-
lected plan is provided, by deleting events of normal behav-
ior , by adding events of alternative behavior and by com-
pensating the templates, we can automatically get alterna-
tive scenarios. Our method contributes to lessen developers’
work of making several scenarios and to improve the quality
of scenarios.

The proposed method was demonstrated by the exam-
ple and was evaluated. The evaluation results show that our
method is valid in software development.

The quality of generated alternative scenario depends
on alternative scenario DB. An alternative scenario DB fully
depends on a certain problem domain and the quality of the
DB depends on ability and knowledge of domain experts
that construct the DB. So, we have a plan to automatically
derive alternative scenario DB from software documents of
high quality in order to improve the quality of the DB. We
will evaluate and improve our method and system by apply-
ing them to several scenario-based software system devel-
opments. These are left as future works.

Acknowledgement

We thank to Mr. Taishi Yamamoto (currently at NTT Data
co.), Mr. Hiroki Shudo (currently at TIS co.), Dr. Hiroya
Itoga at Ritsumeikan University, and other members of Soft-
ware Engineering laboratory, Department of Computer Sci-
ence, Ritsumeikan University, Japan.

References

[1] C.B. Achour, “Linguistic instruments for the integration of scenar-

ios in requirements engineering,” Proc. Third International Work-
shop on Requirements Engineering: Foundation for Software Qual-
ity (REFSQ’97), pp.93–106, Barcelona, Spain, 1997.

[2] C.B. Achour, “Guiding scenario authoring,” Proc. Eight European-
Japanese Conference on Information Modeling and Knowledge
Bases, pp.181–200, Vamala, Finland, May 1998.

[3] I. Alexander, “Scenario-driven search finds more exceptions,” Proc.
11th International Workshop on Database and Expert Systems Ap-
plications, pp.991–994, London, U.K., Sept. 2000.

[4] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, USA.,
2001.

[5] D.G. Cramp and E.R. Carson, “Assessing health policy strategies: A
model-based approach to decision support,” Proc. International Con-
ference on System, Man and Cybernetics, vol.3, pp.69–73, 1995.

[6] C.J. Fillmore, “The Case for case,” in Universals in Linguistic
Theory, ed. E. Bach and R. Harms, Holt, Rinehart and Winston,
Chicago, 1968.

[7] M. Jackson, “Problems and requirements,” Proc. 2nd International
Symposium on Requirements Engineering (RE’95), pp.2–8, York,
England, March 1995.

[8] J.C.S.P. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Kaplan,
G. Hadad, and A. Oloveros, “Enhancing a requirements baseline
with scenarios,” Proc. 3rd IEEE International Symposium on Re-
quirements Engineering (RE’97), pp.44–53, Annapolis, U.S.A., Jan.
1997.

[9] N.A.M. Maiden, M.K. Manning, and M. Ryan, “CREWS-SAVRE:
Systematic scenarios generation and use,” Proc. 3rd International
Conference on Requirements Engineering (ICRE’98), pp.148–155,
Colorado Springs, U.S.A., April 1998.

[10] N.A.M. Maiden and M. Hare, “Problem domain categories in re-
quirements engineering,” Int. J. Human-Computer Studies, vol.49,
pp.281–304, 1998.

[11] A. Ohnishi, “Software requirements specification database based on
requirements frame model,” Proc. IEEE second International Con-
ference on Requirements Engineering (ICRE’96), pp.221–228, Col-
orado Springs, U.S.A., April 1996.

[12] A. Ohnishi and C. Potts, “Grounding scenarios in frame-based
action semantics,” Proc. 7th International Workshop on Require-
ments Engineering: Foundation for Software Quality (REFSQ’01),
pp.177–182, Interlaken, Switzerland, June 2001.

[13] A. Ohnishi, H. Zhang, and H. Fujimoto, “Transformation and in-
tegration method of scenarios,” Proc. 26th Annual International
Computer Software & Applications Conference (COMPSAC02),
pp.224–229, Oxford, England, 2002.

[14] A. Ohnishi, “A generation method of exceptional scenarios from
a normal scenario,” IEICE Trans. Inf. & Syst., vol.E91-D, no.4,
pp.881–887, April 2008.

[15] Railway Information System Co., Ltd., JR System,
http://www.jrs.co.jp/keiki/en/index main.html, 2001.

[16] M. Ridao, J. Doorn, and J.C.S.P. Leite, “Domain independent regu-
larities in scenarios,” Proc. Fifth IEEE International Symposium on
Requirements Engineering (RE’01), pp.120–127, Toronto, Canada,
Aug. 2001.

[17] A.G. Sutcliffe and M. Ryan, “Experience with SCRAM, a scenario
requirements analysis method,” Proc. 3rd International Conference
on Requirements Engineering (ICRE’98), pp.164–171, Colorado
Springs, U.S.A., April 1998.

[18] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, and D. Manuel,
“Supporting scenario-based requirements engineering,” IEEE Trans.
Softw. Eng., vol.24, no.12, pp.1072–1088, 1998.

[19] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenarios in
system development: Current practice,” IEEE Software, pp.34–45,
March 1998.

[20] H. Zhang and A. Ohnishi, “Transformation method of scenarios
from different viewpoints,” Proc. 11th Asia Pacific Software En-
gineering Conference (APSEC2004), pp.492–501, Busan, Korea,
Nov.-Dec., 2004.



OHNISHI and KITAMOTO: A GENERATION METHOD OF ALTERNATIVE SCENARIOS WITH A NORMAL SCENARIO
701

Atsushi Ohnishi received B. of Engineer-
ing, M. of Engineering, and Dr. of Engineering
degrees from Kyoto University in 1979, 1981,
and 1988, respectively. He was a Research As-
sociate and an Associate Professor of Kyoto
University from 1983 to 1994. Since 1994 he
has been a Professor at Dept. Computer Science,
Ritsumeikan University. He was a visiting sci-
entist at UC Santa Barbara from 1990 to 1991
and also a visiting scientist at Georgia Institute
of Technology in 2000. His current research in-

terests include requirements engineering, object oriented analysis, and soft-
ware design techniques. Dr. Ohnishi is a member of IEEE Computer Soci-
ety, ACM, Information Processing Society (IPS) Japan, and Japan Society
for Software Science and Technology (JSSST).

Koji Kitamoto received B. of Engineering,
M. of enginering from Ritsumeikan University
in 2003 and 2005, respectivly. He is now at NTT
Data Co.


