
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010
713

PAPER Special Section on Knowledge-Based Software Engineering

Graphical Expression of SQL Statements Using Clamshell Diagram

Takehiko MURAKAWA†a), Member and Masaru NAKAGAWA†, Nonmember

SUMMARY Thinking process development diagram is a graphical ex-
pression from which readers can easily find not only the hierarchy of a
given problem but the relationship between the problem and the solution.
Although that has been developed as an idea creation support tool in the
field of mechanical design, we referred to the restricted version as clamshell
diagram to attempt to apply to other fields. In this paper we propose the
framework for drawing the diagram of the SQL statement. The basic idea
is to supply the hierarchical code fragments of a given SQL statement in
the left side of the diagram and to put the meaning written in a natural lan-
guage in the right. To verify the usefulness of the diagram expression, we
actually drew several clamshell diagrams. For three SQL statements that
are derived from the same specification, the resulting diagrams enable us to
understand the difference visually.
key words: program understanding, software inspection, SQL, diagram,
information representation

1. Introduction

In the Internet services such as electronic commerce and
ticket reservation, it is typical that one or more servers em-
ploy some sort of database management system (DBMS) to
hold the key data, while Web servers act as the wicket for
responding users’ requests. Since the communication be-
tween Web servers and the DBMS using SQL is done within
the server side, the users enjoy the service without regard to
the database.

When constructing such a practical database system,
the lightweight language like PHP: Hypertext Preprocessor
(PHP) takes part of the logic and the Web servers’ behavior,
and the SQL statement is often described as a string in the
script file. That is why SQL is considered less serious from
the viewpoint of source code maintenance.

Object/Relational (O/R) mapping is a mechanism to
enable the developers to write the directions about record re-
trieval and manipulation. ActiveRecord used together with
Ruby on Rails is the driving force. However we have to
recognize that O/R mappers only supply the convenience
of coding but the optimization of the SQL queries is un-
touched. Actually, ActiveRecord leaves the method for ex-
ecuting any SQL statement directly, from which we can in-
fer that it is a human work that makes the most efficient
database access via SQL.

We investigated the application of thinking process de-
velopment diagrams [1] (TPDDs) to lower process of soft-

Manuscript received July 4, 2009.
Manuscript revised October 19, 2009.
†The authors are with the Faculty of Systems Engineering,

Wakayama University, Wakayama-shi, 640–8510 Japan.
a) E-mail: takehiko@sys.wakayama-u.ac.jp

DOI: 10.1587/transinf.E93.D.713

ware development [2]–[4]. Although TPDDs have been de-
veloped for supporting mechanical design, the originators
made the point that they are also useful in planning or orga-
nizing something in wider fields and in analyzing the phe-
nomena or the existing products in detail. The authors agree
to their assertion, and have been looking into the graphical
expression for program understanding.

In this paper we propose the formalism for drawing the
diagram of the SQL statement. The basic idea is to supply
the hierarchical code fragments of a given SQL statement
in the left side hand of the diagram and to put the meaning
written in a natural language in the right. SQL permits a
nest of SQL statement, called a subquery, which makes the
statement complex. We employ a variable-length, symmet-
ric clamshell diagram which is a variant of TPDD, and give
expression to the subquery by means of grafting. By using
the proposed method, a long, abstruse SQL statement can
be deciphered easily by looking at the diagram with sym-
metrical two trees. The examples of three SQL statements
that are the same in meaning, together with their clamshell
diagrams, enable us to understand the difference in the de-
tails of the statements. The diagrams will be informative and
helpful to the programmers of database manipulation from
beginners to experts.

The outline of this paper is shown in Fig. 1, by means
of clamshell diagram. Except those seen in Fig. 2, all the
clamshell diagrams are drawn with Graphviz.

2. Clamshell Diagram

2.1 Introduction of Clamshell Diagram

Thinking process development diagram [1] is a diagram of
the designer’s thought in a certain style. The completed di-
agram will be represented including two hierarchical rela-
tionships and the relationship of issue and resolution. Al-
though the diagrams have been developed in mechanical
design, the originators said that they would be available to
broader area of design processes, with which we agree.

A standard diagram has two tree structures whose roots
are the both ends of the diagram and the leaves of the trees
are connected one-to-one in the center. The left half of
the diagram conservatively shows the problem to be solved,
while the right half expresses the solution. Ideally the di-
agram is bilaterally symmetric, where the corresponding
nodes have the relationship of problem-solution. In other
words, an incomplete diagram helps us to find the lack of

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

714
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 1 Outline of this paper using clamshell diagram.

information; if a node appears in the left half but the corre-
sponding one is not observable in the right half, for exam-
ple, then you will imagine that the means for the specified
(sub)goal is unclear. Such missing nodes are expected to
complement after a drawer has a careful look at neighboring
nodes and thinks of the hierarchical relationship or the ho-
mogeneous elements. The spatial thinking support like this
is a remarkable feature of this diagram.

The nodes are labeled and put in position from left to
right by ordinary. When drawing a diagram, one begins with
the deployment of the left root, and then expands the notions
or sentences to the right. In the right half, he or she has to
converge the thought, and the right edge is single informa-
tion, namely the conclusion. Thanks to these structural con-
straints, we can think of the issue and resolution at a time,
and produce the design creatively with a moderate strain.

The authors refer to the diagrams as “clamshell dia-
grams” in this paper, since the word clamshell is the best
expressive of the structure; a typical diagram takes the shape
of a clamshell where two shells are opened with the joint at
both ends.

2.2 Related Diagrams for Idea Creation Support

KJ method (Jiro Kawakita’s method) [5] supplies the way
of arranging miscellaneous pieces of information for a sub-
ject. Yagishita et al. [6] attempted a quantitative evaluation
of the resulting contents. KJ method roughly consists of two
steps; noting down each idea on a card, and consolidating
the cards. The former step corresponds to the act of creating
a node in our supporting system reported in [2]. However,
the latter step seems to lack a constructive rule of organizing

the ideas. Clamshell diagrams present the clear construc-
tions of nodes as well as the whole-part relationship.

A Mind Map is popularly used for expanding a bit of
idea [7]. With a single keyword centered, one draws curves
in every direction to attach relevant notions. From a view of
construction, a diagram is regarded as a directed tree where
the centered keyword is the root. The trouble is that, con-
sequently, if a phrase occurs twice or more on the diagram,
then they should be separated. Another weak point of Mind
Maps is that how widely and deeply the ideas should be
expanded lies in the hand of the drawer. Someone might
complete a diagram where one direction is further expanded
while the others are poor. That is because of wrong caliber
of the drawer or due to wrong establishment of the centered
subject. The clamshell diagram is so clear since the goal
should be a condensed single notion. In addition, if the ini-
tial subject get to be inadequate in proportion as the nodes,
then one can change the centered topic using tree operations
such as deletion, insertion or rotation.

A fast (abbreviation of “Function Analysis System
Technique”) diagram [8] is an extended version of a logic
tree.

A cause effect diagram has a backbone and small bones
which directly or indirectly connect to the backbone. The
diagram is also known as “fishbone diagram” for its shape,
or as “Ishikawa diagram” after the inventor. While used in
the Japanese business community, the diagram is now so
popular that an example is found in [9]. That is used for
presenting all the factors for a given property or result. The
cause effect diagram reads the backward reasoning, which
distinguishes it from the Mind Map and the fast diagram.

TRIZ is a methodology for creation support based on

MURAKAWA and NAKAGAWA: GRAPHICAL EXPRESSION OF SQL STATEMENTS USING CLAMSHELL DIAGRAM
715

the patterns derived from enormous number of patents [10].
That has a matrix consisting of some dozens of parame-
ters to clarify the technical problems for the combinations.
Schlueter [11] used it to improve a GUI application written
in Perl/Tk.

2.3 Formal Definition of Symmetric Clamshell Diagram

A great number of thinking process development dia-
grams have been drawn for expressing designers’ inten-
tion. Through the diagrams on printed publications and
made ones with our hands, we recognize various diagram
schemata. In this section, after providing a couple of meth-
ods for classifying, we identify the schema for expressing
SQL statements afterward.

Any diagram is either the one of the same length of
paths from the far left to the right or the one where the length
of paths is varied. The former graph is called a fixed-length
diagram while the other is variable-length. Another classi-
fication is whether it is symmetric or not. Symmetric dia-
grams are easier to draw and read than asymmetric ones, but
they are so restricted and idealized that one might feel ill at
ease while drawing.

In this paper, we employ the variable-length, sym-
metric clamshell diagrams for applying to SQL statements,
since SQL statements are complicated unboundedly by us-
ing subqueries, and we consider that the symmetrical prop-
erty is useful in generating the diagram in a certain man-
ner or by automatization. Although earlier clamshell dia-
grams for expressing C programs permit empty nodes, i.e.
the nodes with no description [2], [3], all the nodes are la-
beled in the diagram drawn by the proposed method in this
paper.

We present a formal definition of the configuration of
clamshell diagram to express SQL statements.

Definition 1: The structure of the symmetric clamshell di-
agram is an undirected graph G = (V, E) where V denotes
the set of vertices or nodes and E is a set of edges, i.e. pairs
of vertices. In addition, the following properties have to
hold.

• Both components are divided; V = VL ∪ VR and E =
EL ∪ER ∪EC . VL and VR are disjoint and so are EL, ER

and EC .
• Let GL = (VL, EL), then it is an undirected subgraph

of G. For this graph, there exists a rooted directed
tree TL = (VL, E′L) such that if (v1, v2) ∈ E′L then
(v1, v2) ∈ EL. As for the VR and ER, we have the sub-
graph GR = (VR, ER) and the derived, rooted directed
tree TR = (VR, E′R) similarly.
• Two trees TL and TR are isomorphic, that is, there ex-

ists an isomorphic mapping f : VL → VR such that
(v1, v2) ∈ E′L if and only if (f (v1), f (v2)) ∈ E′R.
• If a node v ∈ TL is a leaf of the tree, or there does not

exist a node v′ ∈ TL such that (v, v′) ∈ E′L, then the
edge (v, f (v)) belongs to CE .

Intuitively, GL and GR are respectively the left and the
right half of the whole structure G, while EC means the bind-
ing over the two subgraphs. Although the condition for vari-
ance of the paths in the tree is not present, we could supply
the definition of fixed length by requiring TL to be a bal-
anced tree.

To store the configuration of symmetric clamshell dia-
gram in a computer or a database, the sets TL and TR rather
than G are convenient since they are trees. We hereafter re-
fer to the structure formed by TL and TR as the left and the
right trees of the whole clamshell diagram, respectively. Us-
ing TL and TR, we identify the occurrence of any node on a
diagram. The root of the left tree is addressed by L. When
a node u ∈ TL is associated with the address U, and v ∈ TL

is the i-th child of u where it is assumed that the siblings are
numbered, the address of v is U.i. The location of each node
in the right tree is similarly defined where the prefix symbol
is R instead of L. For example, the address of “Why SQL” in
Fig. 1 is L.2.1 while the label on R.3 reads “Examples (4)”.

We drew the diagrams for a couple of pieces of open
source software written in C [2], [3]. The right half of the di-
agram shows a tree in which the labels are directory names,
file names or code segments except comments. The left tree
has the inverted connections so that the diagram may be line-
symmetric, and the message on some nodes are the com-
ments extracted from the files and the others are empty. The
right-and-left allocation is due to a design concept of TPDD,
or the belief that his or her thought should be expanded in
terms of “what to do” and then converged by making clear
“how to do” and integrating them. Using the drawn dia-
grams, we assessed the sufficiency of comments to make
sure that the definition of an important function has more
fulfilling comments.

3. Expression of SQL Statements Using Clamshell Di-
agram

3.1 SQL

In this section we enumerate the properties of the program-
ming language SQL. It is a language for querying and mod-
ifying the database, generally used in communicating with
DBMSs. When a user sends a query by means of an SQL
statement, using a command-line interface or over some ap-
plication programming interface, the DBMS performs cal-
culates according to the relevant tables and returns a result
which is a table if relational database is employed. Since the
SQL language is declarative, many programmers in com-
panies and colleges have a resistance to this language after
studying procedural languages like C and Java.

Another character of SQL is that the statement which
usually ends with a semicolon is apt to be longer, in compar-
ison to that in C or Java. It is difficult to execute a series of
SQL statements, only by SQL, where the subsequent query
is created dependent on the result of the former one. In ad-
dition, a single complicated statement is believed to be more
effective than several simple ones for the same purpose since

716
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

the overhead between the caller and the DBMS is short.
When the tables are normalized already, the statement often
includes the product or the join of the tables. Sometimes du-
plicated tables using self-join are the processing object. It is
a good measure in reading or writing a long SQL statement
to understand it in a stepwise manner, though, the students
who tackle such a puzzling case are in a minority.

SQL statements are embedded in another programming
language under a practical development or operational envi-
ronment. The programmer is required to have a good com-
mand of two different language there. When he or she is
rather poor at SQL programming and diverts existing codes
without review, there will be a cause for inefficiency or se-
curity flaws. This paper does not however aims at efficiency
or security of SQL since such problems are close to the ta-
bles and the indices as well as the DBMS and the concerned
SQL statement.

3.2 Procedure of Conversion

The outline of the conversion of a given SQL to the sym-
metric clamshell diagram is shown in Fig. 2 (a)–(d).

We concentrate on the SELECT statement in this pa-
per, since that is in heavier usage than any other statement
provided by the standard SQL such as INSERT, UPDATE
or CREATE TABLE statement [12]. Besides the frequency
or utility, we are interested in the fact that SQL statements
permit nested SQL statements, or subqueries, which must be
a SELECT statement. It is true that the INSERT statement
and others are able to include a SELECT one as subquery,
but we now explore the space constructed by SELECT state-
ments.

When a given SELECT statement has no subquery, the
allocation of the left tree is straightforward; the keyword SE-
LECT corresponds to the address L, the expression between
SELECT and FROM to L.1, the keyword FROM to L.2,
tables specified just after FROM to L.2.1. Other optional
clauses such as WHERE, GROUP BY, HAVING clauses are
addressed same as the FROM clause. Even though, for ex-
ample, the expression at L.1 is too complicated, its segmen-
talization is out of account.

In contrast to the way of drawing a conventional

Fig. 2 Steps of drawing clamshell diagram for SQL statement.

TPDD, our formalism arranges the code segments on the
left half and the corresponding comments on the right. We
adopt the reverse arrangement since the tree expression of an
SQL statement on the left comes more naturally to SQL pro-
grammers who find the desired query by sending ones many
times. Although our policy goes against the traditional way
of TPDD, the authors believe that this placement gains an
advantage in a practical sense.

Now we describe how to cope with the statement with
subqueries. Keep in mind that the parentheses are typically
put around the subquery but they do not matter. The paren-
theses which occur in function call, specify the priority or-
der, or enumerate the values just after the IN predicate are
regarded as a part of the expression. When the subquery out
of parentheses appears before or after the UNION operator,
to the contrary, it should be dealt with appropriately.

We express a subquery in terms of grafting; the sub-
query is transformed into the subtree of the left tree. The
SQL expression with a subquery is reduced by replacing the
words of the subquery with a symbol which is not used in the
SQL statement. And then the directed edge is added from
the node associated with the expression to the root of the
subtree. When an expression has two subqueries or more,
the node owns the descending links of the same number and
the distinct symbols are seen in the reduced expression.

Here we clarify the addresses in the case of using sub-
query. Under the assumption that there exists a left tree con-
structed only by subquery, where will the node addressed by
L.v (L denotes the left root of the subtree.) be mapped in the
finished diagram? Assume in addition that the subtree is the
i-th child of the node whose address is L.u (L represent the
left root of the whole diagram.), then the address which we
would like to know is L.u.i.v.

Mapping the SQL fragment to the description in some
natural language is a manual handling task right now. How-
ever we are able to present several patterns of translation in
English, based on our experience in drawing the diagrams.
The initial word SELECT suits with “get”. If the expres-
sion just after SELECT is merely *, then the desirable word
is “record”. When the table and its byname is connected
directly in the FROM clause, the word “alias” should be in-
serted after the word-for-word translation.

MURAKAWA and NAKAGAWA: GRAPHICAL EXPRESSION OF SQL STATEMENTS USING CLAMSHELL DIAGRAM
717

When constructing the left tree in the manner described
above, we can restore the original SQL statement by travers-
ing the tree in preorder, laying the stumbled words side-by-
side and replacing the symbol with the subquery produced
by the subtree. If the labels on the right tree are written in
English, then we will also be able to make the instruction by
traversing it in preorder. It is insufficient, in the right tree
restoration, to trade the symbol for the statement derived
from the subtree; the initial word “get” should be removed.

Different sorts of statements besides the SELECT
statement could be put in position by introducing appropri-
ate conversion rule. For example, the statement “UPDATE
table SET column = value” is translated into English
as “update table to set column at value”, from which we can
easily obtain the one-to-one relationship for drawing the di-
agram.

4. Examples

Here we are presenting several clamshell diagrams for con-
crete SQL statements. Preparatory for showing the exam-
ples, we introduce the table to which the statements com-
monly refer. Imagine that you have a database of well-
known jobs and their salaries, namely the table joblist
which has the attributes title and salary. The type of
salary is an integer while title ranges variable-length
strings. The currency unit of salary is ignored.

4.1 Simple SQL Statement

If you would like to know the jobs whose income is 50,000
or more, then execute “SELECT title FROM joblist
WHERE salary > 50000;”. We describe the diagram in
Fig. 3. This case is so simple that the differences between
the both trees are the roots and the nodes for condition which
uses the comparative operator >.

When traversing the left tree in preorder, we obtain
the original SQL statement. On the other hand, the right
hand tree produces the message “get title from joblist where
salary is larger than 50000”, which will be a natural instruc-
tion by putting in articles.

4.2 SQL Statement Including Subquery

In the rest of this chapter, we describe three SQL statements
that are the same in meaning. The query is “get the titles
of the maximum salary in a given joblist table.” Note that
there may exist more than one title which takes the maxi-
mum salary. (Otherwise “SELECT title FROM joblist

Fig. 3 Clamshell diagram for simple SQL statement.

ORDER BY salary DESC LIMIT 1;” would be the short-
est code.) Without knowing the maximum salary in ad-
vance, the SQL statement which satisfies the requirement
has to refer the table joblist twice, namely to know the max-
imum salary and to identify the titles. Therefore, to express
the query with a single SQL statement, we have to use the
nested one.

A straightforward approach is that you get the maxi-
mum salary and compare the value with the salary attribute
in the joblist table. The SQL statement based on this idea
is as follows: “SELECT title FROM joblist WHERE
salary = (SELECT MAX(salary) FROM joblist);”.

You can find the sub-symmetric clamshell diagram
which indicates the query “SELECT MAX(salary) FROM
joblist”, which is executable alone. We should remark
that if the result of subquery is associated with a relational
operator including “=”, the value must be single. Instead,
in the case of the “IN” predicate, any number of resulting
values are permitted although the SELECT subquery has to
be specified to get a single column.

Figure 4 is the symmetric clamshell diagram for the
statement. The labels in the left half tree forms the given
SQL statement, by traveling the left tree in preorder and sub-
stitution of the symbol x to the subquery. From the labels in
the right half tree, we can obtain the query “get title from
joblist where salary is equal to ‘maximum of salary from
joblist’ ”, by traveling in preorder and delete the word “get”
which occurs at the root of subquery.

4.3 SQL Statement Including EXISTS Predicate

Another way of describing the query for the most highly-
paid worker is to determine whether or not there exists a
record whose salary is higher than that of the target record;
if not, then the target record has the maximum salary. The
following is the SQL statement: “SELECT title FROM
joblist j1 WHERE NOT EXISTS (SELECT * FROM joblist

j2 WHERE j1.salary < j2.salary);”.
Unlike the statement in the previous section, the sub-

query “SELECT * FROM joblist j2 WHERE j1.salary <
j2.salary” is incomplete since “j1” is unknown. How-
ever the whole statement is legal since j1 is defined as the
alias of the table joblist. That is because the scope of the
alias assigned in the statement is not directly linked to the
dominance relationship in the left or right tree. The corre-
sponding symmetric clamshell diagram is shown in Fig. 5.
The right half produces the direction “get title from joblist
alias j1 where there does not exist ‘record from joblist alias
j2 where salary of j1 is smaller than salary of j2’ ”.

4.4 SQL Statement Including Inline View

The last method is to define an inline view which holds
the maximum salary to be compared with the salary of
each record in joblist. The SQL statement is as indi-
cated below: “SELECT title FROM (SELECT MAX(salary)
AS max_salary FROM joblist) j, joblist WHERE

718
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 4 Clamshell diagram for SQL statement with subquery.

Fig. 5 Clamshell diagram for SQL statement with EXISTS predicate.

Fig. 6 Clamshell diagram for SQL statement with inline view.

salary = max_salary;”. The name j is not referred but
indispensable in the SQL grammar, while max_salary is
named and used for comparison. The clamshell diagram is
shown in Fig. 6. You can restore “get title from table con-
sisting of ‘maximum of salary alias max salary from joblist’
alias j and joblist where salary is equal to max salary” by the
right half of the diagram.

Before ending the examples, we would like to make
mention of the runtime of the above queries. They all work
well using PostgreSQL version 8 on an Ubuntu Linux PC.
Where the joblist table contains about 5,000 records ran-
domly generated and is not indexed, each query outputs the
correct answer immediately.

5. Discussion

5.1 Visual Effects

Based on the examples last chapter, we are pointing out how
to read the runes from the diagram. A simple and effec-
tive way is to restore the character strings, namely the query
code to the left and the intention to the right. When travers-
ing the right trees on Figs. 4–6, we have had different mes-
sages which more or less differ from the original specifica-
tion, “get the titles of the maximum salary in a given joblist
table.”

We can also realize the differences of the equivalent
SQL statements shown in those figures by focusing atten-
tion on the largest box in each diagrams, even though we
were unconscious as to the intention of those statements.

The largest one in Fig. 5 is located at R.3.1.1.3.1 and reads
“salary of j1 is smaller than salary of j2”. In addition to the
fact that neither the word “maximum” nor the SQL function
MAX is found in the diagram, we can make sure that this
SQL statement find the record of the maximum salary by a
combination of the comparison and the EXISTS predicate.
Then, in Fig. 6, the node whose label is “maximum of salary
alias max salary” at R.2.1.1.1 is the largest. The identifier
max salary defined there is seen at R.3.1 and the symmet-
ric positions. While the pair is close apparently, it takes
several steps from one to the other via the root, from the
viewpoint of graph configuration. This observation leads us
to the composition of this SQL statement; the table for the
temporary use is defined to compare the sole value with the
salary of each record for the selection. Alike those figures,
there is not an outstanding box in Fig. 4. It follows that the
SQL statement described in Sect. 4.2 is the least confusing,
in other words, written in the most straightforward way of
the three. We consider that the other characteristic features
such as the node with an excess of child nodes or the too
long path from end to end could also be the key to learning
the statement or the room for improvement to be a compre-
hensible statement.

The above SQL statements have at most one subquery
for simplicity, but our methods can afford more compli-
cated ones. A query for obtaining the median written in [13,
p.515] consists of 94 words excluding parenthesis symbols;
the keyword SELECT occurs nine times, and some of them
forms subquery’s subqueries. As the result of drawing, we
had a clamshell diagram with 88 nodes where the length of

MURAKAWA and NAKAGAWA: GRAPHICAL EXPRESSION OF SQL STATEMENTS USING CLAMSHELL DIAGRAM
719

the path between the both ends is up to 17.
The agvantage of the diagrammatic display in this pa-

per derives from the tree expression and from the symmetry.
In constructing the tree in the left or the right part, a sub-
query is transformed into a node with a symbol put in a label
and a subtree whose root reads “SELECT” or “get”. This
dissolution clarifies what the subquery intends to acquire,
and the parent node of the subtree demonstrates how the re-
sult of the subquery is referred to. Moreover the diagram of-
fers a clue to know the purpose of the parted code in terms of
the programming language and the natural language. That
is, if the label on a node together with the surroundings is
cryptic, then one can switch the viewpoint to the symmet-
rical location to decipher it. Both benefits never fade for a
larger diagram, while the longer statement is harder to un-
derstand empirically.

These results show the usefulness of applying our
schematic tool to SQL, in other words, applying an idea cre-
ation support system to the lower process of software devel-
opment.

Yet another problem is adaptability to other natural lan-
guages than English, say Japanese or Korean that differs in
terms of word order. A solution is to change the configura-
tion of nodes in the right tree, after labeling each nodes in
the intended language (see Fig. 2 (d)), so that the right tree
can be more readable. Note that this approach is in exchange
for the symmetry and does not always connect to the leaves.
We drew diagrams for the SQL statements in the previous
chapter to make sure that Japanese instructions are gener-
ated by traversing the right trees in postorder.

5.2 Related Works about SQL Inspection

As far as the authors know, the tool for static analysis of
SQL statements is not developed well. That seems to be be-
cause each sentence is quite small, in comparison with the
ones written in established procedural languages like C or
popular embedded languages such as PHP. Actually some
programmers describe the SQL statement as a string within
the code for the logic, as if he or she attempted to get the
Web content by giving a URL. Although solicitous pro-
grammers properly write the code on error checking after
invoking the database query, few persons take into account
the validity of the query; some sentences might be derived
from an existing system, without being reviewed; some SQL
string has a variable name in it to be replaced though there
may be a security hole, or a vulnerability to SQL injection
attack, behind the code. Recently supporting methods or
systems set up against SQL injection attack have been re-
ported to reduce the programmers’ burden [14]–[17]. For
example, SQLProb [17] analyzes a given SQL statement in-
cluding variables to form the tree, and compares it with the
one constructed from the query with values into the vari-
ables; if the configuration is changed, then it considers that
the substitution changes the query and therefore the sender
would attempt an SQL injection attack.

Those tools aimed at the automation but not at the sup-

port of manual validity check. In addition the SQL example
statements in those papers are too small and simple for us to
know that they are available in a complicated case. Our ap-
proach has an advantage in the sense that a diagram is gen-
erated from a given SQL statement which may include con-
fusing subqueries so that the programmers or reviewers can
confirm the intention of the query multilaterally, although it
takes the automatization into consideration as well. More-
over our framework deals with the query using placeholder
where the symbol “?” is mounted in the SQL statement usu-
ally, by interpreting the sign as a special meaning.

Visual Explain [18] is, based on a different approach,
a visualization tool of SQL statements. It generates the ac-
cess plan, or the paths of database access, by means of a
tree for a given SQL statement. The tree is configured from
bottom up and the root means the status where all the inter-
nal processes are done. Each node holds the cost which is
an estimated figure for the required resource about CPU and
input-output. For the same statement, different access plans
are drawn according to the presence or absence of indices.
This property is useful for making sure that the indexing
is effective. Moreover, the node does not have the label of
SQL fragment but that of internal process such as scanning
or sorting of the table. The above features make us consider
that Visual Explain is better suited for the programmers who
follow through the efficiency of the database access, but that
it would be poor at the code inspection support by a single
person or multiple persons.

5.3 Repository of SQL Example Statements

To register and maintain a wide variety of SQL statements,
the data store is the cornerstone. We explain a plot of the
repository for SQL statements. The issue includes (1) from
what to collect and (2) how to store.

Collecting and selecting the actual SQL statements
holds the key to the success of the constructing code repos-
itory. We are making a collection of them not only from
books but from our development of database applications as
well as the classes of database.

To draw a clamshell diagram from an existing SQL
statement, it would be impossible to find comment of the
statement except for written in a book. We will anno-
tate the code segments by hand initially, and subsequently
implement the feature of the automatic comment. When
each statement is divided adequately, the code segments are
stored in the database together with the corresponding com-
ments. In addition, the data for composing a clamshell dia-
gram including the references to the code segments are pre-
served. By managing the parts and the constitution of SQL
statements separately, we expect that the parts will be reused
and we will know the usage of the keywords and phrases on
SQL, beyond mere frequency count.

Many books for writing SQL statements have been
published but the readers cannot invoke the code to verify
it. We also attempt to construct a collection of verifiable
SQL statements together with execution environments and

720
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

data set to which the query is applied. Since the learners can
see the result quickly, they will be able to know not only the
syntax of SQL but good or bad SQL statements in a practical
sense efficiently. It may be useful to those who brush up on
SQL as well. Finally the repository of SQL statements will
be informative and helpful to the programmers of database
manipulation from beginners to experts.

6. Conclusions

In this paper we have proposed the framework for drawing
symmetric clamshell diagram provided an SQL statement.
The configuration of the diagram with a pair of trees helps
one to understand the whole and the parts of the query. In
addition, the statement with subquery can be expressed as
the grafting. Data structure by means of symmetric trees
has two effects. The symmetric clamshell diagram presents
more visual attraction than the diagram by a single tree,
while all the components can be described by a tree-based
format, say as an XML document.

Future works include conducting a quantitative evalu-
ation with regard to the readability and constructing a prac-
tical repository of SQL statements so that the diagrams can
be efficiently produced. It is also a promising approach to
apply the method to shell scripts which have been widely
used in the Unix operating systems. The length of a com-
mand in a shell does not make much difference from that of
an SQL statement, and we can find a similarity in nesting;
a command can be made longer by combining commands
using && or ||, a pipe, and a subshell.

References

[1] H. Mase, H. Kinukawa, H. Morii, M. Nakao, and Y. Hatamura, “Me-
chanical design support system based on thinking process develop-
ment diagram,” Trans. Japanese Society for Artificial Intelligence,
vol.17, pp.94–103, 2002.

[2] T. Murakawa, T. Kawasaki, H. Mizuochi, and M. Nakagawa, “For-
mulation of clamshell diagram and its application to source code
reading,” Proc. Eighth Joint Conference on Knowledge-Based Soft-
ware Engineering (JCKBSE 2008), pp.474–483, 2008.

[3] T. Kawasaki and T. Murakawa, “Applying thinking process devel-
opment diagram to source code reading support,” FIT2008, pp.117–
118, 2008.

[4] T. Murakawa and M. Nakagawa, “Graphical expression of SQL
statements using clamshell diagram,” J. Japan Society of Informa-
tion and Knowledge, vol.19, no.2, pp.218–223, 2009.

[5] J. Kawakita, KJ Method: A Scientific Approach to Problem Solving,
Kawakita Research Institute, 1975.

[6] K. Yagishita, J. Munemori, and M. Sudo, “A proposal and an appli-
cation of an evaluation method for sentences of B type KJ method
based on contents and structures,” Trans. IPSJ, vol.39, no.7,
pp.2029–2042, 1998.

[7] T. Buzan and B. Buzan, The Mind Map Book: How to Use Radi-
ant Thinking to Maximize Your Brain’s Untapped Potential, Dutton,
1994.

[8] T.J. Snodgrass and M. Kasi, Function analysis: the stepping stones
to good value, University of Wisconsin, 1986.

[9] R.B. Grady, “Successfully applying software metrics,” Computer,
vol.27, no.9, pp.18–25, 1994.

[10] G. Altshuller, L. Shulyak, and S. Rodman, 40 Principles: TRIZ Keys
to Technical Innovation, Technical Innovation Center, 1998.

[11] M. Schlueter, “TRIZ for Perl-programming,” Proc. TRIZCON2001,
2001.

[12] “Information technology—Database languages—SQL—Part 1:
Framework (SQL/framework),” ISO/IEC 9075-1, 1999.

[13] J. Celko, Joe Celko’s SQL for Smarties: Advanced SQL Program-
ming, Third Edition, Morgan Kaufmann, 2005.

[14] C. Gould, Z. Su, and P. Devanbu, “JDBC checker: A static analysis
tool for SQL/JDBC applications,” Proc. 26th International Confer-
ence on Software Engineering, pp.697–698, 2004.

[15] W.G.J. Halfond and A. Orso, “AMNESIA: Analysis and monitor-
ing for neutralizing SQL-injection attacks,” Proc. 20th IEEE/ACM
International Conference on Automated Software Engineering,
pp.174–183, 2005.

[16] G. Buehrer, B.W. Weide, and P.A.G. Sivilotti, “Using parse tree val-
idation to prevent SQL injection attacks,” Proc. 5th International
Workshop on Software Engineering and Middleware, pp.106–113,
2005.

[17] A. Liu, Y. Yuan, D. Wijesekera, and A. Stavrou, “SQLProb: A
proxy-based architecture towards preventing SQL injection attacks,”
Proc. 2009 ACM Symposium on Applied Computing, pp.2054–
2061, 2009.

[18] “DB2 9.1 Visual Explain tutorial,” IBM, 2006.

Takehiko Murakawa was born in 1971. He
received the Ph.D. degree from Nara Institute
of Science and Technology, in 1998. Through
a Research Associate of Nara Institute of Sci-
ence and Technology and Wakayama Univer-
sity, since 2003, he has been an Associate Pro-
fessor at the Department of Computer and Com-
munication Sciences, Faculty of Systems En-
gineering, Wakayama University. His research
interests include database system and digital
archive.

Masaru Nakagawa graduated Osaka Uni-
versity in 1970 and received M.E. degree from
the same university in 1972. In 1972–1994,
he worked at Musashino Research Laboratory,
NTT. Through a Professor of Kinki Univer-
sity, since 1997, he has been a Professor at
the Department of Computer and Communica-
tion Sciences, Faculty of Systems Engineering,
Wakayama University. He is a member of In-
formation Processing Society of Japan, Japan
Society of Information and Knowledge, and the

Japanese Society for Artificial Intelligence.

