IEICE TRANS. INE. & SYST., VOL.E93-D, NO.4 APRIL 2010

733

| PAPER Special Section on Knowledge-Based Software Engineering

Deriving Framework Usages Based on Behavioral Models

Teruyoshi ZENMYO'®, Takashi KOBAYASHI'", and Motoshi SAEKI', Members

SUMMARY  One of the critical issue in framework-based software de-
velopment is a huge introduction cost caused by technical gap between
developers and users of frameworks. This paper proposes a technique for
deriving framework usages to implement a given requirements specifica-
tion. By using the derived usages, the users can use the frameworks without
understanding the framework in detail. Requirements specifications which
describe definite behavioral requirements cannot be related to frameworks
in as-is since the frameworks do not have definite control structure so that
the users can customize them to suit given requirements specifications. To
cope with this issue, a new technique based on satisfiability problems (SAT)
is employed to derive the control structures of the framework model. In the
proposed technique, requirements specifications and frameworks are mod-
eled based on Labeled Transition Systems (LTSs) with branch conditions
represented by predicates. Truth assignments of the branch conditions in
the framework models are not given initially for representing the customiz-
able control structure. The derivation of truth assignments of the branch
conditions is regarded as the SAT by assuming relations between termina-
tion states of the requirements specification model and ones of the frame-
work model. This derivation technique is incorporated into a technique
we have proposed previously for relating actions of requirements specifica-
tions to ones of frameworks. Furthermore, this paper discuss a case study
of typical use cases in e-commerce systems.

key words: framework, labeled transition system, branch condition, satis-
fiability problem

1. Introduction

In current software development, frameworks are being nec-
essary for fast delivery and high quality. The framework can
be considered as semi-complete software and provides ex-
tensible implementations which are common in a target do-
main. Therefore, by using the framework, final application
software can be developed by implementing application-
specific parts.

Software development processes using frameworks are
different from conventional ones. The framework is com-
pleted into final software by customizing extensible points
called hot spots. The hot spots are provided in various ways
(e.g. hook methods, configuration files) and vary according
to frameworks. Developers have to understand the way to
customize the framework to suit their requirements.

To provide the extensibility, the frameworks are de-
signed by expert developers and have complex designs in

Manuscript received July 4, 2009.
Manuscript revised October 19, 2009.
"The authors are with the Department of Computer Science,
Tokyo Institute of Technology, Tokyo, 152-8550 Japan
""The author is with the Department of Information Engineer-
ing, Graduate School of Information Science, Nagoya University,
Nagoya-shi, 469-8601 Japan
a) E-mail: zenmyo@se.cs.titech.ac.jp
DOI: 10.1587/transinf. E93.D.733

which high-level design and programming techniques such
as design patterns and/or meta-programming may be used.
On the other hand, the users of the frameworks are not lim-
ited to experts. For novice developers who are not skilled
enough to design core parts of applications, adapting the
framework is promising and may be crucial. However,
it is not easy for the novice developers to understand the
framework design and the way to extend the framework.
Therefore, an introduction cost becomes a huge obstacle
in framework-based development. For efficient framework-
based software development, a technique to bridge the gap
between the developers and the users is desired.

This paper proposes a technique to derive framework
usages for implementing a given requirements specification.
The proposed technique uses behavioral models of require-
ments specifications and frameworks as inputs and derives
the usages by relating the requirements specification model
to the framework model.

In our previous work, we have proposed a technique
which relates actions of requirements specifications to ones
of frameworks automatically [1]. The requirements specifi-
cations and the frameworks are modeled in Labeled Tran-
sition Systems (LTSs) and they are related based on obser-
vational equivalence [2] to assure equivalence of execution
sequences. The usages of framework are identified based on
the relations, and then, the usages are suggested to users in
the form of skeleton codes.

The behavior of software systems is not characterized
by only sequential execution but also branch conditions
should be argued. Branch conditions are essential in the be-
havior since the branch conditions determine the behavior of
system depending on their values. However, the branch con-
ditions are not considered in our previous work and there-
fore, inappropriate relations could be also suggested to the
users. Figure 1 illustrates the inappropriate relation. In
Fig. 1, the requirement is not implementable with the frame-
work although the framework has an action sequence “el”,
“e2” which is equivalent to the requirement. The require-
ment specifies an action “e2” has to be executed if P is false.
On the other hand, the framework shown in Fig. 1 executes
the action “e2” only if P is true. In our previous work, the
action “e2” of the requirements specification is related to
one of the framework and the relation shown in Fig 1 is
judged appropriate since the branch conditions are not ar-
gued.

To cope with this issue, this paper proposes a new tech-
nique for deriving consistent truth assignments of the branch

Copyright © 2010 The Institute of Electronics, Information and Communication Engineers



734

Not match

- -

-
\4

[=P]e2

Requirement Specifications

Framework

Fig.1 Inappropriate relation.

conditions of frameworks. The derivation of the truth as-
signments is regarded as finding a solution of satisfiability
problems (SAT) by assuming relations between termination
states of requirements specification models and framework
models. The new technique can be incorporated in our pre-
vious technique for relating actions, and therefore, the usage
can be derived in case requirements specifications include
branches.

The rest of the paper is organized as follows. In
the next section, we clarify the requirements to support
for framework-based software development. Section 3
overviews our project and presents the approach. Section 4
describes the proposed technique with an illustrative exam-
ple. The proposed technique is evaluated in Sect.5. Sec-
tion 6 and 7 are for related work and for concluding remarks
respectively.

2. Motivation and Issues
2.1 Desired Support

Frameworks provide control structures which are common
in a target domain. Therefore, we consider the behavior is
essential for relating requirements specifications to frame-
works and this paper focuses on behavioral aspect.

Figure 2 illustrates how frameworks are used to imple-
ment requirements specifications. The framework shown
in Fig. 2 executes a hook method (hook) according to re-
quests. The hook method is associated with the requests
in a configuration file. The developers have to implement
application-specific actions with the hook methods and con-
figure the control structure of the framework by editing
the configuration file. To realize the requirements specifi-
cation correctly, the actions in the requirements specifica-
tion have to be executed appropriately according to situ-
ations. In Fig.2, for instance, application-specific actions
(save data and return message) are implemented by overrid-
ing the hook method. In addition, the ActionImpll class
is associated with registration requests by the configuration
file. As just described, frameworks become complete soft-
ware by implementing the application-specific actions and
configuring control structure.

This example indicates below two points have to be
considered for identifying the framework usages.

e Relations between the actions of requirements specifi-
cation and the hot spots of frameworks.
o Configurations of frameworks in which the actions are

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

template(request){
Action a = getAction(request);
return a.hook();

}
framework

requirements specification [ Acion | | coreClass |

Usecasel ‘ hook() H template()
basic:

1.request registration of data
2.save data

3.show success message

‘ Actionimpl1 I [ Acﬁor;lmplz ‘

[ hook() N hook0 |

String hook(){
save(data);
return “success”

# configuration file
registration: Actionimpl1

customize

control structure /

implement application-specific actions

Fig.2  Usage of frameworks.

duplicatgqv_,,, '''''''''''''''''''''''''''''''''''''''''''''''

[x=:0]a

framework model

Fig.3  Merge and duplication of branch conditions.

preformed correctly according to situations.

In the framework-based software development, devel-
opers have to identify such framework usages. However,
finding the usages is not easy due to complexity of the
frameworks. Therefore, we consider automated support is
needed so that the developers can find the appropriate rela-
tions of actions and the configurations efficiently.

2.2 TIssues in Achieving Automated Support

The actions of requirements specifications have to be related
to ones of framework with ensuring sequential equivalence.
To this end, we have proposed a technique based on pro-
cess algebra[1]. In our previous work, behavior of require-
ments specifications and frameworks are model in Labeled
Transition Systems (LTSs) and the LTSs are related based
on observational equivalence [2].

On the other hand, configurations of frameworks also
have to be identified so that the actions are performed in ap-
propriate situations. However, the situations are not consid-
ered in our previous work, and therefore, the configurations
of frameworks could not be identified. In addition, inappro-
priate relations of actions (e.g. Fig. 1) could be suggested to
users.

To deal with this issue on situations, branch conditions
have to be argued. The branch conditions are evaluated as
Boolean values depending on situations. The values of the
branch conditions define the situations where each action is
performed. Therefore, the branch conditions of frameworks
have to be customized to suit the requirements specification.

Figure 3 illustrates an appropriate relation of branch



ZENMYO et al.: DERIVING FRAMEWORK USAGES BASED ON BEHAVIORAL MODELS

requirements
specification model

Fig.4  Another possible relation in case the number of choices is cus-
tomizable.

conditions. The requirements specification model specifies
that two actions “a” and “b” have to be performed when x
is 0 and 1 respectively. The framework model can perform
these actions after the transition from “f1” to “f2” has oc-
curred. Therefore, the branch conditions [x == 0] (from rl
to 12) and [x == 1] (from r1 to r3) in the requirements speci-
fication model are merged into [x == Ovx == 1] and related
to the condition [P] of the transition from “f1” to “f2” in
the framework model. Furthermore, the branch condition
[x == 0] is duplicated in [Q] in the framework model in
addition to [P]. Such mergence and duplication have to be
taken into account in identification of framework configura-
tions.

The duplication could change the appearance order of
branch conditions, and therefore, the process algebraic ap-
proaches based on the appearance order cannot deal with the
branch conditions. For instance, [x == 0] is evaluated twice
in the framework model shown in Fig. 3. By contrast, it ap-
pears once in the requirements specification model in Fig. 3.
To cope with these issues, a distinctive technique is needed
to find the appropriate configurations of frameworks.

Furthermore, the number of choices may be customiz-
able in addition to the branch conditions. For instance, web
applications frameworks (e.g. Struts [3]) can output a variety
of web pages (choices) according to user’s input. Making re-
lations between requirements specifications and frameworks
becomes more complicated due to such kind of branches.
For instance, as shown in Fig. 4, another relation is possible
in case that the number of choices of the branch at node f1
is customizable. In Fig. 4, there are two choices at the f1 (to
2 and to f2”) and the branch conditions of the requirements
specification [x == 0] and [x == 1] can be related [P] and
[P’], respectively.

3. Proposed Support for Framework-Based Software
Development

3.1 Goal

Figure 5 shows the goal of our projects. We aim to realize
a tool which takes a framework model and a requirements
specification model as inputs and derives framework usages
for implementing the input requirements specification. The
frameworks are modeled by framework developers. On the
other hand, the requirements specifications are modeled by

735

Is .
i show vocabularies used

Framework
User =
User .-

@)

Requirement Model

-
Model 7
' Framework

Developer
(3) Relating Models

J@)

Fig.5 The goal of the project.

Framework Usage
(in skeleton code,
configuration file)

Indefinite FW Model

[=P(X)]re @

Req. Spec. Model
[x==1]res
®
req
O30 sy
b4

__ [x==0]tau

(POO] , Bx==0]

: req

PeoIES @Eé: e

(2) Transform an indefinite

model to a definte model (1) Derive a consistent truth

assignment based on SAT

Definite FW Model PO | True
[x==1 ]re@ P(1) | False
req <

(3) Relating Actions
(by composition
based on
shared actions)

G e
[x==0]tau res

Fig.6  Overview of the approach.

framework users.
The development using the tool is performed as fol-
lows.

1. Framework developers describe the model of the
framework and register the model to the repository in-
cluded in the tool.

2. Framework users describe requirements specification
models. In this phase, the tool shows a vocabulary used
in the framework models to the users for establishing
the correspondence on atomic actions.

3. The tool relates the input requirements specification
model to the registered framework models.

4. The usages of the frameworks can be identified based
on the relations. The tool output the usages in form of
skeleton codes for instance.

We have developed a prototype [1] which targets re-
quirements specifications without branches. This paper
presents an extension of the function relating requirements
specifications to frameworks (step 3) for dealing with re-
quirements specification including branches.

3.2 Approach
Figure 6 shows the overview of the proposed technique.

Frameworks and requirements specifications are modeled
based on LTSs where the branch conditions are attached as



736

predicates. The input framework model is called an indefi-
nite framework model since the truth assignments of branch
conditions are not defined and may have branches where the
number of choices can be customizable.

The indefinite framework model is transformed into
a definite framework model based on consistency of the
branch conditions. The truth assignments and the control
structure of the definite model are derived by finding a so-
lution of a satisfiability problem (SAT) on branch condi-
tions. If the solution can be found, we can obtain the definite
model which has truth assignments consistent with require-
ments specification.

In the next step, the actions of the requirements speci-
fication model are related to ones of the definite framework
model based on equivalence of action sequence. The actions
are related based on observational equivalence as well as our
previous work. In this paper, we use composition based on
shared actions [4] to this end. By the composition based
on shared actions, the definite framework model and the re-
quirements model can compose a model which represents
the relations, and then, the usages can be identified based on
the composed model.

3.2.1 Deriving Truth Assignments of Branch Conditions

The derivations of truth assignments for branch conditions
are regarded as finding a solution of SAT by assuming rela-
tions between termination states of a requirements specifi-
cation model and a framework model.

In this paper, we use flows of processing from user’s in-
put to system’s output as a unit of requirements. The termi-
nation states of requirements specification models are states
after the output events occur. For instances, the require-
ments specification model shown in Fig. 6 has two termina-
tion states (2 and 4) where “req” and “res” are an input and
an output event respectively. Similarly, termination states of
a framework model are states when the framework finishes
its processing (e.g. ¢ and e in Fig. 6).

Branch conditions that exist on a path to a termination
state have to be true to reach the termination state. For in-
stance, to reach the state 4 of the requirements specification
model shown in Fig. 6, the branch condition [x==0] has to
be true. In other words, a termination state represents a com-
bination of branch conditions which exist on a path to the
termination state.

In order for the relation between the termination states
of the requirements specification model and ones of the
framework model to be valid, a consistent truth assignment
has to exist. All of the branch conditions on the paths in-
coming to the termination states have to be true under the
consistent truth assignment. By assuming the relations be-
tween the termination states, such truth assignment can be
regarded as a solution of the SAT on the branch conditions of
which relations are assumed. If the solution exists, a consis-
tent truth assignment for branch conditions can be derived
as the solution. Otherwise, the assumed relations between
the termination states are not appropriate.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

In case that the number of choices is customizable,
branches with such kind of choices are transformed to the
branches with a fixed number of choices based on a given
requirements specification. In the indefinite framework
model, branches where the number of choices is customiz-
able are modeled distinctly by attaching a type switch. The
switch typed branch is transformed to a branch with a fi-
nite number of choices based on the given requirements
specifications. The requirements specification includes a fi-
nite number of action sequences. Therefore, by using the
given requirements specification, the number of choices of
the switch typed branch can be bounded.

3.2.2 Relating Actions and Checking Sequential Equiva-
lence

In this paper, a model representing the relations between re-
quirements specifications and framework is composed of the
requirements specification model and the framework model
based on shared actions [4]. Although an algorithm for relat-
ing the actions has been developed in our previous work, we
employ the composition based on shared actions as a gen-
eralized method to deal with behavioral models including
branches. Once the composed model is obtained, an exis-
tence of deadlock states is checked for ensuring the com-
posed model represents appropriate relations. An existence
of deadlock states which have no outgoing transitions in the
composed model means that the sequences of the shared ac-
tions differ between the requirements specification model
and the definite framework model.

4. Deriving Framework Usages

This section describes the proposed technique with an il-
lustrative example. In the illustrative example, the require-
ment specification (use case description) shown in Fig. 7 is
implemented with Apache Struts framework [3]. Figure 7
represents New-order use case in JPetStore [5] which is an
on-line shopping web application.

Use case: New Order

Basic Sequence:

1 A user inputs order information.

2 The system checks whether all of mandatory information is in-
put.

3 The system checks whether shipping address is requested to
change.

4 If change of the shipping address is not requested, show the or-
der confirmation page.

Alternative Sequences:

3a If the mandatory information isn’t input, the system shows the
order input page again.

4a If change of the shipping address is requested, show the ad-
dress input page.

Fig.7  New-order use case description.



ZENMYO et al.: DERIVING FRAMEWORK USAGES BASED ON BEHAVIORAL MODELS

[isvalid(data)] [-changeAddr(data)]

req(op,data,state) validatelnput — .pookaddr res

termination state
[-isValid(data)]

termination state

termination state
[isValid(data) [isValid(data)

i A changeAddr(data)] | | A -changeAddr(data)] '

(alternaﬁveseq.4a)ﬂ,§ § (basic seq.) .:*1

‘ SYS_ACTIONS= J

{validatelnput, checkAddr)

Fig.8 A model of a use case description.

4.1 Modeling Behavior
4.1.1 Modeling Requirements Specifications

The requirements specification shown in Fig.7 has two al-
ternative sequences, which are for invalid input (3a) and
for changing shipping address (4a). There are two branch
conditions, which are whether all of mandatory information
is input and whether change of the shipping address is re-
quested. These branch conditions relate to alternative se-
quences 3a and 4a, respectively.

Figure 8 shows a LTS which models the New-order
use case. Branch conditions are modeled as predicates. In
Fig. 8, “req” and “res” represent in an input and an output
event respectively. We assume the system receives three
values with input events (req). They are requested opera-
tion (op), input data (data) and a state identifier (state). The
requested operations are instructions given by users. For in-
stance, URLSs correspond to the requested operations in web
applications. The input data is sent to the system together
with the input events. The state identifier indicates the state
of the system when the input event occurs.

In the example shown in Fig. 8, the truth assignments
of the branch conditions are determined by user’s input
(e.g. whether all of the mandatory information is included).
Therefore, the branch conditions are modeled as predicates
which have an argument corresponding to input data (data).

The New-order use case has below three termination
states.

e The order input page is displayed in case of invalid in-
puts (R5 in case of —isValid(data)).

e The address input page is displayed in case of valid
inputs with a change address request (R6 in case of
isValid(data) A changeAddr(data)).

e The confirmation page is displayed in case of valid in-
puts without a change address request (R7 in case of
isValid(data) A ~changeAddr(data)).

Additionally, actions performed by the system are explic-
itly declared in the model. In the model shown in Fig. 8§,
“SYS_ACTIONS” declares that two actions (validateInput and
checkAddr) are performed by the system.

4.1.2 Modeling Frameworks

Struts is one of the most popular frameworks for web appli-

737
validatelnput .
req [validate(data)]
op,data,state) invoke execute é
switch:execute(data)]
[-validate(data)] res
res

" férmination state ‘e[""l'_zaﬁz 5:“';3

_validate(dat: Y validate(data
: (c[or‘\,f:glu:ez(w?tra\)ln Lo N Aswitch:execute(data)]
i input attribute) ,_)j (conﬂguerleet:n V::ths)forward i
.......................... 7

Fig.9 A framework model.

cations. Although Struts provides a variety of hook meth-
ods, for brevity, this paper focuses on two of them, which are
ActionForm.validate method for input validation and
Action.execute method for application specific process-
ing.

An indefinite model of Struts is shown in Fig.9. In
Fig.9, “req” and “res” represent in an input and an output
event respectively. The branch conditions are modeled with
predicates and their truth assignments are not defined. The
method executions are modeled as loop actions based on the
approach used in our previous work[1]. By modeling as
loop actions, hook methods in which developers can imple-
ment any code and method implementing functions which
are not mandatory in requirements specifications can be ne-
glected. A hook method in which developers can implement
any code (the execute method) is modeled as a transition
labeled “+” [1]. The model expresses following framework
behavior.

1. Struts receives an input from users (F1 “ F2).

Then, depending on configurations, input validation

is processed by executing the validate method
validateInput

(F2 - F2)

2. If the validate method returns false, the Struts
sends a web page to retry the input (F2 N F4),
which is configured with input attribute of a configu-

ration file. Otherwise, the execute method is invoked
invoke_execute

(F2 - F3) and application specific process-
ing is executed (F'3 5 F3).

3. A next web page is sent to the user (F3 =
F5) according to a result of the execute method
([switch : execute(data)]). The next pages are config-
ured with forward elements of the configuration file.

The number of choices from the state F3 is not defined.
Therefore, related branch conditions cannot be defined com-
pletely. In the model shown in Fig. 9, this kind of branches
is modeled with a switch type. The switch typed branch con-
ditions are tentative expressions and are to be transformed to
branch conditions without the switch. The transformation is
explained later.

There are two termination states in the model shown
in Fig. 9, which are F4 and FS5. The state F'5 relates to the
switch typed branch condition, therefore, the state is ten-
tative and is to be transformed as well as the switch typed
branch condition.



738

validatelnput P

req [validate(data)
op,data,state) i N
@ 2 invoke_execut

switch:execute(data)]
[-validate(data)] ;

res
res @ X /
. Number of sequences = 3

[execute3(data)]\\l

validatelnput

Fig.10  Transforming a switch typed branch condition.

4.2 Deriving Truth Assignments of Branch Conditions
Based on SAT

4.2.1 Transforming Tentative Expressions

The indefinite framework model can include tentative ex-
pressions, the switch typed branch conditions and the re-
lated states. The tentative expressions are transformed to
regular expressions based on the given use case descriptions.
For instance, the requirements specification shown in Fig.7
has three action sequences (one basic sequence and two al-
ternatives). Therefore, each branch can have at most three
choices in the indefinite framework model. By using the
maximum number of choices, the framework model shown
in Fig. 9 can be transformed as shown in Fig. 10.

In Fig.10, the switch typed branch condition
[switch : execute(data)] and the final state F5 are trans-
formed into three untyped conditions ([executel(data)],
[execute2(data)], [execute3(data)]) and three final states
(F5-1, F5-2, F5-3), respectively. The transformed three
conditions are exclusive here. For instance, the branch
condition [executel(data)] is actually [executel(data) A
—execute2(data) A —execute3(data)]. For simplification, we
omit expressions of the branch conditions in Fig. 10.

4.2.2  SAT for Deriving the Truth Assignments of Branch
Conditions

For deriving the branch conditions consistent with the re-
quirements specifications, subsets of the branch condi-
tions which should be true simultaneously have to be
identified. ~ For instance, the [-isValid(data)] and the
[-changeAddr(data)] in Fig.8 are not required to be true
simultaneously.

The termination states are useful to identify the sub-
sets since the termination states represent the combinations
of branch conditions which exist on a path to the termi-
nation state. The branch conditions on the path should
be true simultaneously. For instance, [isValid(data) A
changeAddr(data)] should be true to reach a final state R6 in
Fig. 8. If the branch conditions represented by a termination

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

Table 1  Assumed relation (1).

Framework F4 | F5-1 | F5-2 F5-3
Requirements Specification | R5 R6 R7 (N/A)

Table 2 A truth assignment in the requirements specification model.

form do d d> d3
isValid True | True | False | False
changeAddr | True | False | True | False

state of the requirements specification model and ones rep-
resented by a termination state of the framework model can
be true simultaneously, the termination state of the require-
ments specifications model can be related to the termination
state of the framework model consistently.

Therefore, by assuming relations between the termina-
tion states, the consistency can be examined by checking
whether there exists a truth assignment under which all the
branch conditions represented by the termination states are
true.

Assumptions of relations between the termination
states correspond to configuration of control structures of
the framework. Table 1 shows the assumption which corre-
sponds to a configuration in which the order input page is
set to the input attribute and the other pages (confirmation
and address input) are set to the forward elements.

In Table 1, the termination state F4 of the frame-
work model relates to the final state RS of the require-
ments specification model. F4 and RS represent conditions
[—isValid(data)] and [—validate(data)], respectively. There-
fore, a following formula has to be true for consistency of
the relation between F4 and RS.

VYdata.(—isValid(data) < —validate(data))

The requirements specification shown in Fig. 8 includes two
predicate (isValid(data) and changeAddr(data)), therefore,
the truth assignments of these predicates can be defined as
shown in Table 2 where dy,d;,d»,d; are sample of input
data. Based on this definition, the above constraint can be
interpreted as a following formula.

validate(dy) Avalidate(d,) A—validate(d,) A—validate(ds)

Another two constraints have to be satisfied for con-
sistency of the relation between F5-1 (F5-2) and R6 (R7).
By interpreting these constraints in the same way, checking
the three constraints can be regarded as SAT for a following
formula,

validate(dy) Avalidate(d,) A—validate(d,) A—wvalidate(ds)
A(validate(dy) N E1(dy)) A =(validate(d;) A E1(d,))
A=(validate(d,) N E1(dy)) A —(validate(ds) N E1(d3))
A=(validate(dy) N\ E2(dy)) A (validate(d,) N E2(d}))
A=(validate(dy) N E2(dy)) A =(validate(ds) A E2(d3))

where

EI1(d) is executel(d) N\ —execute2(d) N —execute3(d)

E2(d) is —executel(d) N execute2(d) N —execute3(d).

This SAT has a solution and we can derive the truth assign-
ment shown in Table 3.



ZENMYO et al.: DERIVING FRAMEWORK USAGES BASED ON BEHAVIORAL MODELS

Table 3 A derived truth assignment.

form do dy dy ds
validate True True | False | False
executel True | False | False | False
execute2 | False | True | False | False
execute3 | False | False | False | False

range DATA=0..3

set OUTPUT={input, regaddr, confirm}

set SYS_TASK={validateInput, checkAddr}
UC=(reqg[d:DATA]->validateInput->ISVALID[d]),
ISVALID[d:DATA]=

(when (d==0| |d==1) checkAddr->CHECKADDR[d]
|when (d==2] |d==3) res.input->UC),
CHECKADDR[d:DATA]=

(when (d==0) res.regaddr->UC

|when (d==1) res.confirm->UC) .

Fig.11  The requirements specification model in FSP.

range DATA
set OUTPUT
set SYS_TASK
STRUTS= (req[d:DATA]->VALIDATE [d]),
VALIDATE [d:DATA]=
(validateInput->VALIDATE [d]
| when(!validate) res.OUTPUT->STRUTS
| when(validate) invoke_execute->EXECUTE[d]),
EXECUTE [d:DATA]
=(SYS_TASK ->EXECUTE[d]
|when (switch:execute) res.OUTPUT->STRUTS)

\ {invoke_execute}.

Fig.12  The framework model in FSP like expression.

4.3 Relating Actions and Checking Sequential Equiva-
lence

To perform the composition based on shared actions, we
have used the LTSA tool [4]. The LTSA uses LTSs described
in FSP (Finite State Processes) [4] as inputs. The FSP is
simple process algebra for describing LTSs.

Figure 11 shows a FSP expression of the require-
ments specification model shown in Fig.8%. The first
three lines are variables and sets declarations. The “range
DATA=0. .3” expresses a domain of the argument of predi-
cates (data). The numbers 0, 1, 2 and 3 represent dy, d,d>»
and ds, respectively. The remaining lines define the behav-
ior. For example, the forth line expresses that the model
transits to the state ISVALID[d] from the state UC if two
actions (req(d), validateInput) is performed. The
branch conditions are expressed as when clauses. Addition-
ally, the initial state (R1 in Fig. 8) and the final states (RS,
R6 and R7 in Fig. 8) are merged (to “UC” in Fig. 11 ) in the
expression for simplifying analysis by the LTSA.

On the other hand, the framework model shown in
Fig.9 is expressed as Fig. 12 in FSP like expression ", The
indefinite framework model cannot be completely modeled

739

range DATA=0..3

set OUTPUT={input, regaddr, confirm}

set SYS_TASK={validateInput, checkAddr}
STRUTS=(req[d:DATA]->VALIDATE[d]),

VALIDATE [d:DATA]=(validateInput->VALIDATE [d]
|when (d==2| |d==3) res.OUTPUT->STRUTS

|when (d==0| |d==1) invoke_execute->EXECUTE[d]),
EXECUTE [d:DATA]=(SYS_TASK ->EXECUTE [d]

|when (d==0) res.OUTPUT->STRUTS

|when (d==1) res.OUTPUT->STRUTS)

\ {invoke_execute}.

Fig.13 A transformed framework model.

req([0[1])

invoke_execute

invoke_execute

validatelpput

[data==0]res

[data==1]res

Fig.14 A composed model.

in FSP since it includes a switch-typed branch conditions
and the truth assignments of the branch conditions are not
given. However, by using the truth assignment derived
in Sect. 4.2, the indefinite framework model can be trans-
formed to a definite framework model. The indefinite frame-
work model is transformed as follows.

1. Extract switch typed branch conditions and related
states.

2. Replace the branch conditions (when clauses) based on
the derived truth assignments.

3. Substitute the “range” and the “set” definition of the
requirements specification model for one of the frame-
work model.

For instance, Fig.13 shows a definite framework model
based on the truth assignments shown in Table 3 (derived
from the assumption shown in Table 1). In Fig. 13, the when
clauses are replaced by concrete value based on Table 3.

The model which represents relations between the re-
quirements specification and the framework can be created
by the composition based on shared actions [4]. Figure 14
17 shows the composed models of the requirements specifi-
cation model and the framework model.

There is no dead lock state which has no outgoing tran-

TIn this section, we omit the arguments for operation and state
for brevity.
1\ in Fig. 12 indicates that invoke_execute (a method in-
vocation) is an inner action
TTThe model shown in Fig. 14 has a different view from the LTS
shown by LTSA for explanation purpose. Actually, the termination
states are merged to the initial state to check equivalence of actions
sequences by safety property check of LTSA.



740

sitions except the termination states in Fig. 14. This means
that the behavior described in the requirements specification
model can be simulated by the framework model shown in
Fig. 13.

4.4 Identifying Framework Usages

The composed model shown in Fig. 14 includes a non-
deterministic choice (state (F2, R2) may transit state (F3,
R3) via state (F2, R3) or state (F3, R2)). This non-
deterministic choice indicates multiple relations between
validateInput of the requirements specification model
and one of the framework model. Such non-deterministic
choices appear due to there are two transitions in the
definite framework model which can be related to the

validateInput of the requirements specification model
validateInput

(F2 S F2 and F3 5 F3 in Fig. 10).

In our framework models, the actions performed by
the framework are modeled as loop action. Only the in-
ner action can transit states except input and output actions
and can cause the multiple relations between the actions.
Based on this property, we can distinguish these relations
based on connected components composed of inner actions
(invoke_execute in Fig. 14) and the action of which rela-
tions are distinguished. For instance, a sub-graph composed
of state (F2, R2), (F3, R3), (F2, R3), (F3, R2) and transition
validateInput and invoke_execute is a connected com-
ponent. The connected components include two paths from
source state (F2, R2) to sink state (F3, R3), and therefore,
we can identify two relations between actions labeled with
validateInput. These relations indicate that two alterna-
tives to implement validateInput (use validate method
or override execute method).

On the other hand, relations between branch conditions
also have to be identified. We can identify the relations by
comparing truth assignments in the requirements specifica-
tion model and ones of the framework model. For instance,
by comparing the truth assignments shown in Table 2 and
Table 3, we can identify that the isValid corresponds to
the validate and the changeAddr relates to the executel
and the execute2.

The usages obtained by the proposed technique can be
summarized as follows.

e Relations between actions
These indicate the hot spots with which the developer
can implement actions of the requirements specifica-
tions.

e Relations between branch conditions
These indicate the situations where the branch condi-
tions of the framework have to be true.

4.5 Considerations for Efficient Derivation
4.5.1 Avoiding Redundant Usages

In case assumptions between termination states are exhaus-

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

[executel(data)]

wv

Assumption (1)

execute2(data
[validate(data

o
(2]

[—validate(data)]

[executel(data)]

o)

Assumption (2)
[validate(data

[—validate(data)]

[executel(data)]

Assumption (3)
[validate(data

P

Fig.15  Assumptions between termination states.

[—validate(data)]

tively checked, redundant usages can be derived. Figure 15
illustrates such redundant assumptions in the illustrative ex-
ample. In framework model shown in Fig 10, the states F5-
1, F5-2 and F5-3 are originated from same state F5. There-
fore, the assumption (1) and (2) in Fig. 15 are essentially
same and deriving usages form both of these assumptions is
redundant.

To avoid such redundant usages, the framework model
to which terminations states of a requirements specification
are attached can be regarded as a mixture of a sorted tree and
an unsorted tree and the isomorphism is checked. By check-
ing the isomorphism, the redundant assumptions (e.g. the
assumption (2) when usages have been derived based on the
assumption (1)) can be detected. By omitting such redun-
dant assumptions, we can avoid to derive redundant usages.
The tree is treated as the mixture to distinguish assumption
(3) from the other assumptions in Fig. 15. The assumption
(3) differs from the other assumptions since the termina-
tion state of the requirement specification model attached
to the state F4 is different from the others. In the isomorphic
checking of the mixture tree, edges relating to predicates
originated from branch conditions associated with choices
of which the number is customizable (e.g. (F3, F5-1)) are
treated as in an unsorted tree and other edges (e.g. (F2, F3))
are treated as in a sorted tree.

The isomorphism check is performed by encoding the
tree [6] and the codes of checked assumptions are recorded.
Assumptions of which code has already been recorded are
omitted, and therefore, the redundant usages are not derived.
In addition, by omitting assumptions, computation costs can
be reduced.

4.5.2 Limiting Branch Size

In case of multiple operations in requirements specifica-
tions, the number of action sequences becomes huge, and



ZENMYO et al.: DERIVING FRAMEWORK USAGES BASED ON BEHAVIORAL MODELS

then, switch-typed branch condition could be transformed
to a huge number of choices. To alleviate such effects, the
proposed technique adopt smaller one from the below alter-
natives as the size of maximum branch conditions used to
transform the switch-typed branch conditions.

e The number of action sequences in the requirements
specifications

e The domain size of argument variables of the switch-
typed branch condition. In case of multiple arguments,
the product of domain sizes is used.

4.5.3 Constraints on Framework Models

Frameworks configuration often have properties which have
to be assured for customizations being appropriate. For in-
stance, if the predicate —wvalidate(data) in Fig.9 is always
true, the framework becomes useless since all the input is
processed as invalid input.

To cope with this issue, framework-specific constraints
on branch condition can be attached to framework models.
The constraints are additional conditions in the truth assign-
ments derivations based on SAT. For instance, the constraint
that the —walidate(data) is not a tautology can be attached
to the framework model to avoid above-mentioned situation.
By attaching the constraint, for instance, we can avoid deriv-
ing truth assignments where Ydata.—validate(data) is true.

5. Evaluation
5.1 Setup

We have applied our approach for identifying the usages of
Ruby on Rails [7] with act_as_authenticated plug-in to im-
plement a requirements specification shown in Fig. 16. The
arguments value used in Fig. 16 are explained in Table 4.
The requirements specification is composed of two typical
use cases which are common in e-commerce system like
JPetStore [S] and osCommerce [8]. One is for login where
users request authentication with id and password. The other
is for proceeding checkout where only the authenticated user
can proceed.

We have implemented a prototype which generates def-
inite framework models in FSP [4]. To perform composition

-Login [data=0]

req(0,[0,1],[0,1]) res.loginSuccess

saveAuth

checkPassword

[data=1]
res.loginFail
+Proceed to checkout

[state=1]

req(1,2,[0.1]) createOrderinfo  res.orderForm

g ¥ W ®

[state=0] @

res.reqlogin

Fig.16  Requirements specification.

741

based on shared actions, the LTSA tool [4] has been used
where the generated FSPs and a FSP describing the LTSs
shown in Fig. 16 are input.

The framework model is summarized below although
the detail cannot be described in this paper due to space lim-
itation.

e The model includes below three types of Action Con-
trollers. The controller which processes requests is se-
lected based on the value of operation.

An authentication controller provides functionali-
ties for authentication and user registration. This
controller cannot be customized any more.

Secure controllers check the users are authenticated
by the authentication controller before proceed-
ing to request processing. We can define any size
of the secure controllers.

Normal controllers are standard controllers in Ruby
on Rails (ones which do not check the authentica-
tion state). We can define any size of the normal
controllers.

e The controller is normalized to avoid mixture of
switch-typed branch conditions for avoiding redun-
dancy (see Sect.4.5.1) as shown Fig. 17.

e In each secure and normal controller, any size of ac-
tion methods can be implemented, where developers
can implement application-specific codes. The action
method which processes requests is selected based on
the value of operation.

e Each action method in secure and normal controllers
can make a various types of response according to input
data.

e The model has 19 predicates where 6 are switch typed.

In addition, three types of constraints on predicates are
attached to the framework model to prevent derivations of

Table 4  Descriptions of arguments in Fig. 16.
Operation (first argument)
login request

1 proceed checkout request

Data (second argument)
0 a correct pair of id and password
1 | anincorrect pair of id and password
2 content of cart

State (third argument)

the user is not authenticated
1 the user is authenticated

[a uth_ctlr(op)]/>@

[switch:secure_ctlr(op)]

[auth_ctlr(op)]/@

[switch:

secure_ctlr(op)] |:>
[switch: \>®

normal_ctlr(op)]

[n_ctlr(op)]
original model normalized model

Fig.17  Normalizing the framework model.



742
Table 5  Derived usages. (applied to each use case separately)
Login

No. Usage

Ly use the authentication controller

Ly customize a normal controller

Proceed Checkout

No. Usage

Py customize a secure controller

Py customize a normal controller

Table 6  Derivation statistics. (applied to each use case separately)

all relations between termination states | 90
relations passed the redundancy check | 58
definite framework models 5

inappropriate usages.

e constraint attached to the predicate which evaluates
users authentication states
This constraint declares that at least one state must
treated as an unauthenticated state. If all states are
treated as authenticated, the authentication function is
meaningless. This constraint is to avoid the derivation
of such usages.

e constraint attached to the predicate which evaluates
correctness of pairs of id and password
This constraint declares that at least one pair must
make this predicate false for avoiding the authentica-
tion functionality becomes useless. If all pairs are
treated as valid, the login function is meaningless. This
constraint is to avoid the derivation of such usages.

o Constraints attached to the predicates associating
with the action methods, login and registration
functionalities
These constraints declare that at most one value of op-
eration make this predicate true for assuring one-to-
one relations between operations and action methods.
These constraint is to be compliant with the framework
specification.

5.2 Results

Table 5 and Table 6 show derived usages and the statistics
of the derivation when the proposed technique is applied to
each use case separately’. The derived usages indicate that
secure controllers and the authentication controller cannot
be used for implementing the login and the proceed check-
out use case, respectively. For the login use case, the secure
controller is not appropriate since the state of the user is not
checked in the login use case. On the other hand, the au-
thentication controller cannot be customized any more and
cannot perform functionalities except login and user regis-
tration. Therefore, the derived usage shown in Table 5 can
be considered appropriate.

Table 7 and Table 8 show derived usages and the statis-
tics of the derivation when the derivation of both use cases
is performed simultaneously. Table 7 indicates three ap-

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

Table 7  Derived usages. (applied to both use cases simultaneously)
No. Usage
Ao the auth_ctr for login and a sec_ctr for proceed_co
Al the auth_ctr for login and a nor_ctr for proceed_co
Ar a nor_ctr for login and a sec_ctr for proceed_co
Az a nor_ctr (two methods for login and for proceed_co)
Agq two nor_ctrs for login and for proceed_co

(auth_ctr, sec_ctr and nor_ctr are abbreviated forms of the authentication
controller, the secure controller and the normal controller respectively.
proceed_co is an abbreviated form of the proceed checkout (use case).)

Table 8  Derivation statistics. (applied to both use cases simultaneously)
all relations between termination states | 1974024
relations passed the redundancy check 4908
definite framework models 22

propriate usages (Ag, A3, A4) can be derived with two false
positives(Aj, A).

In case the authentication controller is used to achieve
the login use case, the secure controller should be used for
the proceed checkout use case. The normal controller is not
appropriate in such case since the normal controller does
not provide a function for checking whether users are au-
thenticated by the authentication controller. The usage A; is
inappropriate since it does not obey this rule. The usage A,
is also inappropriate since the authentication function is not
achieved consistently.

The appropriate usages have been identified in case that
the proposed technique has been applied to each use case
separately. Therefore, we consider the proposed technique
is meaningful as a starting point for understanding frame-
work usages. Framework users with insufficient knowledge
can identify usages for implementing simple requirements
by the proposed technique.

The result shown in Table 7 has a variation on the use
of the normal controllers (A3 uses two methods in a normal
controller and A4 uses two normal controllers). Although
the inappropriate usages are included, the result shown in
Table 7 indicates a different merit because the variation can-
not be identified by simply combining the results of the sep-
arate applications (Table 5).

5.3 Discussion

The difference between the separate applications and the si-
multaneous application is whether relations between usages
for each use cases are considered. The proposed technique
transforms framework models based on the size of require-
ments specifications (described in Sects.4.2.1 and 4.5.2).
The relations between the termination states of the trans-
formed framework model and the termination states of the
requirements specification model are checked exhaustively.
In the simultaneous application, the framework model is
transformed into the model including two normal controllers
and two secure controllers since the whole requirements
specification contains two types of operation. The usages

"The statistics are same for both use cases.



ZENMYO et al.: DERIVING FRAMEWORK USAGES BASED ON BEHAVIORAL MODELS

derivation is performed taking the two normal controllers
into account, and therefore, the variation shown in Table 7
can be identified. On the other hand, the framework model
is transformed into the model which has one normal con-
troller and one secure controller in the separate applications
since each use case has only one type of operation. There-
fore, the results of the separate applications cannot indicate,
for instance, whether the normal controllers in L; and P are
the same or different.

The reason why the inappropriate usages have been de-
rived is that the dependency among the framework functions
is not considered. Information on the dependency (e.g. “In
case that the secure controllers are used, the authentication
controllers should be used.”) are needed to judge the appro-
priateness of the usages. Such dependency information is
just one perspective of frameworks design. We consider the
judgement of usages appropriateness is easier than identify-
ing frameworks usages from scratch since less information
is needed, and therefore, we believe the proposed technique
is meaningful even in the case of multiple use cases.

Although we consider the inappropriate usages derived
in this example can be detected easily, avoiding such inap-
propriate usages is an important future work. We are in-
vestigating the refinement of the proposed technique based
on the separate application approach. To avoid inappropri-
ate usages, we consider to separate the analysis of relations
among usages from the usage derivation for each use case.

Separating the usage derivation for each use case from
checking and identifying relation among the usages has ben-
efit for computation cost. The size of all possible relations
between termination states increases exponentially with the
number of terminations states of requirements specification
model. The time to take to generate definite framework
model increases in the same way. For instance, generat-
ing definite models has taken less than one second when
the prototype applied to each use case separately’. On the
other hand, it has taken about three and half minutes for
generating definite models when applied to both use cases
simultaneously. This indicates that the proposed technique
is not suit to batch processing of multiple use cases.

The other future work is evaluation of usages. For in-
stance, the usage Ay is preferred rather than A3 and A4 since
the authentication function can be reused with the usage Ay.
To this end, we have proposed some metrics [1]. Evaluating
effectiveness of these metrics in case of requirements spec-
ifications with branches and, if necessary, establishing new
metrics are important future works.

6. Related Work

To the best of our knowledge, the proposed technique is
a first attempt for relating requirements specifications to
frameworks with considering branch conditions. Recent
studies focus on support for maintenance of framework-
based software [9],[10]. These works aim to maintain the
framework-based software to adapt changes of the frame-
works, and the relation to requirements specification is not

743

considered. The other kind of framework-related study is on
generation of framework models [11],[12]. We considered
these work complementary to our work.

There are several researches on verification for soft-
ware reuse [13]-[15]. Additionally, the techniques to select
software components or architectures [16],[17] have been
proposed. However, these works are not sufficient for our
purpose because they did not consider the framework spe-
cific concepts such as the hot spots.

We consider applications to software product lines
(SPL) are a part of the future work. Variability is impor-
tant to implement a range of products of a product family.
Framework technology is a promising approach to achieve
the variability. In SPL community, there are various works
on the analysis of the variability among products and prod-
uct families [18]—[20]. On the other hand, we believe the
proposed technique can contribute to implement products of
a product family. By modeling behavior of the product fam-
ily with LTSs, the usages to implement each product can be
derived by the proposed technique.

7. Conclusion

This paper has proposed a technique to derive usages of
frameworks based on satisfiability problems (SAT) and pro-
cess algebra. The usages are derived based on consistency
of branch conditions and equivalence of action sequences.

In our approach, requirements specifications are mod-
eled based on Labeled Transition Systems (LTS). On the
other hand, frameworks are modeled in indefinite form
called indefinite framework models where branch condi-
tions and control structures are not defined completely. The
indefinite framework model can be transformed into a defi-
nite framework model by deriving truth assignments of the
branch conditions consistent with the given requirements
specification. The derivation is regarded as finding a solu-
tion of SAT on the branch conditions. If the definite frame-
work model can be obtained, a model which represents rela-
tions between the requirements specification and the frame-
work is created by composition based on shared actions.
The usages can be identified based on the composed model.

We have prototyped a tool which has been applied to
typical use cases in e-commerce systems to assess the pro-
posed technique. A variety of appropriate usages have been
derived by the proposed technique and some inappropriate
usages which can be distinguished with simple information
on dependency between framework functionalities also have
been derived. Although we consider the proposed technique
is effective since inappropriate usage can be easily distin-
guished, avoiding inappropriate usages is one of the future
work. The other future work includes evaluation of usages
and support from aspects other than behavior.

A laptop PC with a 2.16 GHz dual core processor has been
used.



744

References

(1]

(2]
[3]
(4]

[3]
(6]

(71
(8]
[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

T. Zenmyo, T. Kobayashi, and M. Saeki, “Supporting application
framework selection based on labeled transition systems,” IEICE
Trans. Inf. & Syst., vol.E89-D, no.4, pp.1378-1389, April 2006.

R. Milner, Communication and Concurrency, Prentice Hall, 1989.
“Apache struts.” http://struts.apache.org/

J. Magee and J. Kramer, Concurrency, State Models & Java Pro-
grams, Wiley, 1999.

“Jpetstore.” http://ibatis.apache.org/

A.V. Aho, J.E. Hopcroft, and J.D. Ullman, The Design and Analysis
of Computer Algorithms, Addison Wesley, 1974.

“Ruby on rails.” http://rubyonrails.org/
http://www.oscommerce.com/

B. Dagenais and M.P. Robillard, “Recommending adaptive changes
for framework evolution,” Proc. 30th International Conference on
Software Engineering (ICSE °08), pp.481-490, 2008.

T. Schafer, J. Jonas, and M. Mezini, “Mining framework usage
changes from instantiation code,” Proc. 30th International Confer-
ence on Software Engineering (ICSE ’08), pp.471-480, 2008.

M. Antkiewicz, T.T. Bartolomei, and K. Czarnecki, “Automatic ex-
traction of framework-specific models from framework-based appli-
cation code,” Proc. Twenty-Second IEEE/ACM International Con-
ference on Automated Software Engineering (ASE’ 07), pp.214—
223, 2007.

S. Thummalapenta and T. Xie, “Spotweb: Detecting framework
hotspots and coldspots via mining open source code on the web,”
Proc. 23rd IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE *08), pp.327-336, Sept. 2008.

A. Betin-Can and T. Bultan, “Verifiable concurrent programming us-
ing concurrency controllers,” Proc. 19th IEEE International Confer-
ence on Automated Software Engineering (ASE *04), pp.248-257,
2004.

C. Blundell, K. Fisler, S. Krishnamurthi, and P.V. Hentenryck, “Pa-
rameterized interfaces for open system verification of product lines,”
Proc. 19th IEEE International Conference on Automated Software
Engineering (ASE *04), pp.258-267, 2004.

S.P. Reiss, “Specifying and checking component usage,” Proc. Sixth
International Symposium on Automated Analysis-Driven Debug-
ging (AADEBUG °05), pp.13-22, 2005.

R. Kazman, M. Klein, M. Barbacci, T. Longstaff, H. Lipson, and
J. Carriere, “The architecture tradeoff analysis method,” Tech. Rep.
CMU/SEI-98-TR-008, Software Engineering Institute, Carnegie
Mellon University, 1998.

V. Sai, X. Franch, and N.A.M. Maiden, “Driving component selec-
tion through actor-oriented models and use cases,” Proc. 3rd Inter-
national Conference on COTS-Based Software Systems (ICCBSS’
04), pp.63-73, 2004.

D.S. Batory, “Feature models, grammars, and propositional formu-
las,” Proc. 9th International Conference on Software Product Lines
(SPLC’ 05), pp.7-20, 2005.

A. Metzger, K. Pohl, P. Heymans, P.Y. Schobbens, and G. Saval,
“Disambiguating the documentation of variability in software prod-
uct lines: A separation of concerns, formalization and automated
analysis,” Proc. 15th International Requirements Engineering Con-
ference (RE’ 07), pp.243-253, 2007.

D. Fischbein, S. Uchitel, and V. Braberman, “A foundation for be-
havioural conformance in software product line architectures,” Proc.
ISSTA 2006 Workshop on Role of Software Architecture for Testing
and Analysis (ROSATEA’ 06), pp.39-48, 2006.

IEICE TRANS. INF. & SYST., VOL.E93-D, NO.4 APRIL 2010

x\\}

IPSJ, JSSST, DBSJ, and ACM.

\

&
a%m

Teruyoshi Zenmyo received a BS and an
MS in computer science from Tokyo Institute of
Technology in 2002 and 2004 respectively. In
2004, he joined Corporate Research and Devel-
opment Center of Toshiba Corporation. He is
currently a Ph. D student in computer science
at Tokyo Institute of Technology. His research
interests include software design method, soft-
ware development automation and distributed
systems. He is a member of IPSJ.

Takashi Kobayashi received B.Eng.,
M.Eng., and Dr.Eng. degrees in computer sci-
ence from Tokyo Institute of Technology in
1997, 1999, and 2004, respectively. He is cur-
rently an associate professor of computer sci-
ence at Nagoya University. His research in-
terests include software patterns and architec-
ture, software development method, software
configuration management, Web-services com-
positions, workflow, multimedia information re-
trieval, and data mining. He is a member of

Motoshi Saeki received a B.Eng. de-
gree in electrical and electronic engineering, and
M.Eng. and Dr.Eng. degrees in computer sci-
ence from Tokyo Institute of Technology, in
1978, 1980, and 1983, respectively. He is cur-
rently a professor of computer science at Tokyo
Institute of Technology. His research interests
include requirements engineering, software de-
sign methods, software process modeling, and
computer supported cooperative work (CSCW).



