
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010
811

PAPER

Implementations of FFT and STBD for MIMO-OFDM on a
Reconfigurable Baseband Platform

Shuang ZHAO†, Student Member, Wenqing LU†, Xiaofang ZHOU†a), Dian ZHOU†,
and Gerald E. SOBELMAN††, Nonmembers

SUMMARY MIMO-OFDM systems aim to improve transmission
quality and/or throughput but require significant signal processing capa-
bility and flexibility at reasonable cost. This paper proposes a reconfig-
urable architecture and associated algorithm optimizations for these types
of systems based on the IEEE 802.11n and IEEE 802.16e standards. In par-
ticular, we describe the implementation of two key computations onto this
architecture, namely Fast Fourier Transform (FFT) and Space-Time Block
Decoding (STBD). The design is post-layout using a UMC 0.18 micron
technology at a clock rate of 100 MHz. Performance comparisons with
other optimization methods and hardware implementations are given.
key words: MIMO-OFDM, reconfigurable architecture, FFT, STBD, algo-
rithm implementation

1. Introduction

MIMO techniques have received great attention and have
developed significantly in recent years. By exploiting mul-
tiple antennas at both transmitter and receiver, multi-path
effects can be effectively restrained, and the systems have
the potential to achieve much higher bandwidth efficien-
cies and performance reliability [1]. Additionally, by com-
bining MIMO systems with orthogonal frequency division
multiplexing (OFDM), which is known as a MIMO-OFDM,
a system can provide high spectral efficiency in a scatter-
ing environment [2] and can also mitigate the effects of
inter-symbol interference (ISI). Because of these features,
the MIMO-OFDM technique has been widely used in many
high-throughput systems, including both the IEEE 802.11n
and 802.16e standards.

High throughput means higher data bandwidth, and
thus these systems require stronger signal processing capa-
bilities. The higher the throughput requirement, the more
antennas will be required, resulting in greater system com-
plexity. Moreover, among those protocols, various sizes of
channel matrix, baseband algorithms and operational modes
are used. Even within the same standard, the number of
antennas may be adjusted according to the existing channel
quality. In order to meet such requirements, a hardware ar-
chitecture having a very high degree of flexibility is needed.
The challenge is to provide a flexible architecture having

Manuscript received July 15, 2009.
Manuscript revised November 19, 2009.
†The authors are with the State Key Lab of ASIC and System,

Fudan University, China.
††The author is with the Dept. of Electrical and Computer En-

gineering, University of Minnesota, USA.
a) E-mail: xiaofangzhou@fudan.edu.cn

DOI: 10.1587/transinf.E93.D.811

reasonable cost which can support multiple channel links.
A coarse-grained reconfigurable architecture with heteroge-
neous operational units has been developed in our previous
work [3] to implement WLAN OFDM systems. Consider-
ing the increased communications among the different exe-
cute units, a register-based interconnection and storage [3]
architecture cannot meet the needs of MIMO systems. In-
stead, a statically scheduled connection solution based on a
switching network and global/local memories is introduced
in this paper to deal with the large quantity of data transfer
and storage. The improved architecture is general enough to
handle all of the baseband operations required in both ordi-
nary OFDM systems and in MIMO-OFDM systems.

In addition to the architectural issues, the implementa-
tion method optimization and algorithm-level optimization
also play an important role in improving performance. This
paper will explore two algorithm implementations on the
reconfigurable baseband platform widely used in MIMO-
OFDM systems, namely Fast Fourier Transform (FFT) and
Space Time Block Decoding (STBD), according to IEEE
802.11n and 802.16e standards. A variety of sizes of
FFTs are required, such as 64-point and 128-point FFTs in
802.11n [4], and 2 K-point FFTs in 802.16 [5]. In addition,
different types of modulation, such as BPSK, 64-QAM, 128-
QAM, etc., will affect the operation of the STBD. In order
to handle such a broad range of possibilities, flexible com-
putational resources, data storage and data flow mechanisms
are required.

The remainder of this paper is organized as follows:
Sect. 2 gives an overview of the proposed baseband archi-
tecture platform. Section 3 describes the FFT and STBD
algorithms and their optimizations. Section 4 shows an im-
plementation of the proposed algorithms on improved ar-
chitecture. Section 5 contains the performance results and
comparisons, and Sect. 6 presents our conclusions.

2. Previous Work and Its Enhancement

2.1 Overview of Previous Work

Most of the existing reconfigurable architectures use an
FPGA computational model which consists of a set of fine-
grained to medium-grained homogenous modules [6], [7],
or embedded reconfigurable logic cores [8]. While such
techniques provide good flexibility and work well with com-
pilation tools, they can lead to a high interconnection com-

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

812
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 1 Structure of an RAU slice.

Fig. 2 Structure of RLU slice in horizontal mode.

plexity. Moreover, those approaches are not specifically
tailored to the set of algorithms used in wireless baseband
communications systems, and thus lack of a certain degree
of computational efficiency for those kinds of applications.
While some previous work has been done on reconfigurable
baseband processor design [9]–[11], most communications
applications are currently implemented as an ASIC solu-
tion. Our approach is based on analyzing the computational
features which are widely used in wireless communication
baseband processing flows, and thereby constructing an ap-
propriate set of coarse-grained elements to support those
computations. Four types of Execute Units (EU) are cho-
sen: Reconfigurable Arithmetical Unit (RAU), Reconfig-
urable Logic Unit (RLU), Bit Serial Unit (BSU) and Adder
Array Unit (AAU).

The RAU handles multiplication and addition calcula-
tions. As shown in Fig. 1, two adjacent slices can provide
a combine-mode with the dashed arrow to complete one
a × b + c × d operation.

The RLU is designed as set of look-up table (LUT) el-
ements. Each basic slice contains a 16×4 array of 4-1 LUTs
and provides horizontal and vertical input/output modes.
The horizontal mode, as shown in Fig. 2, imports/exports
data to/from LUTs in one or more rows, whereas the verti-
cal mode of Fig. Figure 3 provides data input/output to/from
LUTs in one or more columns. Since the content of each
LUT is programmable, it can support all bitwise Boolean
operations by specifying a truth table.

The AAU is another module designed for arithmetic
operations. Unlike the RAU, the AAU module focuses on
addition-intensive operations, such as data comparison, add-
select-compare, etc. Each AAU slice contains two 16-bit
adders/subtracters and one 17-bit subtracter, as shown in

Fig. 3 Structure of RLU slice in vertical mode.

Fig. 4 Structure of an AAU slice.

Fig. 5 Structure of a BSU slice, assuming there are 8 slices with the
BSU.

Fig. 4. Therefore, it can complete three add/subtract oper-
ations in a single step. This circuit provides three outputs:
a0±a1, b0±b1 and a comparison results. Note that if a1 = 0
and b1 = 0, a0 and b0 will be compared; furthermore, if
b0 = −a0, the comparison result will be the absolute value
of a0.

The BSU module processes bit-serial calculations used
in scrambling, randomization, convolution, etc. Each BSU
slice consists of an 8-bit shifter, an AND array and an XOR
logic operation, as shown in Fig. 5. The MUX select and
And Array mask signals are specified as part of the recon-
figurable information.

The above EUs are combined with a register-based in-
terconnection and storage mechanism to form a WLAN re-
configurable processor [3]. Each reconfigurable EU (RC
EU) contains copies of these basic slices, and the number
of slices can be scaled according to the needs of the appli-
cation. In addition, they are independently controlled by an
Engine, where all of the configurable information and con-

ZHAO et al.: IMPLEMENTATIONS OF FFT AND STBD FOR MIMO-OFDM ON A RECONFIGURABLE BASEBAND PLATFORM
813

Fig. 6 The enhanced reconfigurable architecture.

trol logic for the currently implemented operations are con-
tained.

2.2 Architecture Enhancement

In order to support MIMO-OFDM systems, we add main
memory and local registers to the previous platform, provide
a global interconnection among EUs, and we also enhance
the Engine logic, as shown in the shaded blocks of Fig. 6.

For multi-link applications, a multi-bank Main Mem-
ory is required to hold data from different channels. Each
bank works independently so that multiple channels can be
supported at the same time. Local registers are also nec-
essary to reduce access frequency into the Main Memory.
These local registers hold the results generated in the same
EU module, or they may act as a first- in first-out (FIFO)
buffer. In this way, the data to be processed in the next
step can be fetched directly from local registers where the
results from the last step are held, allowing the EU to oper-
ate continuously. Results may also be exported to the Main
Memory for subsequent use. Memory addresses for both lo-
cal and global memories are produced by address generation
logic with the same structure in the Engine.

There are several possible alternatives for the Network-
on-Chip (NoC) structure, such as multicasting or broadcast-
ing, 2-D/3-D mesh, and router, but these are overly complex
for our purposes. We only need to ensure that the data paths
follow the required baseband processing flow. For exam-
ple, data which are processed by the Forward Error Cor-
recting (FEC) unit will be subsequently processed by con-
stellation mapping and then the Inverse Fast Fourier Trans-
form (IFFT) calculations. As a result, all the data traffic
flows can be constrained to occur within a narrow range.
In order to balance complexity and flexibility, a statically
scheduled switch interconnection is used which is similar to
a multiplexer-based multi-bus architecture. The multiplexer
and de-multiplexer are controlled by external logic accord-
ing to the requirements of the data traffic. A shifter-like
sequential-in, parallel-out (SIPO) register is used to account
for any mismatch between input and output ports, since the
output bandwidths of each RC EU are different from their
input bandwidths. Its depth L is determined by the maxi-
mum transferred data width, and the shift amount s leads

Fig. 7 The switch connection structure.

Fig. 8 The typical MIMO-OFDM system processing flow.

to a shift delay of � L
s �. Meanwhile, the switch provides a

fast link between RC EUs and global memory to improve
memory access efficiency. An example of message passing
is illustrated in Fig. 7 from EU0 to EU3 along with the de-
tailed switch structure. The switch uses instruction fields
src sel, which selects the source data to be transferred, and
des sel, which determines the intended destination.

Figure 6 illustrates the entire proposed architecture.
Most of the algorithm operations can be handled by one or
more EUs just by changing configurable information flows
which is initially stored in Config Memory. EUs are directly
controlled by the Engine which receives and decodes the
instructions coming from the top controller (a RISC pro-
cessor), fetches the corresponding configurable information
from the Config Memory, and finally gives the orders.

Figure 8 shows a typical MIMO-OFDM baseband pro-
cessing flow (Tx) [4], [5], and the Rx takes the inverse op-
eration. In some applications, not all of these algorithms
are required, but the typical data flow follows the process-
ing order shown. The number of channel links may also be
different, but this can be accommodated by including addi-
tional or fewer EU slices. All of the operations can be done
by the proposed hardware structure.

Scrambling and convolutional encoding operations are
performed by the BSU. Two BSU slices are used to imple-
ment the scrambling operation. The first BSU slice gener-
ates a pseudo-random sequence by passing the XOR result
to the input of the 8-bit shifter. The second BSU slice forms
a scrambled bit by performing the XOR operation on the
pseudo-random number and the input data sequence during
every clock cycle. Another two BSU slices are used to im-

814
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 9 An example of 64-QAM constellation.

plement the (2,1,7) convolutional encoding. The result after
scrambling is sent to the inputs of these two slices and each
slice will generate one bit according to the generator polyno-
mials. The two output bits are then controlled by the Engine
to carry out interleaving.

Symbol mapping operations are accomplished by the
RLU, and may be BPSK, QPSK, 16-QAM or 64-QAM.
The constellation of each can be translated into a truth ta-
ble; Fig. 9 presents an example of 64-QAM constellation.
Two RLU slices under the 64-QAM mapping can generate
16 mapped symbols at a time; each one slice processes I/Q
path separately by the vertical mode.

Finally, the mapped symbols are sent to the Space-
Time Coding (STC) and IFFT units, which are the most
computationally challenging parts, and which are described
in the following sections.

The Viterbi algorithm is typically used to perform con-
volutional decoding. It can be divided into two parts, add-
select-compare and trace-back. RLU and AAU slices can
compute the add-select-compare operation, and the general
processor assists with the trace-back. The RLU generates
the Hamming distance of the input bits and state bits via
table look-up. Two distances and their corresponded met-
rics are added by A/B adders in one AAU slice separately,
and the results are passed to the C adder, thereby generating
the select the Most Significant Bit (MSB). Both the selected
result and the select MSB are sent to the processor for the
trace-back computation.

3. Algorithm Optimization

Implementation method and algorithm level optimization
are important for the overall system process. Here, we will
present the optimized Fast Fourier Transform (FFT) imple-
mentation method and the optimized reference for one of
the widely used STC decoding method, Space Time Block
Decode (STBD) algorithm.

3.1 FFT Optimization

FFT computation is a bottleneck in OFDM baseband pro-
cessing. According to IEEE 802.11n and 802.16e, 64-point
up to 2048-point FFTs are used for different data rates. Pre-
viously, various FFT architectures and algorithms have been
developed, such as a radix-2 bit-reversed algorithm with

Fig. 10 64-point FFT processing flow.

a memory-based structure [12], radix-n algorithms with a
pipeline structure [13], a cached-FFT architecture [14], etc.

The conventional radix-2 bit-reversed algorithm is best
suited for small FFT sizes due to the high data access fre-
quency and its resulting power dissipation. However, it is
the easiest way to implement an FFT with the least amount
of control logic. The pipeline architecture is suitable for
large-size FFTs, since it partitions a large computation into
several smaller sets of calculations. As a result, a large
memory can be replaced by a series of small shift regis-
ters according to the given computation size. Although the
pipeline structure saves on power consumption for memory
accesses as well as being scalable to large-size FFTs, it does
not significantly reduce the total amount of storage required
and it greatly increases the control complexity. The cached-
FFT structure is another approach for reducing the cost of
memory accesses. It inserts small size cache between the
FFT computation logic and the main memory. In this way,
the cache handles most of the storage accesses, and it is also
much faster than main memory. A cached-FFT structure
balances processing efficiency and power dissipation.

For our hardware platform, we propose an FFT solution
based on the conventional radix-2 bit-reversed principle and
a cached-FFT structure to handle both small and large size
FFT computations.

3.1.1 Calculation Method

A typical cached-FFT structure seeks to have most data
movements occur between the processor and cache so that
the average memory access time can be reduced. Based on
this idea, a 64-point FFT processing flow can be partitioned
as shown in Fig. 10. In the 1st level, 64 points are divided
into 4 groups, each consisting of 16 basic points. These 4
groups of data are calculated as four independent basic 16-

ZHAO et al.: IMPLEMENTATIONS OF FFT AND STBD FOR MIMO-OFDM ON A RECONFIGURABLE BASEBAND PLATFORM
815

Fig. 11 Conventional 8-point FFT bit-reversed address generation pro-
cedure.

point FFTs, and four groups of results are obtained; each of
these results is then defined as a super-point-16. As a result,
a 4-super-point FFT computation is implemented in the 2nd

level. Due to symmetries in the data flow diagram, the same
address generator can be used at both levels.

Therefore, a 64-point FFT can be simplified to consist
of four basic 16-point FFTs and a 4-super-point FFT. In this
way, large FFTs can be separated into several smaller-size
operations. Moreover, the conventional address generation
mechanism based on the bit-reversed radix-2 principle can
be used, as will be illustrated later. The first level prepares
data for the super-point FFT computation, and the size cho-
sen mostly depends on the cache size. The number of the
FFT groups in the first level is the size of the super-point
FFT calculation. Moreover, the size of super-point FFT can
be further reduced by introducing super-point-32 or more,
according to cache constraints.

3.1.2 Address Generator

In this section, a novel address generator is proposed as a
part of the Engine control block. Taking an basic 8-point
FFT as an example, we will first review the conventional
radix-2 bit-reversed algorithm.

The values shown in Fig. 11 are the addresses at which
the data are stored; the column at the left of the butterfly
shows the addresses the data are fetched from, and the col-
umn at the right are the addresses the results are stored in.
Using bit-reversed ordering and an even-odd separation, the
operands and results can share the same locations. In the

Fig. 12 Reordered 8-point FFT address generation flow.

Fig. 13 Proposed address generation procedure.

conventional view, address generation for each stage is used
to obtain the connections from the (n + 1)th stage back to
the nth stage. However, from an implementation point of
view, the only thing that needs to be considered is the rela-
tionship between the two operand addresses within the same
butterfly. Therefore, given one operand address, if we find
the other one, the corresponding butterfly can be completed.
Based on this view, the address processing flow can be re-
ordered, as shown in Fig. 12.

Assume that an N-point FFT (N = 2m) is computed
and n is any stage in the computation(1 ≤ n ≤ m). In the nth

stage, the nth address bit of the operands in a butterfly are op-
posite, as marked in Fig. 12. As shown in Fig. 13, the nth bit
in the nth stage is masked, and a search of the remaining
(m-1) bits by PC accumulation is done to list all 2m−1 possi-
ble binary values, from all zeros to all ones. After append-
ing the nth bit to the searched value, one operand address is
obtained. Then, by reversing the same bit and keeping the
others fixed, the other operand address is obtained.

In the actual hardware implementation, the masked bit
X in Fig. 13 is set to 1. According to the proposed address
generation algorithm, for an N-point FFT calculation, an m-
bit shifter, m-bit register, m-bit counter and an m-bit bitwise
XOR logic are needed, as shown in Fig. 14. The shifter is
used to store the initial point counter (PC) value; in the nth

stage, the nth bit is set to 1 and the others are set to zero.
After the nth stage is finished, the only “1” bit will be right-
shifted for the (n + 1)th stage computation. The m-bit regis-
ter is for the PC value which is accumulated on each cycle
Ti(i = 1, 2, · · · , 2m−1), and the counter records the PC. The
value in this register is the address of one operand. After the
bitwise XOR with the initial PC value, the other address is
generated. When the value in the register becomes all ones,
the current stage completes, and the shift command enables
the next stage.

816
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Fig. 14 Proposed address generator.

3.2 STBD Optimization

STBC (Space-Time Block Coding) is used in MIMO sys-
tems in a low SNR environment to improve communication
reliability. Its inverse operation, STBD (Space-Time Block
Decoding), is on the critical path in the receiver and directly
affects the overall receiver efficiency. The most precise way
to perform STBD is with Maximum Likelihood (ML) detec-
tion. If a 2 × 2 antenna matrix is used, then the generation
matrix and ML detection formula can be described in the
following two equations, respectively [15]:

G2 =

[
c1 c2

−c∗2 c∗1

]
(1)

MG2(c1, pk) =

∣∣∣∣∣∣∣∣
⎡⎢⎢⎢⎢⎢⎢⎣

m∑
j=1

(r j
1α
∗
1, j + (r j

2)∗α2, j)

⎤⎥⎥⎥⎥⎥⎥⎦−pk

∣∣∣∣∣∣∣∣
2

+

⎛⎜⎜⎜⎜⎜⎜⎝−1 +
m∑

j=1

n∑
i=1

|αi, j|2
⎞⎟⎟⎟⎟⎟⎟⎠ |pk|2 (2)

Here, ci(i = 1, 2) are the transmitted signals from the ith

transmit antenna; rj
i(j = 1, 2) are the received signals of the

jth receive antenna from the ith transmit antenna; αj
i is the

fading factor of the channel from the ith transmit antenna
to the jth receive antenna; pk(k = 1, 2, · · · ,M) is one of the
M − ary modulated symbols. The smallest metric value is
the final decision, as shown in [16]:

c1 = pk ⇔ M(c1, pk)

= min{M(c1, p1),M(c1, p2), · · · ,M(c1, pk)} (3)

Therefore, the complexity of ML detection depends linearly
on the size of the modulation constellation [15]. In order
to find the best symbol, one has to search over all constel-
lation points. A variety of algorithms have been proposed
to achieve higher efficiency and lower computational cost,
such as ZF (Zero-Forcing) [17], MMSE (Minimum Mean-
Square-Error) [18], SIC (Successive Interference Cancella-
tion) [19], but these achieve only limited reductions in the
complexity. The sign approach [16], however, reduces the

Fig. 15 8-PSK and 16-QAM constellations (after [16]).

constellation size and achieves greater efficiency. It is briefly
reviewed below.

3.2.1 Sign Approach

As described in [16], all the decision metrics can be unified
as

M(cn, pk) = |(an + jbn) − pk |2 + β|pk |2 (4)

Taking (2) as an example:

a1 + jb1 =

m∑
j=1

(r j
1α
∗
1, j + (r j

2)∗α2, j), β =

⎛⎜⎜⎜⎜⎜⎜⎝−1 +
m∑

j=1

n∑
i=1

|αi, j|2
⎞⎟⎟⎟⎟⎟⎟⎠

If we let pk = pkx + jpky, and substitute into (4), we obtain
(n = 1, 2):

M(cn, pk) = a2
n + b2

n + p2
kx + p2

ky − 2(an pkx + bn pky)

+β(p2
kx + p2

ky) (5)

As a2
n and b2

n are common terms for all constellation point
comparisons, their effects can be ignored. For equal en-
ergy modulation schemes such as M-PSK, p2

kx + p2
ky always

equal 1, and the term -2 is common, so they can also be ig-
nored and the metric can be simplified to that of (6) for pur-
poses of finding the extreme values; however, for unequal
energy modulation schemes, the amplitude effect can not be
ignored, resulting in (7).

M(cn, pk) = an pkx + bn pky (6)

M(cn, pk) = p2
kx+p2

ky−2(an pkx+bn pky)+β(p2
kx+p2

ky) (7)

In this way, the maximal M(cn, pk) in (6) and (7) only occur
when an, pkx, and bn, pky have the same signs. In this way,
comparison is limited to one quadrant, and thus the candi-
date points are reduced by nearly three quarters. Therefore,
the computational efficiency can be dramatically improved.

3.2.2 Case Study

Assuming that the first quadrant is selected, for 8-PSK,
the comparison points are reduced to be p0, p1 and
p2; for a 16-QAM, they are p0, p1, p2, p3, as circled
in Fig. 15. Therefore, Eqs. (6) and (7) are applied to
these signals. Note that the final result ck is the cor-
responding pk in max{M(cn, p0),M(cn, p1),M(cn, p2)} or
max{M(cn, p0),M(cn, p1),M(cn, p2),M(cn, p3)}.

ZHAO et al.: IMPLEMENTATIONS OF FFT AND STBD FOR MIMO-OFDM ON A RECONFIGURABLE BASEBAND PLATFORM
817

4. Algorithm Implementations

In this section the FFT and STBD algorithms will be imple-
mented on the proposed architecture, and the performance
enhancement will be demonstrated. Here, the “Memory Ac-
cess Cycle (MemAC)” is the period that one RC EU trans-
fers its local data to the main memory when the current lo-
cal computation and storage is temporarily completed; the
“memory access cost” means the total timing cost for mem-
ory access during certain operation; the “switch access cost”
means the timing cost on switch transfer; the “timing cost”
is the execution time for certain operation, including mem-
ory access cost.

4.1 FFT

According to IEEE 802.11n and 802.16e, 64-point up to
2048-point FFTs are required. Moreover, in the high-
throughput mode of IEEE 802.11n, the frame time required
for a 128-point FFT is 4 μsec including all the baseband op-
erations. This is the most critical timing requirement among
the supported sizes. The maximal clock frequency of our
architecture is 100 MHz at the post-layout level, and 8 RAU
slices can handle one butterfly per clock cycle. At least 64
slices are needed, 16 per channel link, with a total of 4 links
supported. In this way, during one clock cycle, two but-
terflies are handled, and the 128-point FFT can be finished
within 2.24 μsec, excluding memory access cost. According
to the proposed method, local registers are used instead of a
cache memory since the EU has such local memory, which
guarantees the highest access efficiency within the EU. Con-
sidering the area cost of local registers and the main mem-
ory access frequency, 16 basic points of data per channel
link can be held in RAU local registers and each point can
be quantized to a maximum of 32 bits, with 16 bits each for
the real and imaginary parts. In this design, two 1 K×128-
bit dual-port memories with 4 banks are used; one is used
for processing the current frame, while the other is used for
the next frame. Therefore, at the same time that the current
frame is being processed, the next frame of data can be re-
ceived. Additionally, the dual ports make it possible to fetch
the operands for one butterfly computation within a single
clock cycle.

As shown in Table 1, a 128-point FFT will be used
to illustrate the procedure. It starts with a set of basic 16-
point FFTs; 8 local access cycles are needed to complete
this first level of processing. Each local access cycle in-
cludes 4 stages of basic 16-point FFT and each stage takes 4
clock cycles, or 16 clock cycles in total. Addresses of local
registers are generated by the proposed AG circuit with 4-bit
values. The results of each Basic 16-point FFT are sent to
the main memory and stored successively as one MemAC;
8 instances of super-point-16 MemAC are needed. At the
second level, an 8-super-point FFT starts which includes
3 stages. The basic points within one super-point-16 have
the same macro address but different bias addresses; on the

Table 1 128-point FFT implement flow.

EU/ operation MemAC clock
memory cycles

1 16 RAU slices 1st basic 16-point FFT 1 16
local register

2 16 RAU slices 2nd basic 16-point FFT 1 16
local register
main memory 1st super-point-16 storage 1 8

· · ·
8 16 RAU slices 8th basic 16-point FFT 1 16

local register
main memory 7th super-point-16 storage 2 16
local memory 8-super-point FFT

fetch (PC=0,1)
9 16 RAU slices 1st basic 16-FFT in super 1 16

local register 8-super-point FFT (stage 1)
main memory 8th super-points-16 storage 2 16
local memory 8-super-point FFT

fetch (PC=2, 3)
· · ·

Fig. 16 Macro and bias address mechanism in the super-point FFT com-
putation.

other hand, the two operands of a basic butterfly in the cor-
responding super-butterfly have the same bias address but
different macro addresses, as shown in Fig. 16. Therefore,
the macro address can be generated by the proposed ad-
dress generator using 3 bits, and the bias address can be in-
dicated by a point counter. If 16 basic points are accessed in
one MemAC, two basic 8-point FFTs can be implemented
per channel link during one MemAC; in total, 8 MemAC
are needed to complete the 8-super-point FFT, as shown in
Fig. 17. Results are stored back to memory using the “same-
address” principle.

4.2 STBD

Consider an 8 × 4 channel matrix with a coding rate of
1/2, one receive antenna (m = 1) and 16-QAM modula-
tion, and use c1 detection as an example. The required op-
erations of STBD include the summation of the attenuated
received signals from all the transmit antennas, signs and

818
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

values comparison, etc. In this hardware architecture, the
RAU is used for multiplication and summation; the RLU
can handle the constellation quadrant decision; combined
with an RAU slice, the AAU handles the data comparison.
Moreover, the combining mode of the RAU slice releases a
4-2 compressor per every two adjacent slices, as marked in
Fig. 1. Table 2 explains the detailed computation flow.

The proposed structure of execute units is well suited
to performing regular, repeated computations. Therefore, it
is advantageous to reduce the control logic and implement a
consistent pattern of arithmetic and logic operations. From
this point of view, instead of a bias value search [16], we
directly use (7) to implement QAM modulation. Assuming
that the channel condition is slow fading or pseudo-static,
the attenuation factor α remains fixed for at least one frame.
Therefore, β only needs to be computed once at the very be-
ginning of each frame. Furthermore, the points on the con-
stellation are fixed during the entire processing, and thus,
A(p2

kx + p2
ky) can be calculated in advance as fixed infor-

mation. As a result, the quadrant decision and the mini-
mal/maximal data selection are the only time-critical com-
putations for each received signal. Using an 8 × 4 channel
matrix with one receive antenna and 16-QAM, 8 multiply-
with-addition computations, 16 sign comparisons among
the constellation points, and the minimum value selection
among 4 data values are required. In our architecture, two
RAU slices can complete one a × b + c × d operation, using
16 bits for each operand. In order to reduce the process-
ing time as much as possible, we introduce 17 RAU slices,
2 RLU slices and 1 AAU slice to decode one symbol. No-
tice that all the steps can occur simultaneously, so that only
2 clock cycles are needed to decode one symbol, excluding

Fig. 17 8-Super-point FFT memory access cycles.

Table 2 STBD processing flow.

EUs slices operations cycles

1 RAU 9 a1 + jb1 =
∑m

j=1(r j
1α
∗
1, j + (r j

2)∗α2, j 2

+r j
3α
∗
3, j + (r j

4)∗α4, j)
RLU 2 {pk1, · · · , pk4} = {sign(an, pkx) = 1 2

&& sign(bn, pky) = 1}
2 RAU 8 Ci = A(p2

kx + p2
ky) − (an pkix + bn pkiy) 2

A = 1 + β, (i = 1, 2, 3, 4)
3 AAU 1 min(Ci), (i = 1, 2, 3, 4) 2

the pre-computed information and the switch access cost. If
there are more receive antennas, more RAU slices will be
used in step 1. Similarly, a larger constellation size will re-
quire additional RLU slices in step 1, RAU slices in step 2
and AAU slices in step 3. As a result, the total resource cost
of STBD is determined by the size of channel matrix, the
number of receive antennas and the constellation size.

5. Performance Analysis and Comparison

5.1 Instruction Generation

In our current system implementation, the algorithms are
manually mapped onto the architecture. We generate the
configurable instructions step by step as a script, and then
use Perl to translate the script into a Verilog testbench file.
Most of the operations require more than one clock cycle
to execute. We classify the instructions into two categories,
static instructions and dynamic instructions. The parameters
of a static instruction remain fixed throughout its execution,
while those of a dynamic instruction will change during the
time that it is executing.

5.2 Performance Analysis

In this section, we will present the performance results for
the enhanced hardware and the algorithm implementations.
In the FFT implementing, we use 64 RAU slices for com-
putations, local registers having a capacity of 64 points and
two 1 K × 128 dual-port SRAMs for data storage. In the
case of the STBD implementation, we use 17 RAU slices,
4 RLU slices and 8 AAU slices to support at most four data
sequences with 64-QAM modulation. Each execute unit as
well as the global interconnection structure has been post-
layout using a UMC 0.18 μm technology under the clock
rate of 100 MHz, and the areas and bandwidths are listed in
Table 3. Each data stream operates independently and oc-
cupies the same computational resources. If fewer than four
channel links are required, the hardware can be scaled down
in order to lower the power and chip size.

Table 3 Performance of execute units and switch (under 100 MHz clock
frequency).

EU Source P&R core Max input Max output
included area (mm2) bandwidth bandwidth

(Mbps) (Mbps)
RAU 64 RAU slices 11.2 102,400 102,400

local memory
I/O control

RLU 4 RLU slices 0.1 102,400 25,600
I/O control

BSU 12 BSU slices 0.045 102,400 3,200
I/O control

AAU 8 AAU slices 0.2 102,400 25,600
I/O control

switch 4 switch 0.96 102,400 25,600
Global 2 128×1 K-bit 2×1.97 25,600 25,600

memory dual-port
SRAM

ZHAO et al.: IMPLEMENTATIONS OF FFT AND STBD FOR MIMO-OFDM ON A RECONFIGURABLE BASEBAND PLATFORM
819

Table 7 Comparison of FFT implement (ONE DATA SEQUENCE).

Architecture Tech. FFT Memory T FFT register/ MemAC Core area
(μm) size size (bit) (μs) cache size (mm2)

[3] 0.18 64 0 1.92 2 K-bit 0 4.8
proposed 0.18 64 64x32 1.36 2 K-bit 8 <3.41

Table 8 Performance comparison of address generation (AG) circuit.

Hardware cost (N = 2m)
D.Cohen [23] Yutai Ma [24] Proposed

4 barrel shifters of N-by-m-bit 2 barrel shifters of N-by-m-bit 1 barrel shifter of m-bit
2 (N-1)-bit butterfly counters 2 (N-1)-bit butterfly counters 1 m-bit butterfly counter

2 (N-1)-bit XOR trees 1 m-bit XOR
4 w-bit MUX 2 w-bit MUX

4 (N-1)-bit MUX
2 m-bit pass counters 2 m-bit pass counters

Table 4 FFT performance for different numbers of points.

size Timing cost (μs) memory access cycle
64 1.36 8

128 2.64 16
256 5.2 32
512 11.6 72
1024 23.12 192
2048 56.32 384

Table 5 STBD performance for different modulations.

(for one symbol clock RAU RLU AAU
decoding) cycle slice slice slice

BPSK (2×2) 2 2 1 0
QPSK (4×4) 2 8 1 0
8 PSK (4×4) 2 8 1 1

16 QAM (4×4) 2 17 2 1
64 QAM (4×4) 3 17 4 8

Table 4 illustrates the timing cost and memory access
cycle for calculating different sizes of FFTs. With the same
circuit area, they increase linearly with the size of the calcu-
lation. Table 5 gives the STBD operation time and hardware
cost for different modulation schemes. Since the quadrant
decision for BPSK and QPSK directly gives the minimum
value result, the AAU structure is not needed. Therefore,
the computation primarily depends on the channel matrix
size and the number of receive antennas. The processing
time stays within a narrow range, while the hardware cost
increases linearly with the constellation size. In addition,
the simulated timing results in Table 4 and Table 5 easily
meet the timing requirements defined in IEEE 802.11n and
802.16e.

5.3 Comparison

There are other types of reconfigurable architectures that
have been developed for baseband processing of MIMO-
OFDM or OFDM systems, such as [9], [20], [21], and [10].
[10] uses a GPP/DSP core with accelerators, and [8] uses an
FPGA core. [9], [20], [21] are homogenous coarse-grained
reconfigurable architectures with specifically designed mod-
ules. A homogeneous array can provide a regular instruction

Table 6 Performance of interconnect structure comparison (under
100 MHz clock frequency).

Structure Bandwidth average area average latency
(Mbps) (μm2) (cycle)

2D NoC Mesh 102,400 1,657,745 92
CDMA 4-bit [22] 102,400 1,647,982 16
CDMA 8-bit [22] 102,400 2,504,533 16

ship based [3] 25,600 2,153,797 4
Proposed 102,400 1,722,407 4

flow and interconnection structure, but it is less efficient for
the specific set of computations needed. Moreover, a regular
interconnection structure limits the achievable communica-
tion bandwidth; for example, the throughput of our imple-
mentation is 102.4 Gbps, which is almost twice that of [21].

Table 6 shows the average area and latency of different
interconnect architectures with different bandwidths, using
the same clock frequency and the same CMOS process tech-
nology (UMC 0.18 μm). The meaning of average area here
is the area consumption of the global interconnection logic
which can provide the transmission bandwidth for one chan-
nel link. The average latency is packet transmission delay
based on clock cycle from data receiving to transmitting of
one interconnection logic. CDMA-based NoC mesh topol-
ogy is proposed in [22], which is a more general architecture
especially for multi-casting and with lower area cost, but re-
quires longer transmission latency. The ship-based intercon-
nection is used in our previous work. Although it provides a
very high flexibility to interconnect all the other RC EUs, it
costs more resources, especially for larger data flows.

Table 7 presents a comparison of the hardware cost,
execution time and memory dissipation for the FFT pro-
cessing on the previous and the enhanced architectures.
With the hierarchical memory structure and the super-point
mechanism, the execution time is lower than before. The
equivalent area for one data sequence is also decreased to
3.41 mm2 including the control logic for data selection of
multiple channels. Therefore, the actual area for single
channel processing is less than 3.41 mm2.

The proposed super-point mechanism also makes it
convenient to use the same address generator structure for
both local registers/cache and main memory. Moreover, the

820
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.4 APRIL 2010

Table 9 Comparison of STBD implementations on ASIC and reconfig-
urable architectures.

precision multiplier adder cycle
/symbol

[16] 9 bits 14 19 2
This paper 16 bits 16 18 3

hardware cost in our scheme is quite low as shown in Ta-
ble 8. As described in Sect. 3, it can be easily scaled for
various sizes of FFTs.

In terms of STBD, E. Canvus [16] describes a custom-
designed ASIC architecture for at most four receive anten-
nas. Table 9 shows the resource costs and performance
comparison for reconfigurable and ASIC structures, both of
which are based on 16-QAM modulation. The ASIC solu-
tion aims at architecture simplification and resource econo-
mization. On the other hand, the goal of the reconfigurable
architecture is to improve computational flexibility. As a re-
sult, sufficient hardware resources must be allocated to han-
dle the maximal set of requirements, and this leads to its
larger number of bits of precision.

6. Conclusion

This paper has mapped the FFT and STBD algorithms onto
an enhanced reconfigurable baseband platform according to
IEEE 802.11n and 802.16e. The FFT implementation uses
an optimized implementing method proposed in this paper,
which takes advantage of the features of the platform’s ar-
chitecture. As part of the FFT optimization, we utilize local
registers within the RAU execute unit to serve as a cache. In
addition, the memory access mechanism and address gen-
erator can make use of the radix-2 bit-reversed technique.
The STBD processing is optimized through the use of pre-
computed values. For both algorithms, the implementing
processes are carefully designed to fully utilize the available
hardware resources and to reduce the required number of
clock cycles. A comparison with other optimization meth-
ods and implementations show that a good balance between
performance and hardware cost is achieved, while still pro-
viding adequate flexibility to support other portions of the
baseband processing flow.

Acknowledgement

This work is supported by China NSF 60876016, State Key
Lab of ASIC and Systems ZD20080103 and GF20080306.

References

[1] H. Yu, M.S. Kim, E.Y. Choi, T. Jeon, and S.K. Lee, “Design and
prototype development of mimo-ofdm for next generation wireless
lan,” IEEE Trans. Consum. Electron., vol.51, no.4, pp.1134–1142,
Nov. 2005.

[2] N. Huaning and N. Chiu, “Diversity and multiplexing switching in
802.11n mimo systems,” Proc. Asilomar conference on signals, sys-
tems and computers (SSC’06), pp.1644–1648, Pacific Grove CA,
USA, Nov. 2006.

[3] W. Lu, S. Zhao, C. Lu, X. Zhou, D. Zhou, and G.E. Sobelman,
“A heterogeneous reconfigurable baseband architecture for wire-
less lan transceivers,” Proc. IEEE International Conference on Elec-
tro/Information Technology (EIT’08), Ames IA, USA, pp.284–288,
May 2008.

[4] “Wireless LAN medium access control (MAC) and physical layer
(PHY) specification amendments 4: Enhancements for higher
throughput,” 2007.

[5] “Air interface for fixed and mobile broadband wireless access sys-
tem amendments 2: Physical and medium access control layers for
combined fixed and mobile operation in licensed bands,” 2005.

[6] Y. Satou, M. Amagasaki, H. Miura, K. Matsuyama, R. Yamaguchi,
M. Iida, and T. Sueyoshi, “An embedded reconfigurable logic core
based on variable grain logic cell architecture,” Proc. IEEE Interna-
tional Conference on Field-Programmable Technology (ICFPT’09),
Kitakyusyu, Japan, Dec. 2007.

[7] M. Myjak and J. Delgado-Frias, “A medium-grain reconfigurable
architecture for dsp: Vlsi design, benchmark mapping, and perfor-
mance,” IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol.16,
no.1, pp.14–23, Jan. 2008.

[8] H. Wang, P. Leray, and J. Palicot, “An efficient mimo v-blast decoder
based on a dynamically reconfigurable fpga including its reconfigu-
ration management,” Proc. IEEE International Conference on Com-
munications (ICC’08), Beijing, China, May 2008.

[9] A. Poon, “An energy-efficient reconfigurable baseband processor for
wireless communications,” IEEE Trans. Very Large Scale Integr.
(VLSI) Syst., vol.15, no.3, pp.319–327, March 2007.

[10] E. Tell, A. Nilsson, and D. Liu, “A low area and low power pro-
grammable baseband processor architecture,” Proc. IEEE Interna-
tional workshop on System-on-Chip for Real-Time Applications
(IWSOC’05), Banff, Canada, July 2005.

[11] C. Ebeling, C. Fisher, G. Xing, M. Shen, and H. Liu, “Implement-
ing an ofdm receiver on the rapid reconfigurable architecture,” IEEE
Trans. Comput., vol.53, no.11, pp.1436–1448, Nov. 2004.

[12] S. Magar, S. Shen, G. Luikuo, M. Fleming, and R. Aguilar, “An ap-
plication specific dsp chip set for 100 mhz data rates,” Proc. IEEE
International Conference on Acoustics, Speech, and Signal Process-
ing (ICASSP’98), pp.1989–1992, April 1998.

[13] L.Y.-W. and L.C.-Y, “Design of an fft/ifft processor for mimo ofdm
systems,” IEEE Trans. Circuits Syst. I, Fundam. Theory Appl.,
vol.54, no.4, pp.807–815, April 2007.

[14] Y.H. Lee, T.H. Yu, K.K. Huang, and A.Y. Wu, “Rapid ip design of
variable-length cached-fft processor for ofdm-based communication
systems,” Proc. IEEE International Workshop on Signal Processing
Systems Design and Implementation (SPSDI’97), pp.62–65, Oct.
2006.

[15] V. Tarokh, H. Jafarkhani, and A.R. Calderbank, “Space-time block
coding for wireless communications: performance results,” IEEE J.
Sel. Areas Commun., vol.17, no.3, pp.451–460, March 1999.

[16] E. Cavus and B. Daneshrad, “A very low-complexity space-time
block decoder (STBD) ASIC for wireless systems,” IEEE Trans. Cir-
cuits Syst. I, vol.53, no.1, pp.60–69, Jan. 2006.

[17] M. Vehkapera and M. Juntti, “Analysis of space-time coded and spa-
tially multiplexed mimo systems with zf receivers,” Proc. IEEE In-
ternational Conference on Communications (ICC’07), pp.738–743,
June 2007.

[18] Y. Zhang and D. Li, “Mmse linear detector for space-time transmit
diversity over fast fading channels,” Proc. IEEE Personal, Indoor and
Mobile Radio Communications (PIMRC ’03), pp.2388–2392, Sept.
2003.

[19] J.H. Lee and S.C. Kim, “Efficient isi cancellation for stbc ofdm sys-
tems using successive interference cancellation,” IEEE Commun.
Lett., vol.10, no.8, pp.629–631, Aug. 2006.

[20] F. Thoma, M. Kuhnle, P. Bonnot, E. Panainte, K. Bertels, S.
Goller, A. Schneider, S. Guyetant, E. Schuler, K. Muller-Glaser, and
J. Becker, “Morpheus: Heterogeneous reconfigurable computing,”
Proc. IEEE International Conference on Field Programmable Logic

ZHAO et al.: IMPLEMENTATIONS OF FFT AND STBD FOR MIMO-OFDM ON A RECONFIGURABLE BASEBAND PLATFORM
821

and Applications (FPL’07), Amsterdam, Netherlands, Aug. 2007.
[21] C. Liang and X. Huang, “Mapping parallel fft algorithm onto smart-

cell coarse-grained reconfigurable architecture,” Proc. IEEE Inter-
national Conference on Application-specific Systems, Architectures
and Processors (ASAP’09), Boston, USA, July 2009.

[22] W. Lee and G.E. Sobelman, “Mesh-star hybrid noc architecture with
cdma switch,” Proc. IEEE International Symposium on Circuits and
Systems (ISCAS’09), Taiwan, China, May 2009.

[23] D. Cohen, “Simplified control of fft hardware,” IEEE Trans. Acoust.
Speech Signal Process., vol.24, no.6, pp.577–579, Dec. 1976.

[24] Y. Ma and L. Wanhammar, “A hardware efficient control of memory
addressing for high-performance fft processors,” IEEE Trans. Signal
Process., vol.48, no.3, pp.917–921, March 2000.

Shuang Zhao received the B.S. degree in
electrical engineering from China’s University
of Mining and Technology, in 2005. Since 2005,
she has been studying on microelectronics for
her Ph.D. degree in the State Key Lab of ASIC
and System, Fudan University. She worked
mainly on video and communication digital pro-
cessing. Now her research focuses on reconfig-
urable architecture for communication system.

Wenqing Lu received the B.S. degree in
electrical engineering from Shanghai Jiaotong
University, Shanghai, China in 2006. Since
2006, she has been studying microelectronics
in the State Key Lab of ASIC and System,
Fudan University, Shanghai, China. Her main
research interests are communication baseband
signal processing and IC design.

Xiaofang Zhou received the B.S, M.S,
and Ph.D. from Fudan University, Shanghai,
China in 1992, 1995, and 1998, respectively. He
was with Bell Laboratories, Lucent Technolo-
gies (China) as member of technical staff, from
1998 to 2001. He was with Shanghai Fudan
high-technology corporation as senior engineer,
from 2001 to 2002. He joined Fudan University,
Shanghai, in July 2002 as faculty member. His
current research interests include digital SoC,
reconfigurable architecture and communication.

Dian Zhou received the B.S. degree in physics and the M.S. degree in
electrical engineering from Fudan University, Shanghai, China, in 1982
and 1985, respectively. He received the Ph.D. degree in electrical and
computer engineering from University of Illinois at Urbana-Champaign, in
1990. He has been a full professor in Electrical and Computer Engineering
Department, University of Texas at Dallas, since 1999. His research inter-
ests include high-speed VLSI systems, and CAD tools and algorithms. He
currently is a Changjiang Honored Professor at Fudan University, where
he also serves the dean of school of microelectronics, Fudan University.
Dr. Zhou received IEEE Circuits and Systems Society Darlington Award in
1993, and NSF Young Investigator Award in 1994. He was an Associate
Editor for IEEE Transactions on Circuits and Systems.

Gerald E. Sobelman received a B.S. de-
gree in physics from the University of Califor-
nia, Los Angeles. He was awarded M.S. and
Ph.D. degrees in physics from Harvard Univer-
sity. He was a postdoctoral researcher at The
Rockefeller University, and he has held senior
engineering positions at Sperry Corporation and
Control Data Corporation. He is currently a
faculty member in the Department of Electri-
cal and Computer Engineering at the University
of Minnesota. He also serves as the Director of

Graduate Studies for the Graduate Program in Computer Engineering at the
University of Minnesota. Prof. Sobelman is a Senior Member of IEEE and
serves on the technical program committees for IEEE ISCAS, IEEE SOCC
and IEEE ICCSC. He is currently Chair of the Technical Committee on Cir-
cuits and Systems for Communications (CASCOM) of the IEEE Circuits
and Systems Society. He has also served as an Associate Editor of IEEE
Signal Processing Letters. He was Local Arrangements Chair for the 1993
IEEE International Conference on Acoustics, Speech and Signal Process-
ing. In addition, he has chaired many sessions at international conferences
in the areas of communications and VLSI design, and he is a Distinguished
Lecturer of the IEEE Circuits and Systems Society for 2008–2009. He has
developed and presented short courses on digital VLSI design at several
industrial sites. He has also given invited lectures at many universities, and
he has been a consultant to a number of companies. He current research
interests are in the areas of digital VLSI circuit and system design for ap-
plications in communications and signal processing. He has authored or
co-authored more than 100 technical papers and 1 book, and he holds 11
U.S. patents.

