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PAPER

AdaFF: Adaptive Failure-Handling Framework for Composite Web
Services

Yuna KIM†a), Student Member, Wan Yeon LEE††, Kyong Hoon KIM†††, Members, and Jong KIM†, Nonmember

SUMMARY In this paper, we propose a novel Web service composi-
tion framework which dynamically accommodates various failure recovery
requirements. In the proposed framework called Adaptive Failure-handling
Framework (AdaFF), failure-handling submodules are prepared during the
design of a composite service, and some of them are systematically se-
lected and automatically combined with the composite Web service at ser-
vice instantiation in accordance with the requirement of individual users.
In contrast, existing frameworks cannot adapt the failure-handling behav-
iors to user’s requirements. AdaFF rapidly delivers a composite service
supporting the requirement-matched failure handling without manual de-
velopment, and contributes to a flexible composite Web service design in
that service architects never care about failure handling or variable require-
ments of users. For proof of concept, we implement a prototype system
of the AdaFF, which automatically generates a composite service instance
with Web Services Business Process Execution Language (WS-BPEL) ac-
cording to the users’ requirement specified in XML format and executes
the generated instance on the ActiveBPEL engine.
key words: composite Web service, adaptive failure-handling, dynamic
workflow generation, WS-BPEL

1. Introduction

A Web service is a programmable module published with a
standard interface description that defines the access meth-
ods of the service [1]. In order to produce a new value-added
service for a special purpose, multiple Web services that
are published by different participants are combined into a
composite Web service [2]–[4]. With the support of com-
posite Web services, users enjoy rich functionality and con-
venience and enterprises save the burden of development
by outsourcing most component services to other compa-
nies. To efficiently support composite Web services, many
researchers have investigated on effective composition of
component Web services [5]–[7], collaboration of numerous
participants [8], [9], security enforcement of separate partic-
ipants [10], [11], and failure handling [12]–[17]. This pa-
per focuses on the enhancement of failure handling mech-
anisms.

Most previous Web service failure-handling mecha-
nisms considered fast restart [18], consistent service re-
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sults [13], [19], reliable completion when failures unexpect-
edly happen [14], [17], and coordinated recovery of con-
current errors [12], [20]. However, the previous failure-
handling mechanisms have rarely considered the notion of
adaptive failure-handling, i.e., the capability to dynamically
provide different recovery flow against the same failure in
accordance with the requirement of individual users.

The adaptation concept has been brought to adaptive
service composition for producing a context-aware compos-
ite service with the best-matching component services [21],
[22], but it does not support adaptively changing the recov-
ery flow when a failure occurs. Adaptive failure-handling is
needed in such environments where users may require their
own recovery strategy on a composite service even after
completing the composition with given components. In this
paper, we propose a new failure-handling framework, which
dynamically generates the requirement-matched failure re-
covery strategies and systematically combines the strategies
into an established composite service at every request to ac-
commodate various failure handling requirements of indi-
vidual users.

The main contribution of this study is to propose a
novel service composition framework with adaptive fail-
ure handling, called Adaptive Failure-handling Framework
(AdaFF). The AdaFF is aimed at generating a composite
Web service which handles failures that are encountered
during the execution of a composite service. AdaFF receives
the user requirement on the failure handling at request time,
and automatically generates the failure recovery flow match-
ing with the requirement. The generated recovery flow is
systematically combined with the normal operation flow to
produce an on-demand workflow for each requester. To the
best of our knowledge, the proposed framework is the first
systematic approach to reflect the arbitrary failure-handling
requirements of users by changing a failure recovery flow of
composite services dynamically.

Another contribution of this paper is to implement a
prototype system which verifies the concept of AdaFF work-
ing completely and gives a development guideline. The
prototype system receives the respective failure-handling re-
quirement of users via an XML schema, generates a work-
flow containing the requirement-matched failure recovery
flow with Web Services Business Process Execution Lan-
guage (WS-BPEL)∗, and executes the generated workflow
on the ActiveBPEL engine.

∗http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf
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The remainder of this paper is organized as follows.
Section 2 presents an example of the problem that motivates
this work, and Sect. 3 briefly surveys related previous work.
Section 4 describes preliminaries of the proposed frame-
work, which is described with its structure and formal ex-
pression in Sect. 5. Section 6 describes implementation de-
tails of the prototype system, and we evaluate the prototype
with a travel package booking scenario in Sect. 7. Finally
Sect. 8 gives concluding remarks.

2. Motivating Example

A composite service is implemented by means of a work-
flow, which contains both normal operation flow and failure
recovery flow of component services. For example, a com-
posite service for a travel package booking is a workflow of
flight scheduling, hotel reservation, and car rental services
(Fig. 1 (a)). In this example, two users request different re-
covery flows against the same failure of a hotel reservation:

• Flow1: to repeat the request procedure (H) until the
success of the reservation, and to release the other two
reservations (F and C) at failure even after a limited
number of repeats. This user requests either a complete
or no reservation (Fig. 1 (b)).
• Flow2: to stop the request procedure (H) and subse-

quently to proceed to the next procedure (P) with par-
tial reservation results from F and C. This user requests
all possible partial reservations (Fig. 1 (c)).

Even though users request different recovery flows, exist-
ing Web-service failure-handling frameworks allow only an
identical recovery flow against the same failure [12], [16],
[23], [24]. Such requirement-unmatched recovery flow re-
sults in 1) users cannot receive a worthy result of the service
in time, 2) reserved resources are released unintentionally,
or 3) service providers perform wasteful operations.

If Flow1 is provided to the user who demands Flow2,
the continuous failure of hotel reservation ultimately pre-
vents the user from obtaining a partial but worthy result and

Fig. 1 A composite Web service for travel booking, with two different
scenarios on failure handling. Solid arrows represent normal operation
flows, while dashed arrows do failure recovery flows.

leads the service provider to perform wasteful unintended
operations of repeat and release. The successfully reserved
flight and car are released unintentionally, although the suc-
cess would not be guaranteed in the next try. On the other
hand, if Flow2 is provided to the user who demands Flow1,
the instantaneous failure of hotel reservation produces an
incomplete and worthless result. Reserved resources which
are worthless to the user are not available to other users until
the release of them. The user would have received a com-
plete and worthy result if the hotel reservation request had
been retried a couple of times in the first place.

Timely completion of composite services without un-
intended release of reserved resources becomes more im-
portant as reservation services of limited resources from
crowded requests increase, e.g., online registration of pop-
ular lectures, high-demanded flight reservation, or blood
reservation in a hospital transfusion service.

Static generation of all possible recovery flows per a
composite service enables users to select the requirement-
matched failure recovery flow without delay. However, it is
difficult to determine an entire set of failure recovery flows
when designing a composite service, because the failure re-
covery flows depend on component services and several fail-
ure recovery strategies. Moreover, most of them might not
be used. Consequently, in this paper, we propose a new
failure-handling framework, which dynamically generates
the failure recovery flow that matches the user’s require-
ments and systematically combines the flow into the work-
flow at every request to accommodate various failure han-
dling requirements of individual users.

3. Related Work

While adaptive service compositions have been considered
for efficient generation of normal operation flow [21], [22],
the notion of adaptive failure-handling has never been con-
sidered for efficient generation of failure recovery flow. The
adaptive service composition aims at searching for the best
set of component services based on user’s context, and sup-
porting the low-cost modification of the services at run-
time. This mechanism cannot be applied directly to failure-
handling because the working principles and requirements
of failure recovery flow are different from those of normal
operation flow.

In existing failure-handling mechanisms of compos-
ite Web services, like WS-BPEL, Web Services Compo-
sition Action Language (WSCAL) [12], and Fung et al.’s
work [23], failure recovery flow is implemented depen-
dently on normal operation flow in a composite service.
WS-BPEL is a process-oriented composition language used
to implement normal-operation flow of component services
and its dependent failure-recovery flow in an XML-based
grammar [3], [25]. WSCAL is an XML-based language that
defines how participants coordinate to deal with a failure
occurring at a given normal flow. Fung et al. [23] proposed
how to identify what failure is critical to successful termina-
tion of a normal-flow process developed using WS-BPEL,
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and then how to modify the process for recovery of the fail-
ure. This modification involves change of both failure re-
covery and normal operation flows. In these three mecha-
nisms, the failure recovery flow cannot be easily detached
from a composite Web service, so the entire workflow needs
to be redesigned in order to change failure recovery flow.

There were attempts to implement failure recovery
flows independently of normal operation flows, like in
THROWS architecture [16] and WSTx framework [24]. In
THROWS architecture, failure recovery flow is determined
by selecting a set of component services. In order to change
the failure recovery flow, only the selection needs to be mod-
ified. WSTx middleware framework specifies what outcome
is expected for success of the service. In order to change the
failure recovery flow, the specification of outcome condi-
tions needs to be modified. In these two methods, it is pos-
sible to modify only the failure recovery flow while keeping
the normal operation flow intact. However, they limit fail-
ure recovery flow to only one strategy, compensation, so the
modification of failure recovery flow means only a change
of either services that should be compensated or the com-
pensation sequence.

Our framework exploits a method that implements fail-
ure recovery flow separately from normal execution flow,
because this separation is efficient for changing the recovery
flow at runtime. Furthermore, the best failure recovery flow
in a composite service is generated automatically in order
to satisfy the user’s requirements. The framework supports
diverse failure recovery strategies, including service retry,
service replacement, failure negligence, as well as compen-
sation based on failure dependency.

4. Preliminaries

To facilitate the understanding of the proposed framework,
this section gives preliminary background knowledge such
as the operational procedure of composite service, the types
of failures occurring in composite services, and the failure
recovery techniques used in the proposed framework.

4.1 Composite Service

A composite service is implemented by exploiting exist-
ing individual services as building blocks, and the individ-
ual services can be accessed through SOAP using the XML
messages whose format is specified in the services’ WSDL
documents. SOAP is a protocol for exchanging XML-based
messages over HTTP, and WSDL is an XML-based inter-
face description language used to describe Web services.

A process to build a composite Web service with exist-
ing individual services is called service composition, which
is performed through two procedures: workflow generation
and service binding [26]. Workflow generation constructs
an execution order of the basic functions and specifies data
communications between them. Service binding selects one
of individual Web services that perform the matched func-
tions within the workflow. The generated composite service

Fig. 2 Origins of composite-level failure.

is executed and managed by a middleware program, called
orchestration engine.

4.2 Composite-Level Failure

We recognize all events deviating the delivered output
of a composite service from its expected output as fail-
ures, whereas previous methods [27], [28] consider only the
events in individual services. Our composite-level failure
model is a superset of the individual-level failure model. In
other words, even successful termination of individual ser-
vices can cause a composite-level failure if the outcome of
the individual service does not match the expected goal or
quality of service.

We classify the origins of the composite-level failures
(Fig. 2) into application-dependent faults and application-
independent faults, and manipulate them differently. Both of
the faults are activated when the output is not matched with
the expected goal of the composite service, and the activa-
tion is identified as an error — correlated or non-correlated.
Correlated error is deliberately exposed by the component
services so that a composite service should handle this er-
ror with regard to other embedded components, while non-
correlated error is unintendedly exposed and can be handled
independently of the composite service.

4.3 Failure Recovery

There are two techniques for failure recovery: backward re-
covery [29], [30] and forward recovery [12], [31]. Backward
recovery rolls back to the former correct state of services
prior to its execution like a compensation. Forward recovery
transforms services into any correct state like exception han-
dling. These two recoveries complement each other in that
the backward recovery cannot exclude the repeated failures
and the forward recovery cannot guarantee the exact previ-
ous state. Hence, a combination of these two recovery tech-
niques is needed for supporting various user requirements.

5. Proposed Framework

In the proposed service composition framework, a normal
operation flow of abstract function units is designed in a
business process without a failure recovery flow. After a
request comes from a user with his/her requirement on fail-
ure recovery, a failure recovery flow is generated into the
business process so that the actual recovery behavior of the
process satisfies the user’s requirement. In order to make the
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Fig. 3 Web Services composition framework for adaptive failure han-
dling.

process executable, all of the abstract functions in the pro-
cess are bound to real Web services which actually perform
the matched functions.

The proposed framework consists of two layers, com-
position layer and service layer, and a service binding that
links these two layers (Fig. 3). Primitive services in the ser-
vice layer are composed into a composite service in the com-
position layer via the service binding. In this section, we
will describe all the components of the framework in detail.

5.1 Composition Layer

The composition layer is divided into two sub-layers: spec-
ification layer and adaptation layer. The specification layer
includes Common Business Process (CBP) and Failure Re-
covery Requirement (FRR). CBP is designed by the devel-
oper of a composite service, and FRR is specified by a user
of the composite service. The adaptation layer includes Ex-
ecutable Business Process with Adaptive Failure Handling
(AFH-EBP), which is dynamically generated with the CBP
and the respective FRR, and provided to the user.

CBP is a normal operation flow of business activities,
each of which represents an abstract unit of atomic function
in a business process. The normal flow represents control
dependency and data dependency between activities. Com-
pletion of execution of an activity is followed by the execu-
tion of another activity, which is called the control depen-
dency between the activities. The outcome of an activity is
consumed by another activity, which is called data depen-
dency between the activities.

FRR is a requirement of failure recovery for the par-
ticular CBP. FRR can be expressed as an XML schema as
shown in Fig. 4, which is effective in specifying the require-
ments by items with a formal structure and in parsing them
due to the property of XML. It manifests three items related
to failure recovery.

• Failure resistance means that a failure of an activity

Fig. 4 XML syntax of failure recovery requirement (FRR). Character
“∗” appended to the end of the elements means that the elements may ap-
pear zero or more times.

is followed by retrying a semantically identical service
until successful execution. If users demand a complete
execution of an activity, they specify the name of the
activity in the element <bestTry> in line 2.
• Failure negligence means that a failure of an activity

is ignored and the process execution proceeds to the
subsequent flow. If users are willing to endure a failure
of an activity, they specify the name of the activity in
the element <ignoreFailure> in line 3.
• Failure dependency means that a failure of an activity

is followed by having another activity to roll back to the
original state prior to the execution. If users demand to
invalidate activity1’s completion upon activity2’s fail-
ure, they specify the names of the two activities in the
element <dependency> in line 4: activity2 in <if-fail>
and activity1 in <then-cancel>.

Users can express a variety of recovery strategies with com-
bination of the above three items. For example, by com-
bining failure negligence and failure resistance, an activity
is tried several times until its success and then its failure
is finally ignored. By combining several failure dependen-
cies, an activity’s failure affects a group of activities. XML
schema of FRR designed in our prototype will be presented
in Sect. 6.

AFH-EBP is an executable business process represent-
ing both normal operation flow and failure recovery flow of
component services. It is produced through two steps: a
failure recovery flow associated with a user’s FRR is added
into a particular CBP chosen by the user, and then all ab-
stract activities are bound to Web services which perform
the matched function.

Let us explain how to transform a CBP to an AFH-
EBP from perspective of an activity in Fig. 5. In CBP, ac-
tivities are linked with each other via in flow and out flow,
which convey data and control between activities as shown
in Fig. 5 (a). In AFH-EBP, as shown in Fig. 5 (b), failure-
recovery activities (FRA), in hflow, and out hflow are added
for a failure recovery flow associated with a user’s FRR.
Each FRA represents an abstract unit of atomic function re-
quired for failure recovery, and each in hflow and out hflow
represents control/data dependency involving FRAs. In the
second step, activities of CBP are bound to component ser-
vices through in link and out link. Through the links, the
composite service invokes the component services and re-
ceives the result from them. in link conveys the result data
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Fig. 5 Modeling of activities in CBP and AFH-EBP.

of the service operation to the activity in CBP and out link
conveys the input data required for execution of the service
operation from the activity in CBP. FRAs are also bound to
failure handlers through in hlink and out hlink. The com-
ponent services and the failure handlers are provided in the
service layer.

5.2 Service Layer

The service layer is divided into two parts: Element Ser-
vices and Control Services. Element services provide basic
business functions that can be executed autonomously in an
independent administrative domain. Each element service
is published with a WSDL document which describes its
own operations, possible application-dependent faults, and
operation-coupled handlers that restore to the former state
of the service. The handlers are needed to be directly given
by the provider of the component services for backward re-
covery, because such service-state sensitive recovery is im-
possible without detailed information about working inside
the operations. Unlike the element services, the control ser-
vices provide control handlers that perform failure handling
regardless of the service state. The handlers for forward re-
covery do not need any detailed information about working
inside the operations of component services.

Element services and failure handlers are bound to nor-
mal activities and failure-recovery activities in an AFH-
EBP, repsectively. Specifically, for failure negligence in
FRR, an ignoring handler is bound to an FRA, which en-
forces the succeeding activity to ignore the outcome of the
failed preceding activity. For failure resistance in FRR, a re-
binding handler and a retrying handler are bound to FRAs
in succession. Rebinding handler finds an alternative ser-
vice for the preceding activity instead of the failed service
and binds it to the activity. Retrying handler invokes the
service again with the same inputs. For failure dependency
in FRR, an operation-coupled handler is bound to an FRA,
which restores to the former state of the coupled service op-
eration.

5.3 Formal Expression of CBP and AFH-EBP

We present formal expressions of CBP and AFH-EBP as
shown in Table 1. CBP is defined as an abstract process

Table 1 Formal expression of CBP and AFH-EBP.

with constructs of BPEL (Business Process Execution Lan-
guage), which is the most widely adopted standard for spec-
ifying execution of business process. Such BPEL constructs
are easily modeled with a graphical design tool, and fa-
cilitate the generation of an AFH-EBP instance. The for-
mal expressions will be used for describing an algorithm
that generates AFH-EBP (Algorithm 1). In CBP, func-
tional description and semantic description of each activity
represent which services can be matched with the activity
functionally and semantically, respectively.

6. Implementation

In this section, we present an implementation of the proto-
type that provides the composite service which adapts its
failure handling behavior to the individual failure recov-
ery requirement of users. This implementation is done as
a proof-of-concept of our proposed framework.

The prototype is implemented on web/application
server, Apache Tomcat 5.5, and Java SDK 1.4. We se-
lect WS-BPEL as the business process execution language,
which is the most widely adopted standard. Our prototype
can be divided roughly into two parts, Preprocessor and
Process Orchestrator (Fig. 6). Preprocessor is involved in
generation of an AFH-EBP instance with a CBP and an FRR
at user’s request, and the Process Orchestrator is involved in
execution of the AFH-EBP instance generated by the Pre-
processor.

6.1 Preprocessor

The Preprocessor consists of Client Interface, FRR Inter-
preter, and AFH-EBP Generator. First of all, through Client
Interface, a user explores abstract information about CBPs
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Fig. 6 A prototype of a composite service providing system for adaptive
failure handling under the proposed framework.

stored in CBP Archive, and selects one of them complying
with the demands. Then the component activities are listed
with checkboxes to select failure handling strategies. When
the user pushes the submit button after selecting strategies,
an FRR document is automatically produced in XML format
and given to Preprocessor in the prototype system.

FRR Interpreter processes XPath† query expressions in
the FRR and is implemented using Java XPath library. It re-
ceives an XPath query from the AFH-EBP Generator and
gives the query result back. The query expressions can be
seen from the statements marked with an underline in Al-
gorithm 1. Note that the schema of FRR can be extended
to WS-Policy for manifesting the requirements more explic-
itly.

AFH-EBP Generator dynamically generates an AFH-
EBP instance, in the format of WS-BPEL, with the FRR
given by a user and the associated CBP. It implements the
pseudo-algorithm of AFH-EBP-Generate (Algorithm 1). In
the algorithm, Ai.try num is a variable initialized to zero
and increased by one at every trial for each activity within
an instance, and max retry is an invariable threshold value.
The algorithm works on every activity in the CBP by check-
ing whether the activity is declared in each item of the FRR.

• Activity Ai declared in <bestTry> is required to be
linked to two newly created FRAs in serial. The fore
FRA is bound to a rebinding handler that rebinds an al-
ternative service and the rear FRA is bound to a retry-
ing handler that invokes the service with the same input
as for activity Ai.
• Activity Ai declared in <ignoreFailure> is required to

be linked to a newly created FRA, which is bound to an
ignoring handler that makes the succeeding activities
ignore the outcome of the activity Ai.
• If-fail activity Ai in <dependency> is required to be

linked to a newly created FRA. The FRA is bound to an
operation-coupled handler provided by the service to
which the then-cancel activity Aj is bound. The han-
dler carries out the restoration or the abortion of the
destination activity Aj.

Rebinding handler, retrying handler, and ignoring handler
are maintained in the Control Handler Archive. All the han-
dlers are developed by the composite service provider itself
or imported from remote registries. In this algorithm, we
do not present how to select appropriate services to business

activities of CBP from Web service registries, because this
is not our focus. Such an effort is found in [4]–[7]. Our
focus is not on adaptivity in service selection, but on adap-
tivity in failure recovery flow, i.e. which handlers would be
invoked in which order upon a certain failure according to
the requirement of individual users.

Finally the Preprocessor obtains an AFH-EBP in-
stance in the format of WS-BPEL. Failure-recovery
activities and failure-recovery flows are expressed by
<compensationHandler> and <faultHandler> in the WS-
BPEL standard specification.

6.2 Process Orchestrator

Process Orchestrator consists of Deployment Manager and
Process Executor. Deployment Manager deploys the AFH-
EBP instance passed from the Preprocessor to an Ac-
tiveBPEL server, by making a business process archive
(.bpr) file. This archive file includes: a BPEL of AFH-EBP
process (.bpel) generated by the Preprocessor; a process de-
ployment descriptor (.pdd) file that describes partner link
details, persistence and versioning information, process di-
rectives and indexed properties, and other details.

Process Executor starts executing the AFH-EBP in-
stance according to a process specification. It is imple-
mented using ActiveBPEL engine 2.0, which is an open-
source business process execution engine. Into this en-
gine, we added Handler Decision Module, which chooses
the right type of operation-coupled handlers based on the
running state of them. The operation-coupled handler has
two types: restoration handler and abortion handler. When
the AFH-EBP invokes an operation-coupled handler of a
service for compensating the service, the Handler Decision

†http://www.w3.org/TR/xpath20/
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Module chooses a restoration handler if the service has been
already committed, or chooses an abortion handler if the ser-
vice is on execution. It is assumed that the execution engine
works normally only when the input WS-BPEL specifica-
tion has no error, and cannot deal with any exceptional situ-
ation of the engine itself.

In addition, the Process Executor refers to the Process
Execution Policy, which maintains policies to be applied
during execution of business processes, such as maximum
threshold number of times that services can be retried. Such
policies can be configured before running the Process Or-
chestrator.

7. Evaluation

We evaluated our prototype in two phases: generation of
failure-recovery flow according to the FRR in AFH-EBP
Generator and execution of AFH-EBP instances in Process
Executor. The evaluation was performed under the environ-
ment such that two users request different FRRs on the same
travel booking service and both application-dependent fail-
ures and application-independent failures are exposed dur-
ing execution of the service.

The example travel booking service performs hotel and
flight reservation according to the itinerary of a user and
then sends the result to the user, as shown in Fig. 7 (a). User
A offers an FRR (Fig. 7 (b)), which has the following se-
mantics: i) any flight should be reserved, and ii) if no flight
is available, hotel reservation is unnecessary. User B offers
an FRR (Fig. 7 (c)), which has the following semantics: do
not care about the failure of hotel reservation.

7.1 Generation of AFH-EBP Instances

AFH-EBP Generator generates two different AFH-EBP in-
stances according to each FRR, as shown in Fig. 8.

1) AFH-EBP instance for user A: Due to <bestTry>
declared in the FRR, if an application-dependent failure
named seat unavailable or an application-independent fail-
ure named faultcode† occurs in the activity F and the num-
ber of tries is less than or equal to the maximum threshold
then a Rebind activity finds an alternative flight service and
binds the activity F to the service by using rebinding han-
dler. Subsequently a Retry activity executes the activity F
again by using retrying handler. Due to <dependency> de-
clared in the FRR of user A, if the failure occurs and the
number of retries is more than the maximum threshold, the
Compensate activity compensates the Hotel Service by us-
ing the operation-coupled handler of the Hotel Service.

2) AFH-EBP instance for user B: Due to
<ignoreFailure> declared in the FRR, if an application-
dependent failure named room unavailable or an application-
independent failure named faultcode occurs in the activity
H, an Ignore activity forces the Payment activity to ignore
the input from the activity H by using ignoring handler.

Fig. 7 Examples of one CBP and two FRRs.

Fig. 8 Examples of two AFH-EBPs generated from the CBP of travel
agency and two users’ FRRs as given by Fig. 7.

7.2 Execution of AFH-EBP Instances

Process Executor executes two AFH-EBP instances under
diverse situations as follows:

1. Without any failure in all component services, both in-
stances are successfully terminated with the complete
reservation results on hotel and flight and the payment
receipt.

2. During execution of the first instance (Fig. 8 (a)), a
flight service was down. Process Executor detects the
‘service unavailable’ failure after timeout. This fail-
ure activates the failure recovery flow. The rebinding
handler finds an alternative service from a service com-
munity and rebinds the service to the flight reservation
activity. The retrying handler invokes the service with
the same inputs. As a result, the instance gives a user
the payment receipt of hotel and flight reservations.

3. During execution of the first instance (Fig. 8 (a)), a
flight service was down, all alternative services were
†faultcode is designated by the composite service provider.
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set to expose ‘seat unavailable,’ and max retry was
set to one, for evaluating the service compensation. Af-
ter the maximum retires, ‘seat unavailable’ failure oc-
curs as expected, and the restoration handler restores
the state of the hotel service as before its execution. As
a result, any reservations are not made and the user gets
the result of no reservation.

4. During execution of the second instance (Fig. 8 (b)), a
hotel service was set to expose ‘room unavailable.’ The
ignoring handler consumes the failure and transfers the
empty reservation result to the payment service. The
payment service charges the cost of flight reservation,
and the user finally gets only the flight reservation with
the payment receipt.

7.3 Performance Overhead

In this system, a penalty on service completion time is in-
curred at service instantiation after user’s request, because
failure-recovery flow is dynamically generated according to
the requirement of each user at every request. This penalty is
not incurred in previous systems where all service instances
provide the identical failure-recovery flow against the same
failure. However, the penalty can be overcome during ex-
ecution of service instances, with our requirement-matched
failure handling. For example, for user B as in Fig. 7 (c), our
system immediately gives the partial and worthy result, only
the flight reservation data, to the user in the first try, even if
a hotel service fails. On the contrary, the previous systems
repeat the request to the hotel service several times, and then
release the flight reservation. After all, the user should retry
another service to get the desired result. Accordingly, the
requirement-matched failure handling eliminates the need
for another try, which can reduce the completion time for
users to obtain the desired result.

In addition, the flow generation process at service
instantiation can be accelerated by preparing the default
failure-recovery flow and adding or subtracting the differ-
ential flow, and optimizing the XML processing associated
with FRR interpretation. The runtime overhead of orches-
trating the failure-recovery flow can be reduced by preparing
the failure handlers in Control Handler Archive and collect-
ing the alternative services of the same semantics in service
community for fast handling.

8. Concluding Remarks

In this paper we proposed a new Web service composition
framework which supports the dynamic adaptation of failure
handling behavior of a composite service to the failure re-
covery requirement of each user. Adaptive failure handling
reduces the handling cost by eliminating unnecessary han-
dling of the failure that is acceptable to users. The proposed
framework also contributes to a flexible service design by
which an architect of composite services would never care
about failure handling or versatile requirements of users.

We also implemented a prototype based on our framework
for verifying the adaptive failure handling. Our experiences
are useful for those interested in developing their compos-
ite Web services. In future work, we will investigate a way
of adjusting the failure handling behavior according to the
failure’s origin and the service environment at runtime.
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