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PAPER

A Family-Based Evolutional Approach for Kernel Tree Selection
in SVMs

Ithipan METHASATE†a), Student Member and Thanaruk THEERAMUNKONG†, Member

SUMMARY Finding a kernel mapping function for support vector ma-
chines (SVMs) is a key step towards construction of a high-performanced
SVM-based classifier. While some recent methods exploited an evolu-
tional approach to construct a suitable multifunction kernel, most of them
searched randomly and diversely. In this paper, the concept of a family of
identical-structured kernel trees is proposed to enable exploration of struc-
ture space using genetic programming whereas to pursue investigation of
parameter space on a certain tree using evolution strategy. To control bal-
ance between structure and parameter search towards an optimal kernel,
simulated annealing is introduced. By experiments on a number of bench-
mark datasets in the UCI and text classification collection, the proposed
method is shown to be able to find a better optimal solution than other
search methods, including grid search and gradient search.
key words: support vector machines, multifunction kernel, kernel tree,
optimal search, simulated annealing

1. Introduction

Recently kernel-based learning has been recognized as a
powerful technique to solve nonlinearity in several super-
vised, unsupervised and semi-supervised tasks, including
classification, regression, clustering, and eigenvector analy-
sis. Some popular kernel-based methods are Support Vec-
tor Machines (SVM) [1], [2], Kernel Fisher Discriminant
(KFD) [3], Semi-Supervised Kernel Machine (SSKM) [4],
and Kernel Principle Analysis (KPCA) [5]. For classifica-
tion tasks, an SVM is a well-known kernel-based method
that is successfully applied in many applications such as
text categorization [6], information retrieval [7], DNA de-
tection [8], intrusion detection [9] and image/speech recog-
nition [10], [11]. Being a binary classifier, an SVM utilizes
support vectors to maximize both classification accuracy
and margin between the classes. Like other kernel-based
methods, an SVM requires a kernel mapping function to
transform original data in a linear space to a non-linear high-
dimensional space by means of dot product between a pair
of mapped data points, known as kernel trick.

However, a common problem in SVM-based classifi-
cation is how to select a suitable kernel function and its hy-
perparameters (kernel parameters and SVM tradeoff param-
eter) that lead to satisfactory performance. While it is possi-
ble to perform trial-and-error in choosing a kernel function
blindly, several works [12]–[14] applied numerical analysis
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techniques to search for an optimal solution. As an early
work based on numerical analysis, Chapelle and Vapnik [12]
presented a gradient descent algorithm, that guides search-
ing process to an optimal solution by adjusting kernel pa-
rameters under consideration of their gradients in order to
improve time complexity of searching and also still maintain
classification accuracy. Their work introduced either a span
bound or a radius-margin bound as the objective function for
optimization, instead of empirical errors, and showed a gen-
eral framework of optimization for any kernel type. Later,
with inspiration of Chapelle’s work, Keerthi [14] pointed out
an analytical exploration on several different kernel func-
tions with implementation of radius-margin bound using the
gradient descent approach. In contrast with the previous
methods which utilizes L2 SVMs, Chung et al. [13] origi-
nally proposed a method to tune kernel parameters using L1
SVM with the BFGS Quasi-Newton method. While most of
the mentioned works used the Radius Basis Function (RBF)
kernel, some recent works have applied a gradient-based
method on other kernel functions. As a more complicated
approach, Glasmachers and Igel [15] extended the gradient
method to a general form of Gaussian kernels.

To overcome the limitation of local optimal problem
as well as differentiability and smoothness of the objec-
tive function used in the gradient method, more recent
works have exploited on the evolutional method. In 2005,
Friedrichs and Igel [16] initiated a so-called covariance ma-
trix adaptation evolution strategy (CMA-ES) to extend the
RBF kernel with scaling and rotation in order to realize in-
variance against linear transformation in the space of SVMs
parameters. In [17], Howley and Madden proposed a new
approach to use a so-called genetic kernel, which is repre-
sented by a tree each leaf node of which expresses a feature
vector (i.e., any data point or instance). Although this work
sounded the first attempt to apply genetic programming to
select an optimal kernel in SVM, it is not formulated well
and the experiments were limited. Moreover, unfortunately
in some situations, their genetic kernel may not satisfy the
Mercer’s condition. Recently, there have been a series of
works on a more flexible kernel so-called multiple kernel
learning (MKL). Originally Lanckriet et al. [18], [19] pro-
posed the framework of a linear combination of multiple
kernels that resulted in a quadratically-constrained quadratic
program (QCQP). Later, Sonnenberg et al. [20] reformu-
lated the MKL problem as a semi-infinite linear program
(SILP) and applied it on large-scale data. These MKL-based
approaches were designed to find a set of weights in a fixed
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form of a multi-RBF kernel using numerical analysis. As an
alternative, an evolutional method on multi-RBF kernels us-
ing evolutionary strategy was proposed by Phienthrakul and
Kijsirikul [21]. In their experiments, the more RBF terms
are added in a multi-RBF kernel, the higher accuracy the
method can achieve.

More recently, Sullivan and Luke’s work [22] applied
genetic programming to search an optimal function in a
more general form, where operators and kernels can be ar-
bitrary under the Mercer’s condition. In the same year,
Methasate and Theeramunkong [23], [24] combined genetic
programming and gradient search to find an optimal kernel
function. These works originally introduced the concept of
a so-called kernel tree to systematically represent a kernel in
the form of a tree under the Mercer’s conditions. Compared
with gradient search and grid search, the method was shown
to improve classification accuracy on various datasets in the
UCI repository [25] and text classification collection. A hy-
brid of genetic programming and evolutionary strategy was
presented in [26] to find an optimal for both kernel struc-
ture and kernel parameters. However, the existing methods
have explored both structure space and parameter space in a
random manner.

Towards this problem, we propose an adaptive control
mechanism based on simulated annealing, into the evolu-
tional method to find an optimal kernel more efficiently. The
concept of a family of identical-structured kernel trees is in-
troduced to explore structure space (a global space) using
genetic programming and investigate parameter space (a lo-
cal subspace) on a specific tree. In the rest of this paper,
Sect. 2 describes the kernel selection problem in SVM-based
classification. Section 3 presents the definition of kernel
trees and kernel tree family. In Sect. 4, global search and
local search are illustrated. Then the control mechanism be-
tween these two search methods using simulated annealing
are proposed. In Sect. 5, experimental results using vari-
ous datasets in the UCI repository and the text classification
collection and the diversity measurement are displayed. Fi-
nally, the conclusion is made in Sect. 6.

2. Kernel Selection for Support Vector Machines

In the SVM-based classification, the performance of a clas-
sifier is mainly affected by kernel function and its parame-
ters. The rest of this section describes how to select a single-
kernel function and a multi-kernel function for SVMs.

2.1 Single-Kernel Selection

The naive method for kernel selection in SVMs is to choose
one standard kernel function and then do trial-and-error on
parameter values in the kernel function. For each individual
kernel function, the set of parameters that yields the highest
accuracy is selected. Table 1 illustrates the four commonly
used kernel functions and their parameter sets. In addition to
the parameters in the functions, a tradeoff (usually, denoted
by C) is another factor on determination of classification ac-

Table 1 Some basis kernel functions K (x, y).

Kernel Name Function #Parameters

linear (x · y) 0

RBF exp
( −‖x−y‖2

c

)
1

polynomial ((x · y) + θ)d 2
sigmoid tanh (κ (x · y) + θ) 2

curacy when some errors are allowed for soft margin in an
SVM. Therefore the total numbers of parameters for lin-
ear, RBF, polynomial and sigmoid kernels are 1, 2, 3 and
3, respectively. As a simple approach, grid search can be
applied by fully enumerating all combinations of parameter
values. This method does not work well with a large num-
ber of parameters. In this work, the number of parameters
in these four common kernels is not large, i.e. at most 3 pa-
rameters. Besides the grid search, gradient search can find
the optimal solution more efficiently with gradient informa-
tion. However, as a drawback the gradient search may lead
to a local optima, instead of global one, if the initialization is
not good enough. In contrast with gradient search, an evo-
lutional method can be applied to avoid trapping into this
local optimum.

2.2 Multi-Kernel Selection

A natural extension of a single-kernel function is to al-
low several basic kernels to form a kernel function. For
this point, the well-known Mercer’s theory [27] was in-
troduced to create a complex kernel function, that has
positive-definite property, from several kernel functions,
called multi-kernel function. Intuitively the multi-kernel se-
lection problem is much more difficult than the single-kernel
selection problem since, in addition to parameters, the form
of the function can be varied with some operators such as
addition, multiplication and exponential operator. This ex-
tension gives us a chance to get a more suitable mapping
kernel for a classification problem. To deal with multiple
kernel tuning, a method namely multiple kernel learning
(MKL) was proposed [18], [19] to find an optimal weight-
ing on a fixed superposition form of a single RBF. For more
flexibility, genetic programming can be applied to form a
more general multi-kernel function. With this technique, the
kernel can be constructed freely over the Mercer’s criteria.
However, some control mechanisms are needed for tuning
in multi-kernel learning.

3. A Kernel Tree as a Multi-Kernel in SVM

In this section, the definitions of a kernel tree and a tree fam-
ily are given. A kernel tree enables the representation of a
multi-kernel function in the form of a tree structure. Orig-
inally proposed in [24], a kernel tree was shown to satisfy
the Mercer’s theory [27] which is a representation of a sym-
metric positive-definite function on a square as a sum of a
convergent sequence of product functions. In this work, we
introduce the concept of a kernel tree family as a group of
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structurally identical trees (or isostructural trees). Any two
trees are considered as structurally identical when they have
the same tree structure with the same node type for each
node position but may not occupy the same parameter val-
ues for any corresponding edge and any corresponding leaf
node. Moreover, we also propose a mechanism to control
the population generation in generic programming, based on
this kernel tree family. In the rest, the formal definition of
kernel trees is given and then a family of kernel tree is ex-
plained.

3.1 Definition of Kernel Trees

A kernel function K(xi, y j) have been used to implement a
kernel trick which is a method to exploit a linear classifier
to solve a non-linear problem by mapping the original non-
linear observations into a higher-dimensional space by a dot
product between two points xi, y j, as follow.

K(xi, y j) = K(xi)K(y j) (1)

Definition 1 (A kernel tree): A kernel tree T (·) encodes a
kernel function K(·) by a tree structure T = (NI ,NL, E),
where an intermediate node ni ∈ NI represents an operator,
and a leaf node nl ∈ NL specifies a single kernel function
and an edge e ∈ E expresses a link between node ni and
node n j with a coefficient.

In other words, a kernel tree is characterized by the way
to assign an operator, a coefficient and a kernel function at
each intermediate node, each edge and each leaf node, re-
spectively, in a kernel tree. In addition to these three com-
ponents, the number of branches, called branching factor,
for each intermediate node is another factor in determining
the property of the kernel tree. In this work, an operator
in consideration is one of two types: addition and multi-
plication, a coefficient is a real number, a kernel function
is one of the three types: linear, RBF, polynomial func-
tion and branching factor is set to be two. Figure 1 dis-
plays a kernel tree T

(
xi, x j

)
of a kernel function with four

sub-kernels, K
(
xi, x j

)
= α1

(
α3K1

(
xi, x j

)
+ α4K2

(
xi, x j

))
+

α2

(
K3

(
xi, x j

)β1
K4

(
xi, x j

)β2
)
. Here, α1, α2, α3 and α4 are

coefficients and β1, β2 are exponential, and K1, K2, K3 and
K4 are basic kernel functions.

Fig. 1 A kernel tree T
(
xi, x j

)
of a kernel function with

four sub-kernels K
(
xi, x j

)
= α1

(
α3K1

(
xi, x j

)
+ α4K2

(
xi, x j

))
+

α2

(
K3

(
xi, x j

)β1 K4

(
xi, x j

)β2
)
.

3.2 A Family of Kernel Trees

In this section, first we introduce a normalized structure of a
kernel tree and isostructural kernel trees. Thereafter, we de-
scribe a family of kernel trees based on these two concepts.

Definition 2 (Normalized Structure of a Kernel Tree): The
normalized structure of a kernel tree is a tree the branches
of which are reordered according to their weights calculated
from the substructures under these branches, in order to pre-
serve structural regularity. The structural regularity includes
the order among leaf node types, the order among interme-
diate node types, and the order between leaf node types and
intermediate node types.

Technically, since a branch in any tree will have a
unique corresponding node (the node under the branch), a
weight given to a branch implies the weight given to its
corresponding node. In this work, the weight of a node n,
denoted by V(n), is calculated with the following formula.
This formula enables the preservation of structural regular-
ity.

V(n) = W(n)(B · M)d +
∑
c∈Nc

V(c) (2)

where B is the branching factor in the tree, d is the depth
level of the node n, and Nc is the set of the child nodes of
the node n, W(n) is an index representing each type of the
node n and M is the maximum index value. In this task, two
different indexing systems (W(n)) will be set for leaf nodes
and intermediate nodes. Given T1 leaf node types and T2
intermediate node types, leaf node types will be assigned the
values of 1, (B+1), (B2+B+1),. . . , and (BT1+BT1−1+. . .+1)
in order, while intermediate node types will be given the
values of 1, (B + 1), (B2 + B + 1),. . . , and (BT2 + BT2−1 +

. . . + 1) in order. That is, the first node has the value of 1,
the second node type takes the value of (B + 1), and so on.
M is the maximum value from two indexing systems, i.e.
M = MAX(BT1 + BT1−1 + . . . + 1, BT2 + BT2−1 + . . . + 1).

Figure 2 illustrates a kernel tree, its normalized struc-
ture and the weight of each node in the tree. In this figure, B
is set to 2 (i.e, a binary tree). The index (W(n)) equals to 1,
3 and 7 when the node n expresses a linear, RBF and poly-
nomial function respectively while it is set to 1 and 3 for an
addition operator and a multiplication operator, respectively.
Moreover, M is 7 (i.e., MAX(7, 3)).

To clarify the calculation, some weighting examples
are given as follows. The node n2 at the depth of 0 has a
weight of 3 (V(n2) = 3) since this node represents a RBF
(W(n2) = 3). The node n7 is given a weight of 52 since it
has two child nodes with the weights of 7 and 3, and it is
located at the depth of 1 with the operator ‘∗’ (W(n7) = 3).
Therefore, V(n7) equals to (3 × (2 × 7)1) + (7 + 3) = 52.
The node n12 is given a weight of 221 since its depth is 2, its
operator is ‘+’ (W(n12) = 1), and its left and right nodes get
the weights of 22 and 3, respectively. Thus, V(n12) obtains
the value of (1 × (2 × 7)2) + (22 + 3) = 221.
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Fig. 2 Normalized structure of a kernel tree.

Note that the child nodes of each node in the normal-
ized tree will be reordered in the manner that a child node
with a lower weight will be located on the left of a child
node with a higher weight. Any child nodes with a same
weight will have the same structure. Therefore, there is no
need to swap their order.

3.2.1 Isostructural Kernel Trees

Definition 3 (Isostructural Kernel Trees): Two kernel trees,
T1 and T2, are isostructural if and only if the normalized
structure of T1 has the identical structure with the normal-
ized form of T2.

It is noted that two isostructural kernel trees will have
an identical structure but may have different parameter val-
ues at the edges and leaf nodes. Moreover, the weight value
of the top nodes of any two identical structures are always
equal according to Eq. (2). Therefore, it is a trivial task to
find identical structures.

Definition 4 (A Family of Kernel Trees): A family of ker-
nel trees is defined as a set of isostructural kernel trees.

A family of kernel trees consists of the normalized trees
which have the same weight value. The computational cost
for finding the families of kernel trees mostly come from
the tree normalization step. Anyway it is obvious that the
calculation cost in this step is relatively small compared to
SVMs calculation. The next section illustrates how to apply
the concept of a family of kernel trees to control local and
global searching. Later for simplicity, we will call a family
of kernel tree as a tree family.

4. Searching for an Optimal Kernel Tree

In this section, we propose an adaptive control mecha-
nism, where simulated annealing is incorporated into the
evolutional-based method to find an optimal kernel effi-
ciently. This approach involves two scales of searching;
global search on structure space and local search on parame-
ter space. As a modification of genetic programming (GP), a
structure space is explored as global search while a parame-
ter space is investigated as local search. With the concept of

Fig. 3 GP operators on kernel trees: crossover operator and mutation
operator.

a tree family stated in the previous section, a structure space
is formulated from varied tree families while a parameter
space can be defined among kernel trees existing in a tree
family. Although it is possible to apply these two search-
ing methods blindly, a suitable control may make global
search and local search efficiently cooperate with each other
to gain a higher accuracy for a specific problem. For this
purpose, simulated annealing is introduced to balance struc-
ture search and parameter search under the concept of a tree
family, i.e., a family of kernel trees. In the rest, we describe,
in turn, structure search as global search, parameter search
as local search, and simulated annealing as search control.

4.1 Structure Evolution as Global Search

In our work, genetic programming (GP) is applied to search
for optimal structure of a kernel function as global search.
Like the conventional GP, two common operators, namely
crossover and mutation, are used to generate new trees as a
part of searching process on the structure space as shown in
Fig. 3. The crossover operator selects two parents as targets
for swapping their substructures while the mutation opera-
tor replaces a substructure of the targeted kernel tree with
a new substructure. When crossover and mutation are ap-
plied, the structure of the newly constructed kernel tree is
controlled to be different from its parents. Same as done in
the conventional method, a crossover operator selects two
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parents (kernel trees), and randomly exchanges a part of a
selected tree with a part of the other. On the other hand, a
mutation operator chooses a parent and then replaces it with
a randomly created structure. As described in Sect. 3, all
trees need to be in the normalized form. Therefore, after the
crossover and mutation process, we need to transform the
result tree into a normalized tree. For crossover, the nodes
that we exchanged between two trees and their upper nodes
need to be recalculated the weight and rearranged to the nor-
malized form. Similar to crossover, we need to rearrange the
mutated trees from the nodes in their mutated part and their
upper nodes in the tree.

4.2 Parameter Evolution as Local Search

In the past, evolution strategy (ES) was applied to tune hy-
perparameters among several SVMs with the fixed form of
the kernel function [16], [21]. The task was to find suitable
settings of parameters in such function. As an modifica-
tion to this conventional usage of ES, our method locally
searches for a set of suitable parameter values of kernel trees
in each tree family selected by GP in the stage of global
search. In our method, a parameter vector is constructed for
a kernel tree, with each element corresponding to a weight
(parameter) at a branch in the kernel tree or a value of a pa-
rameter in the kernel function, which is located at the leaf
node of the kernel tree. Moreover, in this stage, the vectors
formulated from the isostructural kernel trees will be gath-
ered together. The mean and the variance of each element
of the vectors are calculated and then used for producing a
set of vectors which represent the kernel trees in the next
generation.

Suppose that a kernel tree Ti is a member of a tree fam-
ily F (i.e., Ti ∈ F), and the parameters of Ti is denoted
by a vector of vi, j, where j ∈ [1, n] is the ordinal index of
the j-th parameter, and n is the number of parameters in Ti.
Note that all trees in the same family have the same number
of parameters. The mean μ j and variance σ2

j are calculated
from the values of the j-th parameter in the tree family as
follows.

μ j =
1
|F|

|F|∑
i=1

vi, j (3)

σ2
j =

1
|F|

|F|∑
i=1

(
vi, j − μ j

)2
(4)

The family mutation is a process to generate a new ker-
nel tree from a set of isostructural kernel trees. Here, let the
j-th element of the newly generated kernel tree denoted by
v′j. Its value can be derived by

v′j = μ j + σ j · N(0, 1) (5)

where N(0, 1) is a normally distributed random scalar.
Figure 4 displays our framework structure search and

parameter search are combined to perform two different lev-
els of search. As the first step, an initial population is gener-
ated by using a common random technique, such as Ramped

Fig. 4 Family-based genetic programming.

Half-n-Half method [28]. Second, the population is eval-
uated by averaging accuracy of a cross validation. Third,
the n-best parents are selected as seeds for generating the
next population. Among the selected parents, isostructural
trees are grouped together to form a set of tree families in
the fourth. At the fifth step, trees in the next population are
produced by two offspring generation methods; inter-family
and intra-family method. Here, the inter-family method
(i.e., global search) applies GP to produce a new tree by ex-
changing subtrees of any two trees or mutating the tree while
the intra-family method (i.e., local search) utilizes parameter
search to generate a new tree (with the preserved structure)
by considering the mean and variance of parameter values
among trees in the same family. Iteratively the offsprings
will be evaluated and selected as parents for generating the
next population. The repetition is terminated when the num-
ber of generations reach a predefined threshold.

4.3 Controlled Search Using Simulated Annealing

In this work, the concept of simulated annealing is intro-
duced to control offspring generation by inter-family and
intra-family methods. As a well-known technique towards
better approximation of global optimal, the simulated an-
nealing analogizes the process of increasing the size of
metal crystal, to the process of finding an optimal solu-
tion in large search space. With this technique, a temper-
ature is analogous to the ratio of offspring generated by the
inter-family method to those produced by the intra-family
method. Following the traditional annealing approach, our
proposed method reduces the temperature gradually from
high to low. With a higher temperature, we randomly wan-
der through states with more dynamic exploration of global
search space. In contrast, a lower temperature enables us
to find better configurations with more stable exploration of
local search space.

Algorithm 1 illustrates our proposed genetic program-
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Algorithm 1: Genetic Programming with Simulated
Annealing (GPSA)

begin
MnT = τ1; MxT = τ2;
TempIRate = α; TempDRate = β;
AccThres = μ; CountThres = ψ;
T =MxT; Count = 0;
OldAccIntra = 0; Gen = 0; GenMax = σ;
POP = Initiate();
foreach Gen < GenMax do

POPACC = Evaluation(POP);
PARENT = Select(POPACC);
FAM = Group(PARENT);
INTEROFF = GenInterFam(T,FAM);
INTRAOFF = GenIntraFam(MxT-T,FAM);
AccIntra = EvaluationIntra(INTRAOFF);
DiffAccIntra = AccIntra - OldAccIntra;
if DiffAccIntra < AccThres then

Count = Count +1;

else
Count = 0;

if Count > CountThres then
T =MIN(MxT,T+TempIRate) ;
Count = 0;

else
T =MAX(MnT,T−TempDRate) ;

Gen = Gen + 1;
OldAccIntra = AccIntra;
POP = INTEROFF ∪ INTRAOFF ;

end

ming with simulated annealing (GPSA) to control the dif-
ferent offspring generation in genetic programming. In
the algorithm, T expresses the temperature for managing
the ratio of offspring generation between inter-family and
intra-family methods. The temperature T is controlled to
be a value between minimum temerature (MnT) and max-
imum temperature (MxT), with decrement of TempDRate.
OldAccIntra and AccIntra are the accuracy that is gained
from the intra-family method in the previous generation and
that in the current generation, respectively. DiffAccIntra
is the difference between OldAccIntra and AccIntra. Gen
is the index of the current generation and GenMax is the
maximum number of generations. The Initiate function
randomly generates a population (POP). The Evaluation
function evaluates each element in the population (POP)
and then returns the element with its accuracy attached
(POPACC). The Select function selects out a number of
best elements from the prioritized population (POPACC)
as the parents (PARENT) for the next generation. The
Group function clusters the parents (PARENT) into a set
of groups (FAM) based on their structures. The trees in a
group are isostructural. The GenInterFam function gener-
ates offsprings among families (INTEROFF) while the Gen-
IntraFam function creates offspring within a family (IN-
TRAOFF). The EvaluationIntra function returns accuracy
performance (AccIntra) of the offsprings produced within a
family. At the last line in the algorithm, the next generation
population (POP) is formed by the union of both types of
the offsprings. Moreover, in this work, the Evaluation and

EvaluationIntra are performed to find the accuracy of the
ten-fold cross-validation.

Unlike conventional simulated annealing, our pro-
posed method allows Temp to be increased with a step of
TempIRate if the intra-offsprings do not give a sufficient im-
provement on average accuracy, say AccThres, for a certain
number of generations (CountThres). Moreover, the loop
of GPSA terminates when the number of iterations reaches
the preset maximum (GenMax). With this mechanism, it is
possible to search for a new structure even the intra-family
search stuck with a local optima.

While it is possible to have several settings for the pa-
rameters in the algorithm, the two major classes can be de-
fined by setting AccThres to either a non-negative value or a
negative value. A non-negative AccThres allows us to stimu-
late the temperature to be higher while the negative one will
permanently set Count to zero and then the temperature will
never increase. In this paper, we investigate both classes to
compare their performance.

5. Experimental Evaluation

To evaluate our proposed method, two experiments have
been conducted using two different types of classification
datasets, the UCI repository and a text classification collec-
tion. In the experiments, classification accuracy and train-
ing complexity are investigated. Kernel tree structures that
obtain the best result for each dataset is also discussed.
The rest constitutes three subsections. The first subsec-
tion describes properties of our datasets and experimental
settings. The second subsection presents performance of
our proposed family-based evolutional method compared to
the non-family-based evolutional method, as well as two
naive methods; namely grid search and gradient search.
Moreover, the computational consumption of these five ap-
proaches is also discussed. The last subsection illustrates an
analysis of optimal kernel tree structures.

5.1 Datasets and Experimental Settings

For benchmarking, two different types of datasets are uti-
lized. The first type is composed of ten datasets selected
from the UCI repository [25], i.e., Adult, Balance-Scale
(BS), Breast-Cancer-Wisconsin (BCW), German, Heart, Im-
age, Iris, Sonar, Waveform (WF), and Wine. Table 2
shows the detailed characteristics of each dataset in terms
of the number of attributes (#Attrs), the number of dimen-
sions (#Dims), the number of classes (#Cls), the number
of samples (#Samps), and the number of samples per class
(#Samps/#Cls). Note that the number of dimensions is not
equal to that of attributes since a discrete-valued (opposed to
numeric-valued) attribute can be broken down to more than
one dimension. In addition, values in each dimension are
normalized to zero-mean and unit standard deviation.

As the second type, five text classification datasets;
WebKB1, WebKB2 [29], 20-Newsgroup (20NG) [30], Thai-
Medical [31] and Thai-News [32], are used to explore per-
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formance of the proposed method in real application with
high dimensions. Some common properties of these datasets
are illustrated in Table 3. For WebKB1 and WebKB2,
HTML tags are removed to form a plain-text version. In
order to reduce the variety of text features in the English
datasets, WebKB1, WebKB2 and 20-Newsgroup are prepro-
cessed with stopword removal and word stemming. Since a
Thai text has no word boundary, the texts in Thai-Medical
and Thai-News datasets are segmented with an open-source
word segmentation program, namely cttex [33].

In this work, we investigate the performance of five
kernel selection methods, i.e., grid search (GR), grid with
gradient search (gGD), genetic programming with gradient
search (gGP), family-based GP with non-stimulation (fGP)
and family-based GP with stimulation (sfGP). Toward a rea-
sonable comparison, the parameters of each method in our
experiments are set in the manner that its SVMs training
number is close to each other. The settings of the experi-
ments are as follows. As the baselines, GR occupies a sin-
gle RBF and polynomial as their kernels. In practical, the
computational complexity of GR depends on the sampling
size in parameter space. For our GR experiments on the UCI
datasets, the sampling in a logarithmic scale with eight (GR-
8) and thirty two portions (GR-32) applied on RBF search-
ing space. In the text classification datasets, in addition to
RBF, polynomial kernel is also investigated with sampling
size of thirty two. Same as GR, gGD occupies a single RBF
for all datasets. For gGD, the near optimal solution is first
roughly found by GR-32 and then is further refined by the
BFGS Quasi-Newton method to adjust the parameters of an
RBF kernel in order to achieve the optimal result. Unlike
GR and gGD with a single RBF, gGP initially finds a set
of near optimal multi-kernel functions by genetic program-
ming, and then fine-tunes the parameters (not the structures)
of these multi-kernel functions with gradient search.

Table 4 illustrates our settings of genetic programming

Table 2 Characteristics of datasets in the UCI repository.

Dataset #Attrs #Dims #Cls #Samps #Samps/Cls

Adult 14 105 2 32561 7841;24720
BS 4 20 3 625 49;288;288
BCW 10 10 2 699 241;458
German 20 24 2 1000 300;700
Heart 13 20 2 270 120;150
Image 19 19 7 210 30 each
Iris 4 4 3 150 50 each
Sonar 60 60 2 208 97;111
WF 40 40 3 5000 1667 each
Wine 13 13 3 178 48;59;71

Table 3 Characteristics of datasets in the text classification collection.

Dataset Type Lang #Dims #Cls #Docs #Docs/Cls

20NG Plain Text English 130151 20 19997 ≈ 1000
WebKB1 HTML English 54492 5 8282 827−4120
WebKB2 HTML English 54492 7 8282 137−3764
Thai Medical Plain Text Thai 297628 5 3599 34−774
Thai News Plain Text Thai 185041 5 1492 252−310

in gGP, which is the same as the gGP originally proposed in
[24] (even a different name called GP+Gr). The maximum
depth and branching factor control the complexity of gener-
ated trees during the genetic programming phase. To limit
the complexity, our work limits the depth and the branch-
ing factor of kernel trees to five and two, respectively. This
condition allows us to generate a kernel tree with up to max-
imum 32 kernels as its leaves. A set of functions and termi-
nals defined determine the set of possible kernel trees. The
more operators in the function set as well as the more kernel
functions in the terminal set we have, the more varieties of
kernel tree structures we can generate. As stated in Sect. 3.1,
two operators (addition and multiplication) and three basic
kernels (linear, RBF and polynomial) are used in this work.
As the fitness function (Fitness Func.), the average classi-
fication accuracy of a ten-fold cross-validation is targeted.
Same as the gGD, the BFGS Quasi-Newton method is ap-
plied as the gradient descent method in the gGP.

Introducing the family concept into the gGP, our pro-
posed two family-based GPs, i.e. fGP and sfGP, perform
global search by GP for inter-family crossover and mutation
as well as local search using evolution strategy for intra-
family crossover and mutation. In the experiment, the ratio
of global and local searches is controlled by setting a stimu-
lated temperature during simulated annealing as discussed
in Sect. 4.3. To investigate performance of our proposed
method, five settings of genetic programming with simu-
lated annealing (GPSA) in Table 5 are used. These settings
are applied in Algorithm 1 which is described in Sect. 4.3.
The fGP, the version with non-stimulation (NS-SA), allows
only decrement of temperature. On the other hand, the sfGP
permits both temperature increment and decrement. This
mechanism is controlled by setting a negative or a non-
negative value for accuracy threshold in the table, accord-
ingly. For the experiment settings of both fGP and sfGPs in
Table 5 the range of temperature [τ1, τ2] is set to [0, 1000].

Table 4 Settings of genetic programming (GP).

Parameter Setting
Maximum Depth 5
Function Set Addition and Multiplication

(details in [24])
Terminal Set Linear, RBF, Polynomial
Maximum Gen. 50
#Populations 30
#Parents 10
Initialize Method Ramped Half and Half
Fitness Func. Avg. Acc. over ten-fold CV
Operators Reproduction, Crossover

and Mutation
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Table 5 Settings of simulated annealing with genetic programming. (NS-SA:non-stimulated simu-
lated annealing, S-SA:stimulated simulated annealing)

Parameter NS-SA (fGP) S-SA-I (sfGP-I) S-SA-II (sfGP-II) S-SA-III (sfGP-III) S-SA-IV (sfGP-IV)
Temp. Range ([τ1, τ2]) [0,1000] [0,1000] [0,1000] [0,1000] [0,1000]
Temp. Increasing Rate (α) NA 10 20 50 100
Temp. Decreasing Rate (β) 10 10 10 10 20
Accuracy Threshold(μ) NA 0 0 0 0
Count Threshold (ψ) NA 5 5 5 5
Maximum Generation (σ) 50 50 50 50 50

Table 6 Average number of SVM trainings for GR, gGD, gGP, fGP and
sfGP in our experimental settings.

Methods UCI TC

GR-8(RBF) 64 -
GR-32(Poly) - 64
GR-32(RBF) 1024 1024
gGD(RBF) 1027 1024
gGP(Multi) 1069 1080
fGP(Multi) 1010 1010
sfGP(Multi) 1010 1010

Intuitively, the range does not have a large effect on accu-
racy. Therefore the range is fixed for all settings. The tem-
perature starts from 1000, i.e. full encouragement of inter-
family operators. In the case of non-stimulated simulated
annealing (fGP), the temperature decreasing rate β is set
to 1% (i.e., 10 out of 1000). This means the percentage
of inter-family operators against intra-family operators de-
creases gradually. Finally the temperature is set to 500 (half
of 1000) since the maximum generation is set to 50. At this
temperature, the ratio of inter-family and intra-family oper-
ators will be the same and the offspring are generated from
both intra-family and inter-family operators equally. For the
stimulated simulated annealing (sfGP), four settings of pa-
rameters are investigated. In sfGP-I, sfGP-II an sfGP-III, the
stimulation may be activated every ψ iterations with α at the
rate of 10, 20 and 50, respectively. The higher value of α is,
the higher rate of inter-family operators against intra-family
increases. In the case of sfGP-IV, the decreasing rate β is set
to 20. That is the intra-family operator increases faster than
the case of β = 10 in sfGP-I, sfGP-II and sfGP-III. In an ex-
treme case of this condition, if the stimulation process is not
activated until reaching the maximum generations, there are
only intra-family operators available since the temperature
will reduce to 0.

Table 6 summarizes the list of the methods we explore,
as well as their complexity in the form of the average num-
ber of SVM training. The table illustrates average number
of invoking an SVM trainer in either of GR, gGD, gGP,
fGP or sfGP, for the UCI and text classification datasets.
However it is possible to vary the number of SVM call-
ing, by setting different parameters. In the experiment, in
order to set the comparable complexity for all methods we
set the parameters that make the number of SVM calling as
shown in the table. As a practical method, GR-8 consists
of 64 SVM trainings since there are two possible parame-
ters, log(C) and log(γ). For GR, the number of invoking
trainers equals to the multiplication of sampling numbers

in every parameter (dimension). For the RBF-based GR-32,
the sampling number for each parameter is set equally to 32,
the number of calling an SVM trainer in the RBF-based GR
is 32 × 32 = 1024. In contrast with RBF, the polynomial-
based GR varies log(C) and d parameters. The sampling
number of log(C) and d are 32 and 2 (d = 2, 3), respec-
tively. The total number of trainings with polynomial-based
GR is 32×2 = 64. In general, more parameters with a higher
sampling rate will trigger a larger number of SVM trainings.
The number of SVM trainings in the gGD method is set to
be equal to the summation of the numbers of SVM train-
ings in the GR method and that in the gradient search (GD)
method. As stated previously, the number of SVM trainings
in the RBF-based GR corresponds to 1024. Moreover, the
number of SVM trainings for the GD depends on the gra-
dient of the objective surface. The more steep the gradient
is, the more quickly the GD converges to the optimal value.
There are 1024 GR steps and 5 GD steps on average for gGD
in our experiment. For gGP, fGP and sfGP, the number of
SVM trainings depends on the population size, the number
of parents and the number of iterations. In this work, the
setting is 30 populations each with 10 parents over 50 itera-
tions. In the first iteration, 30 offsprings are generated as the
first population. In each later iteration, only 20 offsprings
are generated since 10 excellent parents are remained from
the current population to the next population. Therefore, the
number of SVM learnings is 30 + (20 × 49) = 1010). This
number is applicable to the cases of fGP and sfGP. How-
ever, unlike fGP and sfGP, the gGP occupies an additional
step of gradient search (GD), which contains on average 63
GD steps for the selected 10 offsprings as the parents.

5.2 Evaluation on UCI and Text Classification Collection

This section presents the results of investigating our ap-
proach in two different tasks: UCI machine learning and text
classification. All experiments are done with ten times of
ten-fold cross-validation. The experimental results of UCI
repository are shown in Table 7. Intuitively GR-32 performs
a better result over GR-8 since the GR-32 evaluates with a
higher sampling size of parameters in the search space than
in GR-8. Unsurprisingly the gGD always outperforms GR-
32 since the gGD performs the same process with GR-32,
but also followed by gradient search. The gGP overcomes
gGD in almost all datasets, excepts Heart, Image and Wine.
The fGP and all sfGPs give better performance over gGP in
nine out of the ten datasets, except Iris. Anyway, for the
exceptional datasets, there is no significance difference on
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Table 7 Average accuracy ± standard deviation of the ten UCI datasets, with significance testing.

Dataset GR-8(RBF) GR-32(RBF) gGD(RBF) gGP(Multi) fGP(Multi) sfGP-I sfGP-II sfGP-III sfGP-IV

Adult 82.11 ± 1.37 85.63 ± 0.52 86.95 ± 1.54 87.32 ± 1.14 87.65 ± 0.98 86.29 ± 1.19 86.84 ± 1.26 86.97 ± 1.38 86.78 ± 1.21
BS 79.03 ± 2.84 80.05 ± 3.16 80.47 ± 1.92 80.74 ± 1.69 ∗82.48 ± 1.42 80.76 ± 2.17 ∗82.52 ± 2.31 ∗82.61 ± 2.45 81.87 ± 3.32
BCW 91.94 ± 0.32 96.35 ± 0.42 96.73 ± 1.44 97.24 ± 1.42 98.15 ± 1.85 96.63 ± 2.74 98.75 ± 1.39 98.13 ± 1.76 98.57 ± 1.26
German 70.55 ± 1.79 74.91 ± 1.57 75.71 ± 1.89 77.31 ± 2.13 ∗79.18 ± 1.91 ∗78.83 ± 1.93 78.95 ± 2.53 ∗79.07 ± 2.20 ∗78.84 ± 1.78
Heart 83.47 ± 3.07 86.98 ± 2.68 87.32 ± 3.61 87.25 ± 1.91 86.73 ± 2.34 87.14 ± 2.49 88.29 ± 3.34 88.21 ± 3.75 87.71 ± 3.16
Image 92.83 ± 0.85 96.83 ± 0.51 97.18 ± 0.87 97.03 ± 0.55 ∗98.28 ± 0.79 ∗98.02 ± 0.96 ∗98.13 ± 0.75 ∗98.05 ± 0.65 ∗98.22 ± 0.64
Iris 93.78 ± 3.41 96.57 ± 1.09 97.27 ± 1.04 98.54 ± 0.74 97.81 ± 1.63 97.52 ± 1.72 98.16 ± 0.59 98.11 ± 0.72 98.36 ± 1.02
Sonar 83.25 ± 2.93 87.84 ± 2.68 88.53 ± 2.19 90.78 ± 1.76 92.37 ± 1.93 92.61 ± 1.57 ∗93.19 ± 1.87 ∗93.15 ± 1.74 ∗92.79 ± 1.65
WF 84.36 ± 3.96 86.11 ± 3.24 86.39 ± 3.75 88.61 ± 2.73 87.74 ± 2.47 88.43 ± 1.68 88.72 ± 2.83 88.98 ± 2.62 88.61 ± 2.06
Wine 96.91 ± 1.44 98.77 ± 0.35 98.98 ± 0.62 98.86 ± 0.70 99.31 ± 0.62 98.81 ± 0.59 ∗99.24 ± 0.37 99.18 ± 0.71 99.05 ± 0.31

*denotes accuracy improvement when comparing with gGP(Multi) at P < 0.1

Table 8 Average accuracy (%) ± standard deviation of 20NG, WebKB1, WebKB2, Thai Medical and
Thai News dataset with significance testing.

Dataset GR-32(Poly) GR-32(RBF) gGD(RBF) gGP(Multi) fGP(Multi) sfGP-II(Multi)

20NG 87.31 ± 2.15 87.45 ± 3.86 88.64 ± 2.88 91.36 ± 3.16 92.78 ± 2.76 92.76 ± 3.16
WebKB1 86.32 ± 3.07 86.11 ± 3.47 88.39 ± 3.87 90.58 ± 3.24 90.30 ± 3.43 91.54 ± 2.93
WebKB2 75.89 ± 2.59 77.26 ± 2.13 78.18 ± 2.72 82.79 ± 2.72 82.94 ± 3.08 ∗83.87 ± 1.48
Thai Medical 83.54 ± 1.84 83.23 ± 2.07 85.01 ± 1.04 86.72 ± 1.43 ∗89.72 ± 1.68 ∗89.92 ± 1.45
Thai News 87.61 ± 1.93 88.98 ± 1.88 89.12 ± 1.66 91.54 ± 1.51 91.73 ± 1.21 ∗93.71 ± 2.06

*denotes accuracy improvement when comparing with gGP(Multi) at P < 0.1

accuracy. In the table, sfGP-II yields the highest average of
accuracy for three datasets (i.e., BCW, heart and sonar) and
sfGP-III gives the highest for two datasets (i.e. BS and WF)
while fGP is superior for three datasets (Adult, German and
Image).

As statistical significance testing, the paired t-test with
significance level of P < 0.1 is performed to compare the
proposed methods (i.e., fGP sfGP-I, sfGP-II, sfGP-III and
sfGP-IV) with the baseline (i.e., gGP). The significant im-
provement will be marked with ∗ in Table 7 and Table 8.
The sfGP-I, sfGP-II, sfGP-III and sfGP-IV, a family-based
kernel tree with stimulated SA, significantly improves the
classification over the gGP in two (i.e. German and Image),
four (i.e. BS, Image, Sonar and Wine), four (i.e. BS, Ger-
man, Image and Sonar) datasets, and three (i.e. German, Im-
age and Sonar), respectively. The fGP, a family-based ker-
nel tree with non-stimulated SA, gains significant improve-
ment over the gGP in three datasets (i.e., BS, german and
image). Although the gGP acquires the highest accuracy for
the Iris dataset, there is no significance difference between
gGP and fGP as well as sfGP. For the settings in Table 5,
with a higher degree of stimulations (larger α), sfGP-II and
sfGP-III afford a better performance than sfGP-I. In case
of sfGP-IV, both α and β is set to a higher value to make
more change in the ratio of operation on a higher adjust-
ment inter-family and intra-family. The sfGP-IV gives the
performance in the same level with sfGP-II and sfGP-III. As
a conclusion, both fGP and sfGPs tend to achieve the higher
accuracy compared to gGP while sfGP performs better than
fGP in several cases. The sfGP-II seems to be the best set-
ting. Therefore, later we focus on sfGP-II in text datasets.

Besides the toy datasets, we also explore our methods
on a number of datasets on real application, i.e. text classi-
fication. It is well-known that polynomial kernel frequently
gives a good result in text classification task so we inves-

tigate GR with polynomial as well as RBF kernel. In this
experiment, the performances of fGP and sfGP-II are com-
pared to those of GR(poly), GR(RBF), gGD(RBF) and gGP.
For each of five text-classification datasets, the average ac-
curacy and standard deviation of ten times of ten-fold cross
validation are figured out as shown in Table 8. It is obvious
that gGP seems to obtain a better accuracy than GR(Poly),
GR(RBF) and gGD. As another observation, both fGP and
sfGP-II outperform gGP for all datasets. In details, sfGP-II
performs the best on four datasets (i.e., WebKB1, WebKB2,
Thai Medical and Thai News) while fGP yields the high-
est accuracy for one dataset (20-NewsGroups). However,
for the 20-NewsGroup dataset, accuracy difference between
fGP and sfGP-II are very trivial (i.e., 92.78% and 92.76%).
Compared to gGP (the baseline) using the paired t-test with
significance level of P < 0.1, sfGP-II significantly improves
the classification over gGP in three datasets (i.e., WebKB2,
Thai Medical, and Thai News) while fGP gains significant
improvement over gGP in only one dataset (i.e., Thai Medi-
cal).

As a conclusion, both fGP and sfGP outperform gGP
to some extent while sfGP performs better than fGP in most
cases.

5.3 Analysis on Optimal Kernel Trees

This section provides an analysis of the structural character-
istics of the optimal kernel trees generated by fGP and sfGP-
II which achieves a best performance among other sfGPs.
To do this, given a certain dataset, ten testing trials of algo-
rithm evaluation are performed with ten best trees selected
from each trial. By this setting, 100 best trees are considered
for each dataset in the UCI repository and the text classifica-
tion collection. Since the ten datasets shown in Table 2 are
selected from the UCI in our experiment, at most 1,000 best
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Table 9 Number of families (#F), minimum depth (MnD), maximum depth (MxD), average depth
(AvD), the ratio of the number of addition nodes to that of multiplication nodes (#A/#M), the ratio of
the number of radial basis functions to that of linear functions (#R/#P), the ratio of the number of linear
functions to that of polynomial functions (#L/#P), of 100 best trees (the UCI repository).

Dataset Method #F MnD MxD AvD #A/#M #R/#P #L/#P

Adult
fGP 8 2 4 2.8 22.8 20.8 4.0

sfGP 7 3 5 3.8 26.6 11.7 2.3

BS
fGP 6 2 5 3.9 18.5 37.5 3.5

sfGP 5 2 5 3.6 34.5 22.0 2.3

BCW
fGP 8 1 4 2.8 4.3 4.8 3.2

sfGP 9 0 4 2.6 11.8 7.4 3.6

German
fGP 5 2 4 3.4 18.0 18.0 2.5

sfGP 7 2 4 3.4 25.5 17.0 2.0

Heart
fGP 5 2 5 3.2 14.0 14.3 1.7

sfGP 6 0 4 3.3 16.5 17.0 3.7

Image
fGP 6 1 4 2.1 11.5 8.0 1.3

sfGP 8 0 5 2.7 18.3 17.3 3.7

Iris
fGP 6 1 4 2.7 6.75 15.5 2.0

sfGP 5 1 4 2.3 30.0 32.0 3.0

Sonar
fGP 7 2 4 3.2 19.0 21.0 1.5

sfGP 6 2 4 3.1 19.0 39.0 5.0

WF
fGP 8 0 4 3.6 17.5 24.7 1.7

sfGP 7 2 5 3.3 22.0 43.5 5.0

Wine
fGP 6 1 4 1.9 9.7 5.4 1.2

sfGP 7 2 4 3.2 18.7 19.0 2.0

All
fGP 37 0 5 3.16 13.1 14.8 2.3

sfGP 41 0 5 3.14 21.0 18.1 2.9

Table 10 Number of families (#F), minimum depth (MnD), maximum depth (MxD), average depth
(AvD), the ratio of the number of addition nodes to that of multiplication nodes (#A/#M), the ratio of
the number of radial basis functions to that of polynomial functions (#R/#P), the ratio of the number
of linear functions to that of polynomial functions (#L/#P), of 100 best trees (the text classification
collection).

Dataset Method #F MnD MxD AvD #A/#M #R/#P #L/#P

20NG
fGP 11 2 5 4.1 22.2 13.1 3.7

sfGP 8 3 4 3.4 12.3 15.5 5.5

WebKB1
fGP 7 3 5 3.8 19.3 13.6 3.0

sfGP 7 2 5 3.6 17.7 22.7 3.7

WebKB2
fGP 10 2 4 3.6 27.0 13.9 2.4

sfGP 9 2 4 3.9 21.0 24.0 3.2

Thai-Med
fGP 7 1 4 2.7 10.3 8.0 1.3

sfGP 7 2 5 3.5 23.0 16.8 2.0

Thai-News
fGP 8 1 5 3.8 21.8 17.6 1.2

sfGP 7 1 5 3.4 16.3 10.5 1.2

All
fGP 30 1 5 3.6 20.7 17.6 1.2

sfGP 27 1 5 3.6 17.6 17.3 2.9

trees, in total, are chosen and their structures are analyzed.
From the five text datasets shown in Table 3, five hundred
best trees are chosen for structure analysis.

Tables 9 and 10 show the number of families, the mini-
mum tree depth, and the maximum tree depth, average depth
for each dataset in the UCI repository and text classifica-
tion collection, respectively. Moreover, the ratio of addi-
tion and multiplication operators and the ratio of three func-
tions are shown. Since both collections obtain relatively
similar results, if not specified, we conclude the result of
both cases together. For both collections, fGP and sfGP
produce approximately 6-10 families for each dataset, even
though there are up to 100 trees for each dataset in consid-
eration. The optimal trees for fGP and sfGP hold the aver-
age depth of 3.14-3.6. The average depth result shows that
a complicated structure may not always yield a best perfor-
mance. The more complicate the structure is, the more num-
ber of parameters are required for adjustment. This prop-

erty makes it difficult to find the optimal set of parameters.
Moreover, when we consider families of the optimal kernel
trees in all datasets, we find out that the number of distinct
families equals to 37 and 41 for fGP and sfGP in the UCI,
respectively. Therefore, of the ten datasets, the average is
3.7 and 4.1. This implies that there are several common
kernel trees among datasets since there are around 6-9 fam-
ilies for each dataset. For the text classification collection,
they are 30 and 27, respectively. The average is 6 for five
datasets. This number means there are few common kernel
trees. Since there are around 7-11 families in Table 10. Two
additional observations can be made on the portion of op-
erations and the portion of basic kernel functions as shown
in the three rightmost columns of both tables (Table 9 and
10). For both fGP and sfGP, it is observed that the number
of addition nodes is much larger than that of multiplication
nodes. As a possible explanation, the addition node is a nat-
ural way to combine many different items together. There
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have been several works [18], [19], [21] indicating the ad-
vantage of the addition. In contrast with an addition node, a
multiplication node may change the properties of the func-
tions. This may trigger a complicate situation and then it is
hard to achieve a high accuracy. For an investigation of ker-
nel type, the RBF is the most used function in the optimal
kernel tree while the linear is the second frequent one, for
both fGP and sfGP. While the range of the value of a single
RBF is controlled between 0 and 1, linear and polynomial
kernels have a chance to give a bigger value. The proposed
method is developed based on evolutional method where the
offsprings are gradually evolved for each generation. The
kernels and operators that make the overall functions change
rapidly may not be suitable to find a proper set of parame-
ters and to survive in a selection process. The last row in the
tables (Table 9 and 10) summarizes characteristics when all
datasets are considered simultaneously.

In an analysis of structural popularity in the 100 best
trees, plotted are two graphs (fGP and sfGP) for the UCI
repository in Fig. 5 and the other two graphs (fGP and sfGP)
for the text classification collection in Fig. 6. For all graphs,

Fig. 5 The number of datasets where an indexed tree structure remains as one of the final optimal
kernel trees (left) and occurrence frequency that an indexed tree structure appears as the optimal kernel
tree in ten trials of ten datasets for UCI repository (right: fGP, left: sfGP).

Fig. 6 The number of datasets where an indexed tree structure remains as one of the final optimal
kernel trees (left) and occurrence frequency that an indexed tree structure appears as the optimal kernel
tree in ten trials of ten datasets for text classification collection (right: fGP, left: sfGP).

x-axis represents the index of each tree structure in the or-
der of its popularity to be an optimal tree structure, the left
y-axis expresses occurrence frequency that the correspond-
ing kernel tree structure becomes the optimal tree structure,
and the right y-axis describes the number of datasets that
have the corresponding tree as one of its optimal structures.
Moreover, each of these four graphs includes two plots; one
for the occurrence frequency (related to the left y-axis) and
the other for the number of datasets (related to the right y-
axis)

In Figs. 5 and 6, it is observed that some most popu-
lar trees structure (indexed by a small number, such as 1, 2
and 3, in the x-axis) of sfGP have higher frequency to be
the optimal tree structure, comparing to those of fGP. This
tendency appears in both the UCI and text classification col-
lection. Moreover, the other plot (related to the right y-axis)
states that the most popular tree structure is an optimal tree
in 4 (fGP) or 5 (sfGP) out of 10 datasets for UCI. In our
assumption we expect that there are some good kernel trees
that are common among many problem. This experiment
shows some evidences.
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In the text classification task, the most popular tree
structure becomes optimal for 3 out of 5 datasets. This result
implies that some optimal kernel tree structures are common
in several datasets. To be more concrete, the most popular
tree structure in the UCI with sfGP is (((L + R) + (P + R)) +
((P + R) + (R + R))), where R is RBF, P is polynomial func-
tion and L is linear function. It is the optimal tree structure
in four datasets. For UCI with fGP, the most popular tree
that appears in five datasets is (R + (((L + R) + (P + R)) +
(L + (R + R)))). For text classification with sfGP and fGP,
the most popular trees structure that occurs in three datasets
are (R + (((L + R) + (L + R)) + ((R + R) + (R + R)))) and
((R + R) + (R + (L + R))), respectively. Although they are
various among the conditions, we observed that a popular
optimal kernel tends to be a simple addition among multiple
basic kernels.

6. Conclusion

This paper presented a novel mechanism to find an opti-
mal kernel mapping function for support vector machines
(SVMs) towards construction of a high-performance SVM-
based classifier. Unlike the conventional approach which
searched randomly and diversely, the proposed mechanism
utilized the concept of a family of identical-structured kernel
trees to enable exploration of structure space using genetic
programming whereas to pursue investigation of parameter
space on a certain tree. Moreover, simulated annealing is
applied to control balance between structure and parameter
search towards an optimal kernel. Two proposed versions,
namely fGP and sfGP, were proved to be effective using two
benchmark collections, the UCI and text classification col-
lections, compared to a naive grid search, a powered gra-
dient search as well as the bare version of GP with gradi-
ent search. The experimental results, with significance test-
ing, evidence us the improvement obtained by the proposed
methods over the conventional GP in nine out of ten datasets
for UCI and in three from five datasets for text classifica-
tion. By a detailed analysis, some optimal kernel structures
were found to be commonly superior in several datasets. It
was also observed that an addition node tends to be used in
the optimal tree structures rather than a multiplication node.
Moreover, RBF is the most frequently used in the optimal
kernel tree, compared to linear and polynomial. In summary,
the proposed method is shown to be able to find a better opti-
mal solution than other search methods. As our future work,
it is worth studying the effectiveness of the proposed meth-
ods when they are applied to standard tasks such as regres-
sion and traveling salesman, as well as unsupervised tasks
such as clustering.
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