
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010
985

PAPER Special Section on Formal Approach

Over-Approximated Control Flow Graph Construction on Pure
Esterel∗

Chul-Joo KIM†a), Jeong-Han YUN†b), Student Members, Seonggun KIM†c), Kwang-Moo CHOE†d),
and Taisook HAN†e), Nonmembers

SUMMARY Esterel is an imperative synchronous language for control-
dominant reactive systems. Regardless of imperative features of Esterel,
combination of parallel execution and preemption makes it difficult to build
control flow graphs (CFGs) of Esterel programs. Simple and convenient
CFGs can help to analyze Esterel programs. However, previous researches
are not suitable for flow analyses of imperative languages. In this work, we
present a method to construct over-approximated CFGs for Pure Esterel.
Generated CFGs expose invisible interferences among threads and show
program structures explicitly so that they are useful for program analyses
based on graph theory or control-/data- flows.
key words: esterel, control flow graph, synchronous language

1. Introduction

Most embedded systems belong to reactive systems; they
check and react to environmental changes as time flows. It
is very difficult to synchronize an embedded system and
environment. Furthermore, as system requirements be-
come more complicated, an embedded system consists of
more sub-components. General programming languages
are not proper to express the synchronization among sub-
components explicitly.

Synchronous languages [1], [2] with the perfect syn-
chrony hypothesis [3] help to specify synchronization by ab-
stracting time flow into a sequence of discrete time unit.
Esterel [4]–[7] is an imperative synchronous language. Un-
like dataflow synchronous languages [1], [2], [8], [9], Esterel
supports various imperative features. These include se-
quence, loop, suspension, preemption [10], exception, and
declaration of signals and variables, and they are useful to
design control-dominant systems.

Manuscript received July 17, 2009.
Manuscript revised October 28, 2009.
†The authors are with Division of Computer Science, KAIST,

Daejeon, Korea.
∗This work was supported by the Engineering Research Center

of Excellence Program of Korea Ministry of Education, Science
and Technology (MEST)/Korea Science and Engineering Founda-
tion (KOSEF), grant number R11-2008-007-02004-0 and the MKE
(Ministry of Knowledge Economy), Korea, under the ITRC (Infor-
mation Technology Research Center) Support program supervised
by the NIPA (National IT industry Promotion Agency) (NIPA-
2010-C1090-1031-0004).

a) E-mail: chuljoo.kim@gmail.com
b) E-mail: jeonghan.yun@gmail.com
c) E-mail: seonggun.kim@arcs.kaist.ac.kr
d) E-mail: choe@kaist.ac.kr
e) E-mail: han@cs.kaist.ac.kr

DOI: 10.1587/transinf.E93.D.985

Control-/data- flow analysis [11] has been a static anal-
ysis tool in compilers of general imperative languages for
decades. Because an Esterel program is written with imper-
ative constructs, control flows exist within the program, and
a control flow graph (CFG) can be built for the program.
Using the CFG, the program can be diagnosed by various
analysis techniques such as graph reachability or flow anal-
yses.

However, a CFG of an Esterel program cannot be eas-
ily constructed due to synchronous parallel execution and
preemption. When two threads of a program are executed in
parallel, one thread can be interfered by the other, and vice
versa. Unfortunately, such interferences are not explicitly
described in the source code.

1.1 Related Works

Flow information is a basis of most program analyses, and
some analyzers [12]–[14] have their own structures for flow
information.

An Esterel slicing tool [12] generates CFGs to con-
struct program dependency graphs, and Fig. 1.(b) is a CFG
for a program depicted in Fig. 1.(a). It deals with control
flows of parallel execution and preemption with pause han-
dlers and arbiters. Pause handlers gather state information
within an instant, and arbiters decide control flows of the
next instant using the information. Though they exactly
represent actual execution process, all following nodes of
a pause node in this CFG are dependent to arbiters, and an-

(a)

(b)

Fig. 1 Control flow graphs by [12].

Copyright c© 2010 The Institute of Electronics, Information and Communication Engineers

986
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

(a) A Concurrent CFG for Fig. 1.(a)

(b) A Hierarchical State Representation for Fig. 1.(a)

Fig. 2 Control flow graphs by [13], [15].

alyzers can hardly distinguish the gathered information at
pause handlers. For instance, in Fig. 1.(a), pause in line 4 is
sequentially following pause in line 2, but in Fig. 1.(b), the
upper pause node is connected to the pause handler and the
lower pause node succeeds the arbiter. Therefore, analyz-
ers must exactly simulate pause handlers and arbiters to get
precise control flows and analysis results.

Columbia Esterel compiler [13], [15] translates Esterel
programs to GRC models [16]. Figure 2 shows a GRC
model of the program in Fig. 1.(a). A GRC model consists
of a concurrent CFG and a hierarchical state representation
which are optimized for simulation and compilation. A hi-
erarchical state indicates a structured data memory that pre-
serves state information across instants, and a concurrent
CFG represents the computation of an instant. Therefore,
analyzers must examine source program and the model si-
multaneously and interpret the control flows on the model.

Quartz [14], a dialect of Esterel, is transformed to not
CFGs but equation systems [17]. Compiled equations con-
sist of control and data flows. Because the equations are
designed for theorem provers, they need additional transfor-
mations for flow analyses [11].

1.2 Our Approach

To apply flow analyses for imperative languages to Es-
terel, we develop syntax-directed rules to construct over-
approximated † CFGs of Esterel programs. Based on CFG
construction methods for imperative languages, we extend
to deal with parallelism and preemption of Esterel.

Our over-approximation is necessary to generate sim-
ple and practical CFGs for the combination of parallelism
and preemption. Generated CFGs by our rules include all
the possible control flows and show imperative features in-
tuitively. However, our over-approximation may leave in-
feasible execution paths in generated CFGs. But, due to
programming patterns of Esterel programs, infeasible paths
are rare in practical programs.

Our CFGs can be used for various flow analyses. Un-
reachable nodes indicate dead codes [18] because our CFGs

Fig. 3 Pure Esterel.

include all the possible control flows. Instantaneous paths
can be detected by graph reachability, so that we can de-
tect instantaneous loops [4], [19] and schizophrenic prob-
lems [19]. In addition, because our CFGs explicitly expose
all control flows, data flow analysis for synchronous pro-
grams [20] can be applied to Esterel programs.

Our paper is organized as follows. In Sect. 2 we briefly
introduce Esterel. In Sect. 3 we describe how to construct
a CFG of Esterel program with syntax-directed rules. Ex-
perimental results are shown in Sect. 4. Finally, Sect. 5 con-
cludes the paper and discusses future work.

2. Pure Esterel

2.1 Esterel Syntax and Semantics

We use the kernel language of Pure Esterel [4]–[6], [21].
The kernel language has four unit statements – nothing,
pause, emit s, and exit t – and seven block-structured
constructs – signal test, loop, sequence, parallel, suspension,
local signal declaration, and exception declaration. Fig-
ure 3 lists the syntax and the intuitive meanings. The non-
terminals p and q denote statements, s signals, and t ex-
ceptions, respectively. Signals and exceptions are identifiers
lexically scoped and declared within statements by signal
and trap statements, respectively.

For each input event, Esterel programs instantly react.
Except for the pause statement, other statements do not
consume time. The explicit synchronization control using
pause statements is an important feature of Esterel. An Es-
terel program pends at each pause statement, and the syn-
chronization occurs within this unit. We call this unit of
program computation an instant. An instant is a consistent
sequence of zero-delay actions for one input event. After
one instant passes, all signals are reset.

We explain the informal semantics of Esterel syntax.
nothing does nothing. emit s emits the signal s. p;q runs
p and q sequentially. present s then p else q end tests
the presence of the signal s, and one of the sub-statements
p or q executes according to the test result. loop p end

†An over-approximated CFG, though it may contain some un-
reachable paths in run-time, must represent all possible execution
paths of an Esterel program, including every implicit control flows
caused by the parallel execution and preemption.

KIM et al.: OVER-APPROXIMATED CONTROL FLOW GRAPH CONSTRUCTION ON PURE ESTEREL
987

denotes the infinite loop in Esterel. In order to exit from
the loop, one must use exception constructs. p||q simulta-
neously executes p and q with the global clock. The par-
allel execution terminates when both p and q terminate.
suspend p when s is a construct for preemption between
threads. When the signal s is present, p is suspended un-
til s is absent. Note that the signal s can never be emitted
by the process p itself, and tests for presence of s are al-
lowed in p. The scope of a local signal is determined by
signal s in p end. The signal s outside the scope is re-
garded as different from the local signal. It is not technically
difficult to distinguish the signal names inside and outside of
the local signal scopes, and hence we assume that all signal
names are distinct in an Esterel program. trap t in p end
defines a new exception and its scope, and exit t in p raises
the exception t. When the exception t arises in p, p instantly
exits to the end of the corresponding trap statement.

2.2 Preemption

Control flows of the preemption statements, suspend and
exit, are not explicitly exposed in source codes. There are
two kinds of preemption in Esterel.

Strong preemption: halts the remaining task immediately
and performs the preempted task when the preemp-
tion condition takes place. For example, in the case
of suspend p when s, if signal s is present, it immedi-
ately holds p and waits until s becomes absent.

Weak preemption: when the preemption condition takes
place, a program finishes the remaining task during the
current instant and then performs the preempted task.
For example, in the case of p||q, even though p has
already been ended by exit t in an instant, q cannot
recognize it before the synchronization. After perform-
ing all the tasks defined in the instant, q recognizes the
end of p and also finishes itself regardless of the exis-
tence of the following tasks.

3. Control Flow Graph Construction

In order to simplify a CFG construction process, we assume
that every identifer in a program is globally unique. This as-
sumption can be guaranteed by a preprocessor that renames
identifiers with the same name into unique ones, while abid-
ing the scoping rules of Esterel. In addition, we also assume
that there is no exit statement whose target exception is
not in its valid scope. If any exit t targets an invalid ex-
ception t, the preprocessor substitutes the exit statement
with nothing statement, which has the same behavioral se-
mantics.

3.1 Definitions

Figure 4 shows the definitions we used in this study. We
represent a CFG as a 5-tuple, 〈s, f ,N, E,W〉, where s and
f are the indices of the start and finish nodes, respectively,

Fig. 4 Control flow graph.

N is a set of nodes, E is a set of edges, and W is a set of
incomplete edges.

Each node of a CFG is either entry (B), exit (E), or one
of the four unit statements and identified by an integer index
i. The integer index is generated when a new node is intro-
duced. A transfer of control flow is represented by a directed
edge that leaves a source node i and arrives at a destination
node j.

We categorize the control flow transfers into four types
(normal, parallel, exit, may-exit) according to their implica-
tions on program execution. Parallel edges leaving or target-
ing a node represent that the control flow forks or joins at the
node, respectively. Control flow transfers due to exceptions
are represented by exit or may-exit edges, where may-exit
edges indicate that the transfer is due to the exception raised
by other threads. The rest are called normal edges.

Since a control flow transfer may be guarded by pres-
ence of a signal, we annotate each edge with a condition l
that is either unconditional (ε), the presence of a signal (s),
the absence of a signal (¬s), the conjunction of signal sta-
tuses (l∧ l), or the disjunction of signal statuses (l∨ l). Note
that for simplicity we omit the annotation if it is uncondi-
tional in the rest of this paper.

While constructing a graph, the target node of an exit
or may-exit edge remains unknown until the corresponding
exception declaration statement is processed. Until then, we
keep its trap identifer (t), index of the source node (i), and
edge type in W. The destination nodes of edges in the set W
are all resolved when the construction process finished. The

988
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

Fig. 5 CFG construction rules.

detailed role of W is discussed in the following sections.

3.2 Construction Rules

For a given Esterel program, rules to construct its corre-
sponding CFG are represented as below.

program � 〈 s, f , N, E, W〉
Figure 5 lists the CFG construction rules for Pure Es-

terel statements.

nothing, pause, and emit s: A graph with a single node,
which has the node type for the corresponding state-
ment, is generated.

exit t: A CFG of exception raising statement is an uncon-

nected graph with two nodes,
s

exit t and a dummy

node
f
E. Control flow never falls through the statements

KIM et al.: OVER-APPROXIMATED CONTROL FLOW GRAPH CONSTRUCTION ON PURE ESTEREL
989

following the exit t. Therefore, CFGs of the state-
ments are to be connected to the dummy node, which
is unreachable from the exit t node. Since the target
node of the control flow transfer is determined after-
ward, when the corresponding trap t in p end state-
ment is processed, we add a tuple of the trap identifier
t, the index of the source node s, and the edge type�
to W.

p;q: For a sequence of statements, the CFGs of p and q are
connected by a normal edge from the finish node of
p (fp) to the start node of q (sq). The start and finish
nodes of the result CFG are the start node of p (sp) and
the finish node of q (fq), respectively.

loop p end: For a loop statement, we add an edge fp →
sp, which connects the finish node of p to the start node
of p in order to represent repetition of p. Then the start

node of the loop,
s
B, is connected to the start node of the

loop body p by an edge s→ sp. Since loops in Pure Es-
terel language are apparently unbounded, control flow
from the end of a loop body never falls through the

following statements. So the finish node
f
E is not con-

nected to the rest of the CFG, similar to the case of
exception raising statements.

present s then p else q end: From the start node
s
B a

normal edge guarded by s is connected to the start node
of p (sp), and a normal edge guarded by ¬s is con-
nected to the start node of q. The finish nodes of both

p and q are connected to the finish node
f
E by normal

edges.
signal s in p end: Since local signal declaration state-

ments do not define actual execution, the start and fin-
ish nodes are simply connected to the start and finish
nodes of p by normal edges, respectively.

p||q: This rule is described in 3.3
suspend p when s: A suspend statement pauses the exe-

cution of its body p in instants when the signal s is
present. Thus, when s is present, the control flow in
p stays at pause statement which causes an instant
change in the previous instant. This behavior can be
represented by adding a self edge whose condition is
presence of s for every pause node in p. The edges
leaving the pause nodes also need to be guarded with
absent of s. If the edges to be added already exist, only
their conditions are updated correspondingly. The start
and finish nodes of the resulting CFG are connected to
the start and finish nodes of p by normal edges.

trap t in p end: A trap statement catches exceptions
raised in its body. As mentioned in the construction
rule of exit t, the CFG of p keeps track of the in-
formation of exceptions raised in p using the set Wp.
If there are any incomplete edges whose trap identi-

fier is t in Wp, their target is set to the finish node
f
E,

and they are moved to the edge set E from Wp. Be-
cause we assume that any invalid exit is replaced with

Fig. 6 An example of nested trap statements.

nothing through preprocessing, all incomplete edges
in Wp should be completed by the corresponding trap
statement. The start and finish nodes are connected to
the start and finish nodes of p by normal edges, as with
other block statements.

3.3 CFG Construction Rule for Parallel Execution

As mentioned in Sect. 2.2, when preemption takes place in
the middle of parallel execution, it requires a delicate han-
dling that suits the meaning of each statement. For an ex-
ample in Fig. 6, exit T and exit U are performed in the
same instant. Since trap U includes trap T, exit U has a
higher priority and both control flows go outside of trap U.

For the case of p||q, if exit is performed from p, q
will terminate either after performing until the current in-
stant or after performing the end of q if the instant is the
last one. If an exit statement is performed in q at the same
instant, the one that corresponds to the outer trap is pro-
cessed.

In this paper, we introduce a may-exit edge to represent
the situations described above. A may-exit edge is an edge
for the statement that the control of a program is likely to
be terminated when the other program that is performed in
parallel is terminated by exit.

As shown in Fig. 5, the rule of p||q specifies to con-
struct CFGs for p and q and to connect the start (sp, sq)
and end (fp, fq) nodes of subparts to the start (s) and end (f)
nodes of the resulting CFG with parallel edges, respectively.
Then, incomplete may-exit edges are added for the follow-
ing nodes based on the information from Wp, which is a set
of exits included in p, and Eq, which is a set of edges in q.

• precedent node(j) of the last node in q
• precedent node(j) of pause included in q
• low priority node(j) among exit t in q

The same process is repeated for Wq and Ep.

3.4 Soundness of CFG Construction

A CFG of an Esterel program is sound if and only if the CFG

990
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

includes all possible execution paths of the Esterel program.
Here, we discuss about the soundness of generated CFGs by
our CFG construction rules.

Control flows of Esterel programs consist of sequence,
present, suspend, trap/exit, and parallel statements.

Most control flows are explicitly represented by syn-
tactic structures. sequence, trap/exit, and present state-
ments in a single thread are base cases for control flows, and
their control flows are exposed through program codes. A
suspend statement generates control flows for all pending
points in its sub-statements, and the (suspend) rule reflects
this semantics to all pause nodes in the suspend block. A
CFG for a parallel statement without trap statements is the
combination of CFGs for all sub-threads.

There are implicit control flows that are not explicitly
represented by program codes. When a parallel statement
is contained in a trap block, even if one sub-thread exits the
trap block, all sub-threads must exit the trap block by Es-
terel semantics [4]. We add may-exit edges to all possible
program points of the other sub-threads for an exit state-
ment of one thread in Sect. 3.3, and a generated CFG by our
construction rules contains all possible exit paths of all sub-
threads.

As discussed above, our construction rules consider ev-
ery possible execution cases of Esterel programs. Therefore,
a generated CFG by our rules is sound.

4. Experimental Results

We implemented a control flow analyzer based on the pro-
posed algorithm in OCaml. The front-end of the control
flow analyzer first desugars Esterel statements into Pure Es-
terel statements and then performs the preprocessing de-
scribed in Sect. 3. If an input program consists of several
modules, we dismantle each module into a set of statements
and then merge them into a single module using Columbia
Esterel Compiler [15].

Our CFG construction algorithm is depicted in Fig. 7.
To construct a CFG of a program, we apply proper con-
struction rules in Fig. 5 to the program recursively. The
time and memory complexities of CFG construction for a
program that has no parallel, suspend, and trap state-
ments increase linearly (O(kN)) with respect to the size of
input program (N) †. In case of suspend statements, be-
cause our algorithm must traverse its sub-CFG to adjust
edges by (suspend) rule, the time comlexity increases to
O(N2). When an input program contains combinations of
trap and parallel, it is necessary to traverse their sub-
CFGs for adding may-exit edges before joining them by
(parallel) rule. In this case, the time complexity may be
worse, but does not exceed O(kN2) ††.

Figure 8 shows the control flow graph of the nested
trap example in Fig. 6. Bold, dashed, and dotted edges in
the figure correspond to parallel, exit, and may-exit edges,
respectively. The rest are normal edges. Exit and may-exit
edges have their trap identifiers as labels.

When the execution of exit U (at node 11) causes

Fig. 7 Pseudo code for CFG construction.

weak preemption, the other thread may be preempted right
after executing either emit A (at node 5) or exit T (at node
7). This situation is covered by the may-exit edges 5� 16
and 7 � 16. Similarly, the weak preemption of exit T (at
node 7) needs may-exit edges 9� 14 and 11� 14. In this
case, however, the may-exit edge from node 11 is omitted
because the statement at the node, exit U, itself raises the
exception outer than T. Esterel semantics gives higher pri-
ority to the outer trap when multiple exceptions are raised in
the same instant.

In the actual execution trail of the above example,
exit T and exit U are always executed in the same instant
and thus the control flows go through 7� 16 and 11→ 16.
Even though the may-exit edge 7 � 16 does not explicitly
occur in the program text, the proposed CFG construction
rule is able to find it. In the meantime the may-exit edges
5� 16 and 9� 14, which are never realized in the actual
execution, are also included in the CFG due to the over-
approximation taken by the proposed method.

Table 1 lists experimental results for several Esterel
benchmark programs collected from Estbench [22] and
Ramesh’s case studies [23]. Table 2 gives the CFG construc-
tion time and memory usage on the test system - a XEON
E5440@2.83 GHz (QuadCore)/16 GB running Linux.

†All statements except parallel, suspend, and trap state-
ments produce a constant number of nodes and edges.
††The number of exit and may-exit edges cannot over the maxi-

mum depth (k) of nested trap statements in the program. Although
k may reach O(N) theoretically, it usually remains constant in many
practical programs.

KIM et al.: OVER-APPROXIMATED CONTROL FLOW GRAPH CONSTRUCTION ON PURE ESTEREL
991

Table 1 Our experiments: CFG construction.

Program Description
Size

(bytes)
SLOC

of
nodes

of
edges

may-exit
ratio

atds100 video generator 22,038 622 987 1,738 245 14.1%
mca200 shock absorber controller from the Polis distribution 227,599 5,354 1,037 1,440 0 0.0%
mejia Cyclic: non-commutative data actions prevents com-

pilation
9,782 361 510 790 102 12.9%

tcint turbochannel bus controller 9,364 353 504 779 33 4.2%
ww wristwatch from the Esterel distribution 11,952 360 591 861 14 1.6%
dlx Esterel model of the DLX processor 7,862 334 426 618 0 0.0%
fbus implementation of future bus protocol in Esterel 6,287 285 673 943 21 2.2%

Average 42,122 1,096 675 1,024 59 5.8%

Fig. 8 Control flow graph of the example in Fig. 6.

For the cases of mca200 and dlx, no may-exit edge is
created; mca200 does not use trap that includes a parallel
construct, and dlx does not use trap at all. Although tcint,
ww, and fbus use various patterns of trap, the portions of
the pattern that performs exit with the parallel execution
are rare.

However, about 14% of the total edges were recognized
as may-exit edges in atds100 and mejia, because they con-
sist of various combinations of trap, parallel execution, and
exit statements as shown in Fig. 9. exit in line 17 inserts 9
may-exit edges at the precedence nodes of await † in lines
2, 6, and 10, and the end of each parallel process. Most
edges have possibilities to be really executed, but some are

Table 2 Our experiments: Time and memory usages.

Program
Time (ms) Memory (KB)

CFG schizo. CFG schizo.
atds100 76 104 1,332 1,900
mca200 60 <1 1,247 95
mejia 20 4 713 209
tcint 16 8 624 366
ww 24 4 705 217
dlx 12 4 500 188
fbus 28 <1 811 50

Average 34 18 848 432

Fig. 9 An error handling pattern excerpted from mejia.

not executed in real environment. In case of Fig. 9, the pre-
decessors of await statements in lines 2, 6, and 10 con-
tain the start node of the parallel statement in lines 2-18, so
we add a may-exit edge to the node. This edge means that
the parallel statement may be exited in its starting instant.
However, await in line 16 consumes one tick itself, so the
exit statement in line 17 cannot be executed in first instant,
therefore the added may-exit edges are infeasible and they
are unreachable in run-time. This is the reason why our al-
gorithm over-approximates synchronization mechanism of
Esterel. However, most may-exit edges are executed actu-
ally in the benchmark programs.

†await is an additional statement that waits until the target
signal presents, and await S can be replaced with trap T in loop
pause; present S then exit else nothing T end end end.

992
IEICE TRANS. INF. & SYST., VOL.E93–D, NO.5 MAY 2010

4.1 Case Study: Detecting Schizophrenia via Graph
Reachability

In Esterel, since a loop statement terminates and restarts in
the same instant, a statement to be executed when the loop
terminates can be executed again when the loop restarts.
A statement is called schizophrenic if it is executed more
than once in an instant. Schizophrenic statements can cause
problems in translation into hardware circuits [4]. So Esterel
compilers must solve these problems.

We developed a schizophrenia detection algorithm [19]
on our CFGs of Esterel programs and our detector shows
more precise result than a previous detector [24], and the
detection algorithm can be easily implemented using graph
reachability. Moreover, our detection algorithm based on
graph reachability can be more easily applicable to existing
compilers than the previous one [24] based on abstract inter-
pretation [25]. Table 2 gives the detection time and memory
usage on the test system.

If a CFG does not include all control flows, the de-
tecting algorithm cannot detect all schizophrenic prob-
lems. However, our CFGs compute all possible control
flows in advance, so the detection algorithm can look into
schizophrenic problems on all possible execution paths. So,
if a schizophrenic problem exits, our algorithm must detect
it. In other words, a program that passes the detector devel-
oped on our CFGs has no schizophrenic problems described
in [19].

5. Conclusion

Esterel has various imperative features, and behaviors of an
Esterel program can be described with a CFG. Because pre-
vious works [12]–[14] focus on correct and complete repre-
sentations, they are not proper for practical analyzers based
on flow analyses of existing imperative languages.

We present over-approximated CFG construction rules
that are sound and practical. Our CFGs show program struc-
tures well. Though some CFGs contain infeasible paths that
may be unreachable during execution time, the experimen-
tal results show that the fraction of such paths is neglectable.
Moreover, the results also show that the CFG construction
algorithm uses reasonably small amount of time and mem-
ory.

Our key contribution is to expose invisible interfer-
ences among threads without any accompanying data struc-
tures or handlers. So, flow analyses of existing imperative
languages can be applied to Esterel programs on our CFGs.
As a matter of fact, we used the proposed CFGs to detect
a well-known problem in Esterel [19], and achieved precise
results. This work can be a useful basis of graph-based anal-
ysis on Esterel programs.

References

[1] N. Halbwachs, Synchronous Programming of Reactive Systems,
Kluwer Academic Publishers, Dordrecht, 1993.

[2] A. Benveniste, P. Caspi, S. Edwards, N. Halbwachs, P. Le Guernic,
and R. de Simone, “The synchronous languages 12 years later,”
Proc. IEEE Embedded Systems, vol.91, no.1, pp.64–83, 2003.

[3] A. Benvenistre and G. Berry, “The synchronous approach to reac-
tive and real-time systems,” Proc. IEEE Another Look of Real Time
Programming, vol.79, no.9, pp.1270–1282, 1991.

[4] G. Berry, The Constructive Semantics of Pure ESTEREL, Draft
book available at http://www.inria.fr/meije/esterel/esterel-eng.html,
1999.

[5] G. Berry, “The foundations of esterel,” Proof, Language and Inter-
action: Essays in Honour of Robin Milner, pp.425–454, 2000.

[6] D. Potop-Butucaru, S. Edwards, and G. Berry, Compiling Esterel,
Springer, 2007.

[7] Esterel-Technologies, The Esterel v7 Reference Manual Version
v7.30. initial IEEE standardization proposal. Esterel-Technologies,
679 av. Dr. J. Lefebvre 06270 Villeneuve-Loubet, France, Nov.
2005.

[8] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud, “The syn-
chronous data flow programming language lustre,” Proc. IEEE,
vol.79, no.9, pp.1305–1320, 1991.

[9] P.L. Guernic, T. Goutier, M.L. Borgne, and C. Maire, “Program-
ming real time applications with signal,” Proc. IEEE, vol.79, no.9,
pp.1321–1336, 1991.

[10] G. Berry, “Preemption in concurrent systems,” Proc. 13th Confer-
ence on Foundations of Software Technology and Theor. Comput.
Sci., pp.72–93, Springer-Verlag, London, UK, 1993.

[11] M.S. Hecht, Flow Analysis of Computer Programs, Elsevier Science
Inc., New York, NY, USA, 1977.

[12] S. Ramesh, A. Kulkarni, and V. Kamat, “Slicing tools for syn-
chronous reactive programs,” ACM SIGSOFT Software Engineer-
ing Notes, vol.29, no.4, pp.217–220, 2004.

[13] S. Edwards and J. Zeng, “Code generation in the columbia es-
terel compiler,” EURASIP J. Embedded Systems, vol.2007, pp.1–
31, 2007.

[14] K. Schneider, “The synchronous programming language Quartz,”
Internal Report 375, Department of Computer Science, University
of Kaiserslautern, Kaiserslautern, Germany, 2009.

[15] S. Edwards, “Cec: The columbia esterel compiler.”
http://www1.cs.columbia.edu/∼sedwards/cec/

[16] D. Potop-Butucaru and R.d. Simone, “Optimizations for faster ex-
ecution of esterel programs,” MEMOCODE ’03: Proc. First ACM
and IEEE International Conference on Formal Methods and Models
for Co-Design, pp.227–236, IEEE Computer Society, Washington,
DC, USA, 2003.

[17] K. Schneider, J. Brandt, and T. Schuele, “A verified compiler for
synchronous programs with local declarations,” Electronic Notes in
Theor. Comput. Sci. (ENTCS), vol.153, no.4, pp.71–97, 2006.

[18] O. Tardieu and S.A. Edwards, “Approximate reachability for dead
code elimination in esterel∗,” Automated Technology for Verifica-
tion and Analysis, ed. D. Peled and Y.K. Tsay, LNCS, vol.3707,
pp.323–337, Berlin Heidelberg, Springer, 2005.

[19] J. Yun, C. Kim, S. Seo, T. Han, and K. Choe, “Refining schizophre-
nia via graph reachability in esterel,” Seventh ACM-IEEE Inter-
national Conference on Formal Methods and Models for Code-
sign (MEMOCODE’ 2009), Cambridge, Massachusetts, USA, July
2009.

[20] J. Brandt and K. Schneider, “Static data-flow analysis of syn-
chronous programs,” Seventh ACM-IEEE International Conference
on Formal Methods and Models for Codesign (MEMOCODE’
2009), Cambridge, Massachusetts, USA, July 2009.

[21] G. Berry, The Esterel Primer, included in the esterel distribution.
available on http://www.inria.fr/meije/personnel/
gerard.berry.html ed., 1998.

[22] S. Edwards, “Estbench esterel benchmark suite.”
http://www1.cs.columbia.edu/∼sedwards/software/
estbench-1.0.tar.gz

[23] S. Ramesh, “Ramesh’s homepage.”

KIM et al.: OVER-APPROXIMATED CONTROL FLOW GRAPH CONSTRUCTION ON PURE ESTEREL
993

http://www.cse.iitb.ac.in/∼ramesh/
[24] O. Tardieu and R. de Simone, “Instantaneous termination in

pure esterel,” Proc. 10th International Static Analysis Symposium
(SAS’2003), LNCS, vol.2694, pp.91–108, Springer-Verlag, 2003.

[25] P. Cousot and R. Cousot, “Abstract interpretation: a unified lattice
model for static analysis of programs by construction or approxima-
tion of fixpoints,” 4th ACM Symposium on Principles of Program-
ming Languages, pp.238–252, ACM Press, Los Angeles, CA, 1977.

Chul-Joo Kim received his B.S degree in
Computer Engineering from Dongguk Univer-
sity, Korea, in 2001 and M.S degree in Com-
puter Science from KAIST, Korea, in 2003.
He is currently a Ph.D. degree student in the
Dept. of Computer Science, KAIST. His cur-
rent research interests include programming lan-
guages, program static analysis and compiler
optimization.

Jeong-Han Yun received his B.S and M.S
degrees in Computer Science from KAIST, Ko-
rea, in 2001 and 2003. He is currently a Ph.D.
degree student in the Dept. of Computer Sci-
ence, KAIST. His current research interests in-
clude program analysis and embedded system
design.

Seonggun Kim received his B.S in electrical
engineering from KAIST, Korea, in 2003. He
is currently an M.S.-Ph.D. joint degree student
in the Dept. of Computer Science, KAIST. His
current research interests include parallel pro-
cessing, multi-core architectures and optimizing
compilers.

Kwang-Moo Choe received his B.S degree
in Electrical Engineering from Seoul National
University, Korea, in 1976, and M.S and Ph.D.
degree in computer science from KAIST, Korea,
in 1978 and 1984. He is currently a professor
in the Dept. of Computer Science, KAIST. His
current research interests include formal lan-
guage theory, parallel evaluation of logic pro-
grams, and optimizing compilers.

Taisook Han received his B.S and M.S de-
grees in electrical engineering from Seoul Na-
tional University, Korea, in 1976, M.S degree in
computer science from KAIST, Korea, in 1978,
and Ph.D. degree in computer science from Uni-
versity of North Carolina at Chapel Hill, USA,
in 1995. He is currently a professor in the Dept.
of Computer Science, KAIST. His current re-
search interests include programming language
theory, and design and analysis of embedded
systems.

