
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.5 MAY 2011
1035

PAPER

SHOT: Scenario-Type Hypothesis Object Tracking with Indoor
Sensor Networks∗∗

Masakazu MURATA†∗a), Nonmember, Yoshiaki TANIGUCHI††b), Go HASEGAWA††c),
and Hirotaka NAKANO††d), Members

SUMMARY In the present paper, we propose an object tracking
method called scenario-type hypothesis object tracking. In the proposed
method, an indoor monitoring region is divided into multiple closed micro-
cells using sensor nodes that can detect objects and their moving directions.
Sensor information is accumulated in a tracking server through wireless
multihop networks, and object tracking is performed at the tracking server.
In order to estimate the trajectory of objects from sensor information, we
introduce a novel concept of the virtual world, which consists of virtual
micro-cells and virtual objects. Virtual objects are generated, transferred,
and deleted in virtual micro-cells according to sensor information. In order
to handle specific movements of objects in micro-cells, such as slowdown
of passing objects in a narrow passageway, we also consider the genera-
tion of virtual objects according to interactions among virtual objects. In
addition, virtual objects are generated when the tracking server estimates
loss of sensor information in order to decrease the number of object track-
ing failures. Through simulations, we confirm that the ratio of successful
tracking is improved by up to 29% by considering interactions among vir-
tual objects. Furthermore, the tracking performance is improved up to 6%
by considering loss of sensor information.
key words: object tracking, sensor network, region segmentation, virtual
object

1. Introduction

In recent years, wireless sensor network technology has at-
tracted a great deal of attention. Object tracking is a ma-
jor wireless sensor network application and it can be used
in numerous applications, including accident prevention in
care facilities, detection of suspicious individuals in build-
ings, and flow line analyses in commercial facilities [2].

Binary sensors, such as infrared sensors, are among the
simplest sensors and can detect only the presence or absence
of objects within sensing range. Binary sensors generate
only one-bit information. Although binary sensors can nei-
ther detect the number of objects nor identify objects indi-
vidually within sensing range, they have advantages in terms
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of cost, simplicity, and energy-efficiency. Therefore, a num-
ber of object tracking methods using wireless sensor net-
works composed of binary sensors have been proposed [3]–
[6].

However, these methods assume that sensor nodes are
deployed uniformly so that the sensing ranges efficiently
cover the monitored region. Therefore, a large number of
sensor nodes are required to cover a wide monitoring re-
gion. In addition, they assume that objects move at con-
stant velocity in the monitoring region. However, in general,
the movement characteristics of objects change dynamically
depending on interactions among objects and surrounding
environments. For example, the speeds of objects may de-
crease when the objects pass each other in a narrow passage-
way, and the objects double back at dead end passageways
or speed up when riding on moving sidewalks. By handling
such specific movement scenarios in object tracking meth-
ods, the number of successful instances of tracking can be
increased.

In the present paper, we propose an object track-
ing method called scenario-type hypothesis object tracking
(SHOT) for a wide indoor monitoring region, e.g., all floors
in a building. In SHOT, sensor nodes are placed only at spe-
cific points in the monitoring region, so that the monitoring
region is divided into multiple regions called micro-cells,
as shown in Fig. 1. Hereinafter, we refer to the location at
which a sensor node is placed as a gate. We assume that a
sensor node is composed of a pair of infrared sensors with a
wireless communication device and can detect transit events
of objects along with their moving directions [7], [8]. Sensor

Fig. 1 Object tracking with indoor sensor networks.
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information is collected in a tracking server through wireless
multihop networks, and the tracking server estimates object
trajectories based on sensor information.

In SHOT, in order to estimate the trajectories of objects,
the tracking server maintains a virtual world, which consists
of virtual micro-cells, virtual gates, and virtual objects†.
Virtual objects are generated when the tracking server re-
ceives the arrival event information of a real object from out-
side the monitoring region. The tracking server transfers vir-
tual objects in virtual micro-cells according to sensor infor-
mation and records their trajectories. In addition, the track-
ing server duplicates and updates virtual objects according
to sensor information, so that the tracking server maintains
a number of hypotheses of object trajectories for each real
object. Furthermore, the tracking server deletes virtual ob-
jects when the possibility that their trajectories correspond
to the trajectories of real objects decreases. When the track-
ing server receives departure event information of a real ob-
ject departing from the monitoring region, the trajectory of
the most appropriate virtual object is selected as the trajec-
tory of the real object.

A number of object tracking methods, such as multi-
hypothesis tracking (MHT), which maintain hypotheses of
object trajectories, have been proposed [9]–[11]. Whereas
MHT-based methods generate hypotheses according to sen-
sor information, SHOT also generates hypotheses, i.e., vir-
tual objects, according to interactions among virtual objects
by introducing the virtual world. As a result, SHOT can han-
dle specific movement scenarios of objects in micro-cells
by generating virtual objects for all candidate trajectories in
virtual micro-cells. In the present paper, we consider the
slowdown of objects that pass each other in a narrow pas-
sageway as one scenario example in order to demonstrate
the effectiveness of introducing the virtual world. In addi-
tion, SHOT handles loss of sensor information by generat-
ing additional virtual objects when the tracking server es-
timates loss of sensor information. As a result, SHOT can
decrease the number of object tracking failures due to loss
of sensor information. The performance of SHOT is evalu-
ated through simulation experiments in comparison with an
MHT-based method.

The remainder of the present paper is organized as fol-
lows. In Sect. 2, research related to object tracking is de-
scribed. Then, in Sect. 3, we propose SHOT. In Sect. 4, we
evaluate the performance of SHOT through simulation ex-
periments. Finally, we conclude the present paper with a
discussion of future research in Sect. 5.

2. Related Research

Object tracking has attracted a great deal of attention from
researchers in various fields, such as computer vision and
sensor networks. Although SHOT assumes binary sensors,
several object tracking methods with a variety of sensors
have been proposed.

There have been a number of object tracking methods
that do not assume special devices, such as radio frequency

identification (RFID), for objects. Most research has been
in the field of computer vision and assumes cameras as the
sensors [2]. Although cameras can detect the number of ob-
jects and can identify individual objects using image pro-
cessing technologies, cameras generate a large amount of
data, require high processor power, and have higher initial
costs than other simple sensors. Multi-hypothesis tracking
(MHT) [9], which comes from research in the area of com-
puter vision, is a method for tracking multiple objects, and
a number of MHT-based tracking methods have been pro-
posed [10], [11]. In MHT, all possible situations, i.e., hy-
potheses, are evaluated based on sensor information, and
the hypothesis with highest event probability is selected as
the estimated object trajectory. A hypothesis is described
by the number of objects in a monitoring region and the
estimated trajectory of each object. Since the number of
hypotheses of MHT increases exponentially as the number
of objects increases, a Markov-chain-Monte-Carlo-based
(MCMC-based) method was proposed in [12] for the solu-
tion of NP-hardness.

Recently, a number of researchers have considered ob-
ject tracking with binary sensor networks, which are com-
posed of binary sensors such as infrared sensors [3]–[6]. In
[3], the authors first analyzed the fundamental performance
limits of object tracking when sensor nodes are uniformly
deployed in the monitoring region. They also proposed an
object tracking method that achieves these limits for binary
sensor networks. In a previous study [4], the authors ap-
plied the particle filter algorithm for tracking multiple ob-
jects with binary sensor networks. In this method, the hy-
pothesis in the near future is estimated from current sen-
sor information. Object tracking is then conducted based on
the likelihood of estimated hypothesis, which is calculated
from sensor information. However, these methods assume
that sensor nodes are deployed uniformly, so that the sens-
ing ranges efficiently cover the monitoring region, which re-
quires a large number of sensor nodes in order to cover a
wide monitoring region in actual environments.

In SHOT, we consider that sensor nodes are placed only
at certain points in a monitoring region. Therefore, the num-
ber of sensor nodes in SHOT is less than that in other meth-
ods. SHOT is hypothesis-based tracking method that is sim-
ilar to MHT-based methods. However, SHOT can also han-
dle specific movement scenarios of objects by introducing
the novel concept of a virtual world. SHOT is described in
detail in what follows.

3. Scenario-Type Hypothesis Object Tracking

3.1 Overview

In SHOT, a monitoring region is divided into multiple
micro-cells by placing sensor nodes as shown in Fig. 1. We
refer to the location at which a sensor node is placed as a

†Hereinafter, we denote objects in the real world as real ob-
jects.
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Fig. 2 Overview of SHOT.

gate. We assume that a sensor node is composed of a pair
of infrared sensors with a wireless communication device
and that the sensor node can detect transit events of objects
along with their moving directions. Sensor information is
collected in a tracking server through wireless multihop net-
works. Sensor information consists of the information of
transit events of an object along with its moving direction
and the time of the event. Object tracking is performed at
the tracking server according to the sensor information.

In SHOT, in order to estimate the trajectories of ob-
jects, the tracking server maintains a virtual world, which
consists of virtual micro-cells, virtual gates, and virtual ob-
jects, as shown in Fig. 2. Hereinafter, in order to clearly dis-
tinguish virtual objects and real objects, we denote objects in
the real world as real objects. The tracking server generates
virtual objects when it receives arrival event information of a
real object from outside the monitoring region. The tracking
server transfers virtual objects in virtual micro-cells accord-
ing to sensor information and records their trajectories. In
addition, the tracking server duplicates and updates virtual
objects according to sensor information so that it maintains
a number of hypotheses of object trajectories for each real
object. Furthermore, the tracking server deletes virtual ob-
jects when the possibility that their trajectories correspond
to the trajectories of real objects decreases. When the track-
ing server receives departure event information of a real ob-
ject from the monitoring region, the trajectory of the most
appropriate virtual object is selected as the trajectory of the
real object.

In the present paper, we denote a set of micro-cells as
M, a set of gates as G, the c-th micro-cell as mc ∈ M, the
a-th gate as ga ∈ G, and the sensor node at gate ga ∈ G
as sa. In addition, we denote a set of virtual micro-cells as
Mv, a set of virtual gates as Gv, the c-th virtual micro-cell
as mvc ∈ Mv, and the a-th virtual gate as gva ∈ Gv. Further-
more, we denote the distance between gate ga and gate gb

as l(ga, gb), and a set of virtual objects, which is maintained
by the tracking server, as B. The information maintained

Table 1 Information maintained by virtual object bi.

Parameter Details
ki Object identifier
mvi Virtual micro-cell
tin:i Arrival time
gvin:i Arrival virtual gate
tout:i Estimated departure time
gvout:i Estimated departure virtual gate
vi Estimated velocity
tex:i Maximum existing time
(xi, yi) Estimated location

Fig. 3 Arrival of a real object to a monitoring region.

by virtual object bi ∈ B in the tracking server is shown in
Table 1. An object identifier is generated for each real ob-
ject when a real object arrives at the monitoring region. The
maximum existing time is used for the decision to remove a
virtual object.

In the following, we assume an ideal situation in which
the clocks of all sensor nodes are synchronized. In addition,
we assume that the tracking server knows the locations of
all gates, the distances among all gates, and the mean value
vc of the distribution of real object velocities in micro-cells
mc ∈ M. The following subsections describe how virtual
objects are maintained according to sensor information, in-
teractions among virtual objects, and estimation of loss of
sensor information.

3.2 Management of Virtual Objects According to Sensor
Information

In this subsection, we describe how the tracking server gen-
erates, updates, and deletes virtual objects.

3.2.1 Arrival of a Real Object to the Monitoring Region

Consider a real object that arrives at the monitoring region
through gate ga, which is placed on the boundary between
the outside of the monitoring region and micro-cell mw ∈ M
at time t1. When the tracking server receives the arrival
event information from sensor node sa on gate ga, the track-
ing server generates new object identifier k and generates
virtual objects for all virtual gates in virtual micro-cell mw.
We denote a set of newly generated virtual objects as Barr.
Figure 3 shows an example of the behavior of SHOT, where
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there are four micro-cells and eight gates in the monitoring
region. In this example, when a real object arrives at gate
ga, two virtual objects are generated for virtual gates gvc and
gve in virtual micro-cell mvw.

The information of each virtual object bi ∈ Barr is set
as follows: Object identifier ki, virtual micro-cell mvi , arrival
time tin:i, and arrival virtual gate gvin:i are set as k, ma, t1, and
ga, respectively. The estimated velocity vi and the estimated
location (xi, yi) are set to vw and the location of virtual gate
gva, respectively. The estimated departure time tout:i is calcu-
lated as follows:

tout:i = tin:i +
l(gvin:i, g

v
out:i)

vi
. (1)

Maximum existing time tex:i is calculated as follows.

tex:i = tin:i +
lmax(mvi , g

v
in:i)

vi
+ μw, (2)

where lmax(mvi , g
v
in:i) is the distance between virtual gate gvin:i

and the most distant virtual gate from virtual gate gvin:i in vir-
tual micro-cell mvi . Parameter μw (> 0) is a margin in order
to consider the estimation error of the velocity of a virtual
object and the delay for receiving the sensor information at
virtual micro-cell mw.

The virtual objects in Barr are then added to B. The
tracking server transfers virtual object bi ∈ B toward the
estimated departure virtual gate gout:i at velocity vi in virtual
micro-cell mvi by updating its location (xi, yi).

3.2.2 Transit of a Real Object among Micro-Cells

We next consider the situation in which a real object tran-
sits gate g f from micro-cell mx to micro-cell my at time t2.
When the tracking server receives the transit event informa-
tion from sensor node s f on gate g f , the tracking server first
selects virtual object candidates inB, which have possibility
to transit virtual gate g f from virtual micro-cell mvx to vir-
tual micro-cell mvy. We denote a set of candidates of transit
virtual objects as Bcand. Figure 4 shows an example of the
behavior of SHOT in this situation. In this example, there
are three virtual objects in virtual micro-cell mvx, and two
of these virtual objects, which are indicated by circles, are
selected as candidates of the transit virtual object.

Fig. 4 Transit of a real object among micro-cells.

In the present paper, we propose two selection meth-
ods, namely, velocity-based selection and time-based selec-
tion, for selecting a set of candidates of transit virtual objects
Bcand.

• Velocity-based selection:
In this method, the estimated velocity square error is
used to select Bcand. The estimated velocity square er-
ror ε2

i of virtual object bi is defined as follows:

ε2
i =

⎛
⎜⎜⎜⎜⎝

v2i (t2 − tout:i)

vi (t2 − tout:i) − l(gvin:i, g
v
out:i)

⎞
⎟⎟⎟⎟⎠

2

. (3)

The detailed derivation of the above equation is shown
in Appendix.
Then, Bcand is selected as follows:

Bcand = {bi ∈ B | ε2
min/ε

2
i > ϕx,

gvout:i = g
v
f ,m

v
i = mvx}. (4)

Here, ε2
min is the minimum value of the estimated ve-

locity square error among virtual objects for which the
estimated departure virtual gate is gvf in virtual micro-
cell mvc.

ε2
min = min

bi∈B, gvout:i=g
v
f , mvi=mvx

ε2
i (5)

where ϕx (0 ≤ ϕx ≤ 1) is a threshold. By using a
smaller value of ϕx, the tracking server may contain
a virtual object indicating the true trajectory of a real
object with a higher probability. At the same time, a
larger number of candidates are selected, and the track-
ing server should maintain a larger number of virtual
objects.
Additional information can be used to improve the ef-
ficiency for selecting Bcand. For example, by recording
the history of the velocity of a virtual object in that
virtual object, threshold ϕx can be adjusted based on
the velocity distribution. In addition, the velocity dis-
tribution of real objects in the micro-cell can also be
used for selecting candidates. A detailed discussion is
beyond the scope of the present paper and will be the
subject of a future study.
In velocity-based selection, virtual objects are evalu-
ated by assuming that they transit the virtual micro-
cell with constant velocity. However, some micro-cells
may have specific movement scenarios for real objects,
and the velocities of real objects change dynamically
depending on interactions among the real objects and
the surrounding environments. In this case, another se-
lection method should be used to select Bcand. There-
fore, in the following, we propose another selection
method.

• Time-based selection:
In this method, Bcand is selected according to the esti-
mated departure time of virtual objects and the time of
the transit event as follows:
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Bcand = {bi ∈ B | tout:i − δx ≤ t2 ≤ tout:i + δx,

gvout:i = g
v
f ,m

v
i = mvx}, (6)

where δx (> 0) is a threshold in order to consider the
estimation error of the departure time in virtual micro-
cell mx. By using a larger value for δx, the tracking
server may contain a virtual object indicating the true
trajectory of a real object with a higher probability, al-
though a larger number of candidates is selected and
the tracking server should maintain a larger number of
virtual objects.

The tracking server then generates new virtual objects
in virtual micro-cell my for all virtual gates in virtual micro-
cell my, from each virtual object bi ∈ Bcand. In Fig. 4,
four virtual objects are generated in virtual micro-cell mvy
based on the two candidates in virtual micro-cell mvx. We
denote newly generated virtual objects as Btran. Information
of newly generated virtual object bj ∈ Btran is set as fol-
lows. Object identifier k j, virtual micro-cell mvj, arrival time
tin: j, and arrival virtual gate gvin: j are set as ki, my, t2, and gvf ,
respectively. Estimated velocity v j is calculated from obser-
vation in virtual micro-cell mvx as follows.

v j =
l(gvin:i, g

v
out:i)

t2 − tin:i
. (7)

Estimated departure time tout: j and the maximum existing
time tex:i are calculated from Eqs. (1) and (2), respectively.
Estimated location (x j, y j) is set to the location of virtual
gate gvf . Finally, the virtual objects in Btran are added to B.

3.2.3 Departure of a Real Object from the Monitoring Re-
gion

We then consider the situation in which a real object de-
parts from the monitoring region through gate gh, which is
placed on a boundary between the outside of the monitoring
region and micro-cell mz ∈ M at time t4. When the tracking
server receives the departure event information from sensor
node sh on gate gh, the tracking server calculates the mini-
mum value of the estimated velocity square error ε2

min using
Eqs. (3) and (5) by considering t2, gvf , and mvx as t4, gvh, and
mvz, respectively. Virtual object bp, the estimated velocity
square error of which becomes ε2

min, is selected as the corre-
sponding real object kp, and the trajectory of virtual object
bp is chosen as the trajectory of real object kp. Figure 5
shows an example of the behavior of SHOT in this situation.

3.2.4 Removal of Virtual Objects from the Virtual World

In SHOT, the tracking server deletes virtual objects in the
following two cases. In the first case, the tracking server
deletes virtual object bi ∈ B at time t when tex:i < t is sat-
isfied. At the same time, the tracking server also estimates
sensor information loss, as described in detail in Sect. 3.4. In
the second case, when virtual object bp is selected as the de-
parture real object, as described in Sect. 3.2.3, the tracking
server deletes virtual objects for which the object identifier
is kp from B.

Fig. 5 Departure of a real object from the monitoring region.

Fig. 6 Passing virtual objects in a virtual micro-cell.

3.3 Management of Virtual Objects According to Interac-
tions among Virtual Objects

In SHOT, by introducing the virtual world, it is possible to
handle specific movement scenarios of real objects. For ex-
ample, the speed of real objects may decrease when real ob-
jects pass each other in a narrow passageway. In the present
paper, we consider the slowdown of passing objects in a nar-
row passageway as one example scenario, although a variety
of scenarios can be considered, as described in Sect. 1.

We first introduce additional staying time di for the in-
formation maintained by virtual object bi. The additional
staying time is used to consider the delay of a real object due
to specific movement scenarios. Additional staying time di

is initially set to zero when virtual object bi is generated.
Note that, by introducing additional staying time di, Eqs. (3)
and (7) are combined to obtained the following equation:

ε2
i =

⎛
⎜⎜⎜⎜⎝

v2i (t2 − tout:i + di)

vi (t2 − tout:i + di) − l(gvin:i, g
v
out:i)

⎞
⎟⎟⎟⎟⎠

2

. (8)

v j =
l(gvin:i, g

v
out:i)

t2 − tin:i − di
. (9)

We then consider the situation in which virtual objects
bi ∈ B and b j ∈ B pass each other in a narrow passageway.
In this situation, the tracking server generates virtual objects
b′i and b′j by duplicating bi and b j as shown in Fig. 6. Virtual
objects b′i and b′j indicate hypotheses in which real objects
pass each other and decrease in velocity. In the present pa-
per, the decrease in the object velocities is realized by vir-
tual objects stopping for τ in the virtual micro-cell when
they pass each other. Here, τ is the delay time for the case
of passing real objects in a narrow passageway. Estimated
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Fig. 7 Loss of sensor information.

departure time t′out:i, t′out: j and additional staying time d′i , d′j
of newly generated virtual objects are updated by adding τ.
Finally, virtual objects b′i and b′j are added to B.

3.4 Management of Virtual Objects According to Estima-
tion of Loss of Sensor Information

In actual environments, information loss occurs due to
packet loss, sensing failures, and functional limitations of
sensors. In SHOT, when the tracking server estimates the
loss of sensor information, the tracking server generates vir-
tual objects for all possible object trajectories to handle the
loss of sensor information.

We first introduce transit flag fi for the information
maintained by virtual object bi in order to estimate the loss
of sensor information. Transit flag fi is first set to false
when virtual object bi is generated. Transit flag fi is set to
true when virtual object bi is selected one of candidates, i.e.,
bi ∈ Bcand, as described in Sect. 3.2.2.

By setting the maximum existing time according to
Eq. (2) in Sect. 3.2.1, the virtual objects generated from the
same event and the same virtual object are deleted simulta-
neously. The estimation of the loss of sensor information
is achieved before the deletion process. We denote a set of
virtual objects generated from the same event and the same
virtual object asBd and their maximum existing time as tex:d.
At time tex:d, if there is no virtual object bi ∈ Bd, the transit
flag fi of which is true, the tracking server considers loss
of sensor information to have occurred. The tracking server
then generates virtual objects in neighboring virtual micro-
cells by considering that virtual object bi ∈ Bd transited gate
gout:i at time tout:i, as shown Fig. 7. The transit flag of newly
generated virtual objects is set to true in order to prevent
virtual objects from being generated again in neighboring
virtual micro-cells.

4. Performance Evaluations

4.1 Simulation Settings and Evaluation Metrics

In the simulation experiments, we use a combination of a
square micro-cell, which has four gates, as shown in Fig. 8.
For example, a monitoring region consists of 2×2 micro-
cells, eight gates that face outward from the monitoring re-
gion, and four gates inside the monitoring region, as shown

Fig. 8 Structure of a micro-cell.

in Fig. 8. We introduce passageways among the gates in
a micro-cell. A real object moves along the passageway.
The distance of the passageways among neighboring gates is
10.0, and the distance of passageways among opposite gates
is 14.1. A sensor node is located at each gate. At the sensor
node, which is inside the monitoring region, information-
loss probability p is introduced, which means that the track-
ing server fails to retrieve sensor information from the sen-
sor node with probability p.

We consider two mobility models in this paper which
are refereed as constant velocity mobility model and random
velocity mobility model. In the constant velocity mobility
model, real objects arrive at the monitoring region, follow-
ing the Poisson arrival process with the arrival rate of λ ob-
jects/sec. An arrival gate is randomly selected from among
the gates that face outward from the monitoring region. The
velocity of real objects follows a Gaussian distribution with
an average of 1.31 m/sec and a deviation of 0.272, which is
the measurement distribution of pedestrian velocities in an
open space area [13]. Real object moves at a constant ve-
locity in the whole monitoring region. When a real object
arrives at a micro-cell, the object randomly selects a depar-
ture gate from among all gates, excluding the arrival gate
in the micro-cell. We should note here that a real object
never changes its velocity in the constant velocity mobility
model. On the other hand, in the random velocity mobil-
ity model, a real object changes its velocity when it passes
a gate, in a similar fashion of other mobility models such
as random way-point mobility model and the random walk
mobility model [14]. The new velocity of real objects fol-
low the same Gaussian distribution as the constant velocity
mobility model.

In velocity-based selection and time-based selection,
we use same threshold ϕx = ϕ and δx = δ, respectively,
for all micro-cells mx ∈ M. In Eq. (2), we use μw = 3 sec
for all micro-cells mw ∈ M.

We define the tracking accuracy as nsuc/nob j, where
nsuc is the number of real objects for which the trajecto-
ries are correctly estimated. Here, nob j is the number of
real objects arriving at the monitoring region. In addition,
we define the virtual object generation ratio as nvob j/nob j,
where nvob j is the number of generated virtual objects in the
tracking server. The virtual object generation ratio implic-
itly indicates the processing overhead of SHOT.

In order to evaluate the effectiveness of the introduc-
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(a) λ = 0.08

(b) λ = 0.24

Fig. 9 Effect of selection method
(constant velocity mobility model).

(a) λ = 0.08

(b) λ = 0.24

Fig. 10 Effect of selection method
(random velocity mobility model).

(a) Tracking accuracy.

(b) Virtual object generation ratio.

Fig. 11 Effect of micro-cell structure.

tion of the virtual world, we also conduct simulation exper-
iments using a method based on MHT [9]. In the method
for comparison, virtual objects are not deleted when a real
object departs from the monitoring region. In addition, vir-
tual objects are not generated when they pass each other in
a narrow passageway. Furthermore, the method for compar-
ison does not have an effective mechanism against tracking
information loss.

4.2 Effect of Virtual Object Selection Method, Thresholds,
and Mobility Model

First, we evaluate the effect of threshold ϕ in velocity-based
selection and threshold δ in time-based selection. Threshold
ϕ is set to be from 0.01 to 1.0, and threshold δ is set to
be from 2.0 to 4.5. Arrival rate λ is set to be from 0.08
and 0.24. For the micro-cell structure, 2×2 micro-cells are
used. In order to evaluate the fundamental performance of
SHOT, we assume that there is no information loss, i.e., p =
0, and that no narrow passageway exists in the simulation
experiments. The simulation duration is set to 1,000 sec,
which is a sufficient duration for steady results.

Figure 9 shows the tracking accuracy with respect to
the virtual object generation ratio, when we use the constant
velocity mobility model. In velocity-based selection, there
is the optimal threshold ϕ in both arrival rate cases to achieve
the highest tracking accuracy while maintaining a smaller
virtual object generation ratio, as shown in Figs. 9 (a) and
9 (b). Therefore, thresholds should be carefully configured.
In time-based selection, by using a larger value of δ, the
tracking accuracy becomes higher. However, the virtual
object generation ratio also becomes higher. Therefore, a

trade-off exists between the tracking accuracy and the vir-
tual object generation ratio.

When we compare results of velocity-based selection
and that of time-based selection, the virtual object genera-
tion ratios of velocity-based selection is smaller than that of
time-based selection to achieve same tracking accuracy. For
example, to achieve the tracking accuracy of 0.94 in the con-
stant velocity mobility model, the virtual object generation
ratio of velocity-based selection is 22% smaller than that of
time-based selection, as shown in Fig. 9 (a). Since the con-
stant velocity model assumes that a real object moves at a
constant velocity in the monitoring region, the settings of
the simulation are suitable for velocity-based selection.

Figure 10 shows the tracking accuracy with respect to
the virtual object generation ratio, when we use the random
velocity mobility model. As shown in Fig. 10, both velocity-
based selection and time-based selection need similar virtual
object generation ratio to achieve the highest tracking accu-
racy. For example, to achieve the tracking accuracy of 0.88,
velocity-based selection needs the virtual object generation
ratio of 2.85 and time-based selection needs that of 2.75, as
shown in Fig. 10 (a). Since a real object in the random ve-
locity mobility model changes its velocity when it transits
a gate, velocity-based selection is less effective compared
to the case of the constant velocity mobility model. On the
other hand, time-based selection has benefit in terms of sim-
plicity to calculate the set of candidates of transit virtual ob-
jectsBcand compared to velocity-based selection. Therefore,
time-based selection is suitable for the case of the random
velocity mobility model. The selection method should be
determined considering mobility behavior of real objects in
the monitoring region.
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(a) Tracking accuracy.

(b) Virtual object generation ratio.

Fig. 12 Effect of passing real objects.

(a) Tracking accuracy.

(b) Virtual object generation ratio.

Fig. 13 Effect of sensor information loss
(velocity-based selection method).

(a) Tracking accuracy.

(b) Virtual object generation ratio.

Fig. 14 Effect of sensor information loss
(time-based selection method).

4.3 Effect of Micro-Cell Structure

Next, we conduct simulation experiments by varying the
micro-cell structure as 1×1, 1×2, 2×2, 2×3, and 3×3. The
arrival rate λ is set to 0.08 and 0.24. For the mobility model,
constant velocity mobility model is used. For thresholds,
δ = 4.5 and ϕ = 0.1 are used for time-based selection and
velocity-based selection, respectively, since each parameter
achieves the highest tracking accuracy. The other settings of
the simulation experiments are as described in the previous
subsection.

Figures 11 (a) and 11 (b) show the tracking accuracy
and the virtual object generation ratio, respectively, with re-
spect to structure of micro-cells. As shown in Fig. 11 (a),
the tracking accuracy decreases slightly when the number
of micro-cells increases. This is because the number of tran-
sit micro-cells of real objects increases when the number of
micro-cells increases. This means that tracking of a real ob-
ject becomes more complicated. In addition, the tracking
server generates virtual objects according to the transit event
of real objects. As a result, the number of generated virtual
objects increases when the number of micro-cells increases,
as shown in Fig. 11 (b).

Figures 11 also shows that the performance of SHOT
depends on the arrival rate of real objects. When the arrival
rate increases, the number of transit events of real objects in-
creases and the number of virtual objects in a virtual micro-
cell also increases. Therefore, more virtual objects are se-
lected as a set of candidates Bcand in Sect. 3.2.2, and more
virtual objects are generated when the tracking server re-
ceives transit event information of real objects. As a result,
the number of generated virtual objects increases, and the

tracking accuracy decreases when the arrival rate increases,
as shown in Fig. 11.

When we compare the results of velocity-based se-
lection and that of time-based selection, the tracking ac-
curacy of both selection methods are almost same. How-
ever, the virtual object generation ratio of time-based se-
lection is much larger than that of velocity-based selection,
since larger number of virtual objects are generated in time-
based selection in the constant velocity mobility model as
described in Sect. 4.2

4.4 Effect of the Generation of Virtual Objects According
to Interactions among Virtual Objects

We evaluate the effect of the generation of virtual objects ac-
cording to interactions among virtual objects. In the simula-
tion experiments, 2×2 micro-cells in which all passageway
are narrow passageway, are deployed. In narrow passage-
way, the speeds of real objects decrease when the objects
pass each other. We use τ = 3 sec and p = 0. Arrival rate
λ is set to be from 0.008 to 0.36. The other settings are the
same as in the previous subsection.

Figures 12 (a) and 12 (b) show the tracking accuracy
and the virtual object generation ratio, respectively, with re-
spect to the arrival rate λ. As shown in Fig. 12 (a), in both
selection methods, the tracking accuracy of SHOT is higher
than that of the method for comparison, since SHOT han-
dles the scenario of the slowdown of passing real objects in
a narrow passageway by generating virtual objects when the
real objects pass each other. In addition, it is shown that
the tracking accuracy decreases as the arrival rate increases
because the number of real objects in a micro-cell grows.
However, the rate of decrease of the tracking accuracy of
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SHOT is smaller than that of the method for comparison. As
a result, the tracking accuracy of SHOT with velocity-based
selection is improved by 29% and that with time-based se-
lection is improved by 37% when λ = 0.36.

On the other hand, as shown in Fig. 12 (b), the virtual
object generation ratio of SHOT increases as the arrival rate
increases in both selection methods, although that of the
method for comparison is approximately the same. This is
because SHOT generates virtual objects when virtual ob-
jects pass each other in a narrow passageway, and the num-
ber of passes increases as the number of virtual objects in-
creases.

4.5 Effect of the Generation of Virtual Objects According
to the Estimation of Loss of Sensor Information

Finally, we conduct simulation experiments considering the
loss of sensor information. In these simulation experiments,
arrival rate λ is set to 0.04. In order to evaluate effect of the
generation of virtual objects according to the estimation of
loss of sensor information, we assume that no narrow pas-
sageway exists in the simulation experiments. Information-
loss probability p is set to be from 0 to 0.1. The other set-
tings of the simulation experiments are the same as in pre-
vious subsection. For the purpose of comparison, we also
conduct simulation experiments in which the tracking server
does not generate virtual objects when it estimates loss of
sensor information. Hereinafter, we denote this method as
SHOT-l.

Figures 13 (a) and 13 (b) show the tracking accuracy
and the virtual object generation ratio, respectively, with
respect to the information-loss probability when we use
velocity-based selection. As shown in Fig. 13 (a), the track-
ing accuracy of all methods decreases the as information-
loss probability increases. However, the tracking accu-
racy of SHOT is higher than that of both SHOT-l and the
method for comparison. For example, the tracking accu-
racy of SHOT is improved by approximately 6% compared
to that of SHOT-l when the information-loss probability is
p = 10%. These simulation experiments confirmed the ef-
fectiveness of the generation of virtual objects according to
the estimation of sensor information loss.

As shown in Fig. 13 (b), the virtual object generation
ratio of SHOT remains similar, whereas those of SHOT-l
and the method for comparison decrease as the information-
loss probability increases. This is because SHOT generates
virtual objects according to not only sensor information but
also the estimation of sensor information loss.

Figure 14 shows the tracking accuracy and the virtual
object generation ratio when we use time-based selection.
The results and discussions are similar to that of velocity-
based selection as described above paragraphs. In time-
based selection, the tracking accuracy of SHOT is improved
by 5% compared to that of SHOT-l when the information-
loss probability is p = 10%.

5. Conclusion and Future Research

In the present paper, an object tracking method with indoor
sensor networks called SHOT was proposed. In SHOT, the
novel concept of a virtual world that consists of virtual ob-
jects and virtual micro-cells is introduced in order to han-
dle specific movement scenarios of objects. Virtual objects
are generated, transferred, and deleted according to sensor
information, interactions among virtual objects, and the es-
timation of loss of sensor information. Through simulation
evaluations, we confirmed that the ratio of successful track-
ing is improved by up to 29% by considering the interaction
among virtual objects. In addition, the tracking performance
was improved by up to 6% by considering the loss of sensor
information. Although in the present study we considered
only one simple scenario, i.e., slowdown of passing objects
in a narrow passageway, the effectiveness of the introduction
of the virtual world was demonstrated.

In the future, we intend to take into account various
scenarios, such as doubling back of objects and objects on
moving sidewalks. Furthermore, we intend to implement
SHOT using off-the-shelf sensor nodes and evaluate SHOT
through actual experiments.
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Appendix: Process of Deriving Estimated Velocity
Square Error

Consider a real object that departs from gate g f at time t2,
and assume that the estimated departure time of virtual ob-
ject bi ∈ B satisfies tout:i < t2. We then introduce the esti-
mated velocity error εi, so that virtual object bi departs the
gate g f at time t2 if the velocity of virtual object bi is vi − εi.
Then, the time difference Δti = t2 − tout:i becomes

Δti =
l(gvin:i, g

v
out:i)

vi − εi
− l(gvin:i, g

v
out:i)

vi

= −εil(gvin:i, g
v
out:i)

vi (vi − εi)
. (A· 1)

Then, we have

εi =
v2i Δti

vi Δti − l(gin:i, gout:i)
. (A· 2)

We use the square of the estimated velocity error ε2
i because

εi becomes negative when tout:i > t2.

ε2
i =

⎛
⎜⎜⎜⎜⎝

v2i (t2 − tout:i)

vi (t2 − tout:i) − l(gin:i, gout:i)

⎞
⎟⎟⎟⎟⎠

2

. (A· 3)
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