
114
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

PAPER

A Reference Programming Model for Building Context-Aware
Application

Junbin ZHANG†a), Member, Yong QI†b), Di HOU†c), and Ming LI†d), Nonmembers

SUMMARY Context-aware applications are a key aspect of pervasive
computing. The core issue of context-aware application development is
how to make the application behave suitably according to the changing con-
text without coupling such context dependencies in the program. Several
programming paradigms and languages have been proposed to facilitate the
development, but they are either lack of sufficient flexibility or somewhat
complex for programming and deploying. A reference programming model
is proposed in this paper to make up inadequacy of those approaches. In
the model, virtual tables constructed by system and maintained by space
manager connect knowledge of both developer and space manager while
separating dependency between context and application logic from base
program. Hierarchy and architecture of the model are presented, and imple-
mentation suggestions are also discussed. Validation and evaluation show
that the programming model is lightweight and easy to be implemented
and deployed. Moreover, the model brings better flexibility for developing
context-aware applications.
key words: pervasive computing, context-aware, programming model,
table-driven, language extension

1. Introduction

Pervasive computing is being integrated into and is changing
people’s daily lives. As an important component of perva-
sive computing environment, context-aware [1] application
can sense the physical environment where it runs, i.e., its
context, and adapt its behavior accordingly while placing
minimal intervention of users, which introduces a novel set
of design challenges that are not present in traditional desk-
top programming.

Earlier researchers proposed preference model based
branching model and triggering model [2]. Some program-
ming languages and paradigms have also been put forward
in recently years to facilitate development of the context-
aware applications. In COP proposed in [3], [4], program is
composed of many open terms. The open terms and associ-
ated contexts are defined in advance, and will be replaced
dynamically at the run time with pieces of codes (called
stubs) defined in the repository of candidates by context-
filling operation. The stubs are also defined beforehand by
system developer. COP separates context from application
logic by matching open terms with stubs, and as a result,

Manuscript received May 14, 2010.
Manuscript revised September 25, 2010.
†The authors are with the Institute of Computer Software and

Theory of Xi’an Jiaotong University. Xi’an, Shaanxi, 710049,
China.

a) E-mail: henry@xjtu.edu.cn
b) E-mail: qiy@xjtu.edu.cn
c) E-mail: houdi@xjtu.edu.cn
d) E-mail: lm bai@sina.com

DOI: 10.1587/transinf.E94.D.114

factors of environment are decoupled from application at de-
sign time. As an extension to the Common Lisp Object Sys-
tem, ContextL [5] associates partial class and method defi-
nitions with layers, and activates and deactivates such layers
in the control flow of a running program. When a layer is
activated, the partial definitions become part of the program
until this layer is deactivated. ContextL separates class defi-
nitions into distinct layers instead of factoring out the behav-
ior code into different classes, thus causes programs to adapt
to context flexibly while keeping the conceptual simplicity
of object-oriented programming. Multifaceted based pro-
gramming paradigm [7] facilitates the development of the
context-aware pervasive services with fully defined and de-
terministic behavior. The multifaceted programming entity,
each facet of which denotes a pair of specific context and
corresponding behavior, is the core concept of the paradigm.
The context associated to a facet behaves like a switch, and
the adaptation of the multifaceted programming entity to
the context is done by switching facets. Developers choose
proper exposing strategy to control the switching process.
The process exposes and hides facets of entities and makes
the application follow changing of the context automatically.

Although these approaches solve some key problems
of pervasive computing programming, they are either lack of
sufficient flexibility or somewhat complex for programming
and deploying. Our research team proposes a table-driven
programming paradigm [9] for developing context-aware
application to address shortcomings mentioned above. The
paradigm separates context awareness and reaction to it
from the application logic using a table-driven programming
style. The virtual tables produced by system and maintained
by space manager isolate context-related operations from
application while, at the same time, connecting knowledge
of both developer and space manager. The paradigm iso-
lates programming complexity and brings better flexibility.
In this paper, we induce a reference programming model by
extending and perfecting the paradigm. As a lightweight ref-
erence programming model, the model can be implemented
in most existing programming language. The table matching
strategy and its effect on solving potential conflict problems
are analyzed. Suggestions for implementing the model are
also discussed. A context operation simulation platform is
designed to support validating the model. Validation and
evaluation shows feasibility and flexibility of the model.

The remainder of the paper is structured as follows.
Section 2 describes motivations of the research. Section 3
presents details of the model. Implementation of the model

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
115

is discussed in Sect. 4. Section 5 validates and evaluates the
model. Related works are described in Sect. 6 and Sect. 7
concludes.

2. Motivations

Nowadays, to efficiently lower developers’ concern about
the context related operations and enhance efficiency of the
development, researchers commonly separate these com-
plex operations from programming logic of context-aware
application by an infrastructure-centered approach to gather,
manage and delivery context information to the applica-
tion that requires it. Upon the context operating infrastruc-
ture, common approaches that facilitate the development
of context-aware application at design time involve recon-
structing of certain programming language and changing
programming style. These approaches provide an isolating
mechanism that hide context related operations from appli-
cation, which reduces burdens of development for program-
mer. Also the approaches establish a linkage between en-
vironment and application, thus enable the application to
behave suitably according to the changing context. De-
veloper defines responses for every possible context value
in context-aware application. When the application runs,
the infrastructure extracts context information from environ-
ment and dispatches it to proper context-based response. As
a consequence of that, the application behaves accordingly.

However, we are facing a complex, dynamic and ever-
changing pervasive computing environment. Despite advan-
tages of these approaches, it is unrealistic and impossible for
the developer to take into account all possible changes of
run-time context at design time. Researchers have provided
us several solutions in their programming model. When de-
veloping with COP, we can define more open terms and cor-
responding stubs to cope with new emerging context. We
can also create new layers associated with appropriate par-
tial class and method definitions, and make them be capa-
ble of being activated and deactivated when programming
in ContextL. Similarly, new facets, each of which denotes a
pair of specific context and corresponding behavior, can be
added to the multifaceted programming item by using facet
acquirement operation. Unfortunately, all these modifica-
tions of application should be accomplished at design time.
In most cases, any such actions will cause the program to be
recompiled and the running application to be started over.

Our research team focuses exactly on this issue. To
overcome the obstacle, we consider that the manager of the
pervasive computing space who knows detail of application
requirements and is more familiar with the environment than
programmer should take part in developing and deploying
the context-aware application. We need a mechanism to
connect knowledge of both developer and space manager
and to enable the latter to adjust behavior of application
manually at run time when needed without modifying its
source code.

All of our ideas will be explained based on the follow-
ing example scenario:

Mr. Smith presents in an international conference. He
and the other attendees that come from all over the world
carry hand-held terminal (maybe PDA, smart phone or
other intelligent device) with them. Mr. Smith’s personal in-
formation and preference, such as name, mother language
and interested session of the conference are stored in his
terminal devices. A register service greets him in his mother
language when he steps into the conference hall. When he
roams session rooms, an introduction service sends confer-
ence materials of current session automatically to his termi-
nal device.

The scenario represents a general context-aware appli-
cation. The application includes a register service and an
introduction service. The two services perceive context of
the conference and response accordingly. Details of the ap-
plication will be described in the next sections, and we will
use these related concepts to illustrate our idea.

3. Reference Programming Model

Table-driven design [8] is an approach to software engineer-
ing which is intended to generalize and simplify applica-
tions by separating program control variables and parame-
ters (rules) from the program code and placing them in ex-
ternal tables. Our table-driven programming paradigm [9]
for developing context-aware application was inspired orig-
inally by the table-driven design approach. The program-
ming model presented in this paper is based on the table-
driven programming paradigm. We extend the basic princi-
ple of traditional table-driven approach to separate context
related components from application, which brings lower
developing complexity as well as higher usability and adapt-
ability to context-aware application.

The essence of the programming mode is a language
specification associated with a system framework. We are
not intending to design a bran-new or specific language in
this paper. In fact, the language specification and related
framework are referential. System developer can implement
the model based on her interested programming language.
That is why we call the model a “reference” programming
model.

3.1 Ontology-Based Context Modeling

Ontology-based context modeling is currently a hot research
topic. A general definition of context is presented in [10].
According to the authors, context is any information that
can be used to characterize the situation of an entity. An en-
tity is a person, a place, or a physical or computational ob-
ject that is considered relevant to the interaction between a
user and an application, including the user and application
themselves. T. Winograd gives a special definition [11] of
context: something is context because of the way it is used
in interpretation, not due to its inherent properties. From
the practical point of view, we prefer the latter definition
because open-ended phrases such as “any information” and
“characterize” are so broad that context covers everything



116
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

without boundary and is hard to be programmed.
Strang et al. [12] present a survey of six context mod-

eling approaches, in which the ontology-based modeling
method seems gaining unanimity in pervasive computing re-
search communities. OWL-DL [13] is commonly used to
represent ontology-based context model. We do not intend
to study ontology-based context modeling technique itself,
but just base our programming model on the technique. For
the ease of illustration, we use the basic RDF [14] triple
<subject, predicate, value>, as authors in [15] do, to repre-
sent context in our research field. The triple is expressed in
the first order predicate logic. The subject means the owner
that possesses the context. It may be a place, a person or
a computing entity. The situation of subject is expressed in
terms of multiple properties and their values, so we use the
terms predicate and value to represent the situation of the
subject with respect to a specific property.

In the example scenario shown in Sect. 2, there are
several RDF triples that can be used to describe context
information. For example, <Smith, locatedIn, session-
Room1> indicates that a person named Smith is located
in a place named sessionRoom1; <smartPhone, hasType,
O2XDAFlame> shows that the type of the device smart
phone is O2 XDA Flame. As is mentioned, using the basic
RDF triple here is mainly to facilitate the description and
understanding. Actually, context information is represented
in the obscure and strictly grammatical OWL-DL when it
is transmitted between context infrastructure and context-
aware application.

3.2 Table Matching Strategy

Table matching is a very common procedure. Generally, we
compare the given data with table items from the top row to
the bottom, or in reverse order sometimes. In our program-
ming model, we are considering other factors when match-
ing table items. The table in our programming model should
have the so-called “memory effect”, that is, it can memorize
the position of last matched row. Based the memorization,
we clarify three matching strategies as follows:

• Free mode. This is the non-exclusive matching strat-
egy. New incoming data will be compared with table
items as usual no matter what the last matched index
value is when using this mode.
• Exclusive mode. When using this strategy, new incom-

ing data will not be compared with any items of the
table as long as the last matched index is not a null
value. The null value can be counted as a meaningless
value for the table index. For instance, if the table in-
dex starts from one, we look on zero as the null value
index.
• Priority-based mode. Each row of the table has a prior-

ity value. The row which has the higher priority will be
compared earlier than those who have lower priority.
Since computer always compares rows of table along a
natural order, namely, the table index, we can simply

equate the priority with the index value of table. If the
table index value is calculated from low to hight, the
row which has a lower index value has a higher prior-
ity. When adopting this strategy, new incoming data
can only be compared with rows that have higher pri-
ority than that of the last matched row.

These three types of strategy are important in our table-
driven programming model. We will discuss how to use
them to resolve potential conflict problems later.

3.3 Table-Driven Programming Entity

Definition. A table-driven programming entity is a pro-
gramming structure that can perceive changing of a specific
context subject and react to it according to a virtual table
which is constructed and maintained by system and config-
ured by space manager.

To figure the definition out, let’s focus on the basic
structures that are used to compose a program, namely Vari-
able and Function (we look on constant as special variable).
In a typical context-aware application, programmer gener-
ally declares variables to acquire context-related informa-
tion and defines functions to implement context-related op-
erations. Different context corresponds to different variable
value or function implementation. In other words, both the
value of variable and implementation of function are sen-
sitive to specific context subject. If associated with their
interested context subject, both the variable and the func-
tion meet conditions to be a table-driven programming en-
tity. Table-driven programming entity is the core part of the
programming model.

There is a concept name “virtual table” in the defini-
tion. The reason why we call the table a “Virtual” one is
that it is constructed by system in the light of the defining
statement in the program, and it is transparency to program-
mer. As is mentioned, we consider that the space manager
who knows detail of application requirements and is more
familiar with the environment than programmer should take
part in developing and deploying the context-aware appli-
cation. So the virtual table connects knowledge of both
the developer and the space manager. The developer de-
fines table-driven programming entities in program. The
system (actually, it is a preprocessing tool, we will give its
detail later) constructs virtual tables according to the defin-
ing statements. The space manager configures the virtual
tables according to actual demand when deploying the ap-
plication. She can also adjust contents of the table when the
application is running as long as she needs.

From the intuitive point of view, a table-driven variable
(or function) is variable (or function) that is associated with
its interested context subject. Conceptually, definition of a
table-driven variable (hereinafter called TDV) can be repre-
sented as follows:

tdvDefine varType varName:cSubject[noteString]=dftValue;

where, tdvDefine indicates line-beginning of the statement



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
117

Fig. 1 Backus Naur Form of table-driven programming entity. TDV-
DEFINITION is for table-driven variable, and TDF-DEFINITION is for
table-driven programming function.

for defining a TDV; varType is the data type of the TDV
and varName is the identifier; cSubject with a leading colon
gives context subject to which the variable is sensitive;
noteString with square brackets is a human readable string
that prompts space manager what the variable is for; dft-
Value designates default value of the variable.

The following statement defines a table-driven function
(hereinafter called TDF):

tdfDefine retType funcName(paraList):cSubject[noteString]{
(Default body of the function)

}

Similarly, tdfDefine indicates line-beginning of the
statement for defining a TDF; retType is the type of return
value of the function; funcName is name of the function, and
paraList denotes the parameter list of the function; cSub-
ject with a leading colon gives subject of context that the
function is sensitive; meaning of noteString is the same as
the counterpart of TDV. Codes enclosed by a pair of curly
brackets are the default body of the function. Effect of the
default value for TDV and the default body of TDF will be
explained later.

In order to describe TDV and TDF more accurately, we
give partial definitions of them expressed in Backus Naur
Form (BNF, [16]) respectively in Fig. 1. Meanings of the
non-terminal symbols enclosed by angle brackets presented
in Fig. 1 are similar to that we have just explained above.
Since we are reconstructing variable and function of tradi-
tional programming language, those symbols also have the
same meaning as counterparts in a concrete programming
language.

Several table-driven programming entities can be
found in the context-aware application of the example sce-
nario presented above. For instance, the register service
greets attendee in her mother tongue. The greeting words
changes with the language setting stored in the user’s hand-
held device. So we can define the greeting words as a TDV
which is sensitive to the mother language setting. Com-
monly, each session room (or district) has a different session
subject. Also, each session subject corresponds to different
conference materials. When an attendee roams to a session
room, she will get conference materials of the correspond-
ing session subject. That is to say, the conference materials
changes with the attendee’s position. Therefore, the confer-

Fig. 2 Extended structure of virtual table for TDV and TDF. There are
two columns, uncertain rows and several indispensable accessorial items in
both tables. Rows that indexed from 1 to N will be configured by space
manager.

ence materials, which the system shall send to the user, can
be defined as a TDV that is sensitive to the user’s position.
Besides, In both services, the method which the system uti-
lizes to send messages to the user’s device changes with the
type of the device. Consequently, the method can be defined
as a TDF that is sensitive to the type of the device.

3.4 Virtual Table

Defining statements of the table-driven programming entity
will instruct system to construct virtual tables. It is the vir-
tual table that connects knowledge of both developer and
space manager. In order to combine the table matching strat-
egy to solve potential conflict problems, we extend the struc-
tures of virtual table presented in [9]. Figure 2 shows the
extended structures.

Figure 2 (a) shows structure of virtual table for TDV.
There are two columns, uncertain rows and several indis-
pensable accessorial items in the table. Bold texts in the
topmost row are the table headers. The first column lists
possible values of the interested context subject of the vari-
able, while the second column lists possible target values
of it. Number of rows is determined by space manager in
her configuring process. Accessorial items include 1) con-
textSubjectName: interested context subject of the variable;
2) predicateIdentifier: identifier of the predicate in the RDF
triple <subject, predicate, value>; 3) indexValue: table in-
dex of the last matched row; 4) noteString: human read-
able string which tells space manager what the variable is
for; 5) strategyName: the name of strategy used by sys-
tem to compare table rows. Its candidate choices are the
aforesaid table matching strategy, that is, free mode, ex-
clusive mode and priority-based model. Of all the three
strategies, the free mode, which is the most commonly used,
will be set to default one when creating virtual table. The
space manager gets a clear understanding of her mission



118
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

from the noteString while she configures the virtual table.
PredicateIdentifier indicated the relationship between con-
textSubjectName and valueOfContextSubject, which ensures
that the space manager always fills meaningful items into the
table.

The table matching procedure is under the guidance of
the table matching strategy. Normally, values in the first
column will be compared with the current context value
extracted from the environment. Once they are matched,
the corresponding value listed in the second column of the
same row will be returned as the value of the variable. If
none of the rows is matched, a null value will be returned;
consequently the dftValue will be used by the application.
When the comparing process ends, system will update value
of the last matched index with the index value of currently
matched row.

Figure 2 (b) shows the structure of virtual table for
TDF. It looks very much like Fig. 2 (a). Actually, most of
items in both tables are the same meaning, and the matching
procedures are also similar. Difference between the two ta-
bles exists in the second column: the column value of virtual
table for TDF is entrance of the function. The entrance has
different meaning in different programming language. As is
known, it would be function address or invocation name. If
none of the value in the first column is matched, the default
body of the function will be executed.

Although it is not mentioned above, there exists a one-
to-one relationship between the table-driven programming
entity and the virtual table. The virtual table acts as a link-
age between the programming entity and the corresponding
context subject.

General matching procedure is comparing items of ta-
ble row by row, but sometimes this kind of matching will
bring conflict problems. For example, a waiter service ad-
justs temperature in a rest room according to preference
of people who comes in. A TDV named targetTempera-
ture, which is sensitive to the user’s comfortable tempera-
ture preference, was defined in the service to determine the
temperature of the room. Several comfortable levels, each of
which indicates a certain temperature, were configured into
virtual table of the variable by space manager in advance.
When the first people steps into the room, the service gets
a target temperature value through comparing comfortable
temperature preference of the people with items in the vir-
tual table, and adjusts indoor temperature accordingly. It
seems that the service works well. At that time, another
people steps in, and the service adjusts temperature for the
newcomer. But conflict arises if her comfortable level is
different with that of the former people. The table matching
strategy will help to resolve this type of conflict. Space man-
ager can designate exclusive mode or priority-based mode
while configures the virtual table. When using the exclusive
mode, the first people who steps into the room will deter-
mine the temperature because the last matched index is not a
null value as long as she stays in the room. If space manager
designates priority-based mode, the people whose comfort-
able level is higher will determine the temperature whenever

Fig. 3 Hierarchy of table-driven framework. Kernel of the framework
is the table-driven programming language tier and the table-driven infra-
structure tier.

she steps in.

3.5 Table-Driven Framework

Responsibility of table-driven framework involves two as-
pects: 1) Supporting table-driven programming entity at a
level of programming language. 2) Supporting table-driven
programming entity at a level of internal functioning mech-
anism. Figure 3 shows the hierarchy of table-driven frame-
work.

The hierarchy presents relationships between context-
aware application, table-driven programming language,
table-driven infrastructure and context operation infrastruc-
ture. The table-driven programming language provides
table-driven entities for context-aware application. The
table-driven entity encapsulates context related operations
and simplifies development interface, which enable the de-
veloper to concentrate on program logic without caring
about how varieties of contexts are processed. Implementa-
tion of the entities depends on VTM (Virtual Table Manage-
ment) routines provided by the table-driven infrastructure.
Based on context repository, context operation infrastruc-
ture interacts with environment where the application runs.
The infrastructure extracts context data from environment
or exports values to it. Context operation infrastructure is
not the focus of this study. According to [17], any changes
of interested context will be reflected to the ontology-based
context repository by the context operation infrastructure.

Obviously, both the table-driven programming lan-
guage and the table-driven infrastructure are kernel of the
table-driven framework. We will analyze how to implement
the framework later.

From top of hierarchy, the application developer can
see nothing but the table-driven programming language that
supports table-driven programming entities. For a specific
context-dependent variable or function, developer simply
defines it as a table-driven programming entity and uses it
in a traditional way. VTM-routines in the table-driven in-
frastructure assist constructing and maintaining the virtual
table for the entity. When application runs, VTM-routines
extract context data of current session from the context op-



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
119

eration infrastructure and complete the matching procedure.
Appropriate results returned to application ensure that the
latter behaves suitably.

3.6 Software Engineering Methodology

The purpose of studying the methodology is to clarify how
to develop context-aware application with the programming
model. Figure 4 shows the architecture of the programming
model. Since context modeling and operating techniques are
beyond the scope of this study, we focus mainly on top half
the architecture (part that surrounded by rounded rectangle
with dotted lines).

Along the sequential number marked in Fig. 4, we out-
line general process of developing context-aware applica-
tion using the model from perspective of software engineer-
ing as follows:

Step 1: Space manager models the pervasive comput-
ing environment using context modeling tools. Modeling re-
sults are stored in the ontology-based context model reposi-
tory of context operation infrastructure.

Step 2: Developer discovers interested context subject
by browsing the ontology-based context model, then she
writes context-aware application in table-driven program-
ming language according to functional requirements of the
space.

Step 3: The compiler of table-driven programming lan-
guage preprocesses the context-aware application and cre-
ates virtual table for each table-driven programming entity
defined in the program.

Step 4: Space manager configures the virtual tables
with the assistance of routines in table-driven infrastructure
according to actual circumstances of the environment.

Step 5: When context-aware application runs, the
table-driven infrastructure extracts target context value of
current session from the context operation infrastructure.

Step 6: Table-driven infrastructure compares the con-
text value with items in the virtual table and returns appro-
priate value (variable value or entrance of function) to the

Fig. 4 Architecture of the reference programming model. Sequential
number marked in the figure illustrates general development process using
the programming model.

context-aware application.
Step 7: The application continues to run and influences

the environment (e.g. controlling devices or informing users,
etc.).

From the process described above, we know that du-
ties of roles who involve in development and deployment
of context-aware application are clear. The developer con-
centrates her efforts on developing context-aware applica-
tion without caring about context-related operations, while
the space manager models the pervasive computing environ-
ment and configures virtual tables. The table-driven infras-
tructure supports running of the context-aware application,
and the context operation infrastructure, which is based on
the ontology-based context model repository, interacts with
environments where application runs.

4. Table-Driven Framework Implementation

As mentioned above, the table-driven framework is com-
posed of the table-driven programming language and the
table-driven infrastructure. The two components support the
virtual table at different level. In this section, we come to
analyze how to implement the framework.

4.1 XML-Based Template for Virtual Table

Virtual table, the core concept of the framework, is used to
exchange data between context-aware application and the
table-driven infrastructure. To facilitate the data exchang-
ing, we suggest to use XML [18] to represent virtual table.
Since a one-to-one correspondence exists between table-
driven programming entity and virtual table, and all the enti-
ties of the same type (TDV or TDF) have the same structure,
an XML-based template could be used to create and manage
virtual tables.

Figure 5 shows excerpt of an XML-based template for
virtual table of TDV. The template file is encoded in UTF-
8 [19]. Each element of the table has its corresponding item
in defining statement of the table-driven programming en-
tity. The “VTID” in line 2 is an unique identification for
each table-driven programming entity. It acts as a link be-
tween the virtual table and the context-aware application.

Fig. 5 Excerpt of XML-based template for virtual table of TDV. The
property “Type” of element “VTDATA” indicates the type of virtual table.
Property “VTID” indicates identification number of the table.



120
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Elements in line 3 to 7 correspond to the indispensable ac-
cessorial items shown in Fig. 2. Elements “FIELD” in line
10 to 11 are table headers, of which the property “Attr-
Name” indicates name of the column. The “valueOfCS”
means value of the context subject, and the “valueOfVari-
able” gives value of the variable. Element “ROWDATA”
embraces all row data of the virtual table. Line 15 gives an
example row, its two attributes correspond to the two ele-
ments indicated in element “FIELDS”.

Template for virtual table of TDF is similar to template
shown in Fig. 5. Difference between the two templates exists
in the table headers (elements named “FIELDS”) and table
rows (elements named “ROWDATA”), as it can be seen in
Fig. 2. System uses these templates to create virtual tables
for table-driven programming entities when preprocessing
program codes of context-aware application. We will ex-
plain how the preprocessing tool utilize these templates to
create virtual tables later.

4.2 Table-Driven Programming Language

The main task of table-driven programming language is to
provide support for table-driven programming entity. Ac-
cording to the definition of the table-driven programming
entities, a set of declarations and annotations that enable
system to perform automatically “table-driven” actions must
be added to a programming language. This is the so-called
Language Extension. That is to say, the table-driven pro-
gramming language is a language extension on a host lan-
guage. The language extension offers a well-defined seman-
tics and minimizes the workload of the developer while en-
abling maximal reuse and extensibility. The implementation
of the language extension involves two aspects:

• Modifying syntax of the host language by adding gram-
matical structures as shown in Fig. 1.
• Implementing a preprocessing program. The pro-

gramm processes source codes written in extension lan-
guage and translates extended grammatical items into
items in the host language.

Actually, these two aspects are inseparable, and sub-
stantive work lies in implementing the preprocessing pro-
gram. Here we give the algorithm of the preprocessing
program. Input of the algorithm is source codes in ex-
tension language, and the outputs of it are virtual tables
corresponding to the table-driven programming entities and
source codes in host language. To facilitate the description,
we adopt the definition format of table-driven programming
entity illustrated in Fig. 1.

Step 1: Searches for the first line that begins with td-
vDefine or tdfDefine from the input source codes.

Step 2: If nothing is found, the preprocessing process
stops; otherwise, checks syntax of the line found by utilizing
the Backus Naur Form expressions illustrated in Fig. 1.

Step 3: If syntax of the line is wrong, shows prompt
message and stops; if not, generates a serial number (named
vtID) as the identification number of the table-driven pro-

gramming entity.
Step 4: If the line found begins with tdvDefine, goes to

Step 5; otherwise goes to Step 6.
Step 5: Replaces definition of TDV with its general

format in the host language and changes all references of
the TDV to expression getVariable(vtID, varName); goes to
Step 7.

Step 6: Replaces definition of TDF with its general
format in the host language and changes all invocations of
the TDF to expression execFunction(vtID, funcName, par-
aList); goes to step 7;

Step 7: Creates virtual table with information such as
vtID, noteString, contextSubjectName for the current entity
(based on the template we have just discussed).

Step 8: Searches for the next occurrence of line that be-
gins with tdvDefine or tdfDefine from the input source codes,
then goes to Step 2.

Meaning of the vtID in step 3 is the same as the “VTID”
in the template for virtual table. It is an internal ID and is
used to refer to corresponding virtual table for TDV or TDF
in the final program. The getVariable in step 5 and the exec-
Function in step 6 are fundamental VTM-routines provided
by the table-driven infrastructure. The infrastructure also
provides routines that are used to create and manage the vir-
tual tables.

4.3 Table-Driven Infrastructure

According to the hierarchy shown in Fig. 3, the table-driven
infrastructure provides the following VTM-routines:

• CreateVirtualTable. The routine will be invoked by
preprocessing program of language extension. It firstly
queries the ontology-base context model repository to
find out the predicateIdentifier of specific context sub-
ject. As is mentioned above, default value for the last
matched index is 0, and default matching strategy is
free mode. When all these things are available, the rou-
tine creates virtual table based on corresponding XML-
based table template.
• A group of routines that assists space manager in con-

figuring the virtual tables. The configuration involves
adding, editing and deleting items of the table. Besides,
the routines assist space manager in designating match-
ing strategy and adjusting sequence of rows when using
priority-based strategy. At the end of each operation,
consistency and integrity of virtual tables will be vali-
dated.
• GetCurrentCSValue. The routine works at the bound-

ary between the table-driven infrastructure and the con-
text operation infrastructure (see the number “5” in
Fig. 4). It retrieves value of current context subject that
belongs to current session from the context-operation
infrastructure. To simplify operations, certain stringiz-
ing operator may be used to convert values.
• GetVariable. The preprocessing program replaces all

reference to the TDV with this routine when processing



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
121

codes written in extension language. At run time, the
routine compares value of the context subject in cur-
rent session with counterpart item in virtual table for
the variable based on the table matching strategy, and
returns value of the current TDV.
• ExecFunction. The preprocessing program replaces all

reference to the TDF with the routine when processing
codes written in extension language. At run time, it
compares value of the context subject in current session
with counterpart item in virtual table for the function,
and completes invocation of function according to the
returned entrance of the function.

To sum up, the table-driven infrastructure provides sup-
port for the table-driven programming model at both design-
time and run-time. At design-time, it supports the prepro-
cessing program to create virtual tables. It also assists space
manager to manage and configure virtual tables when de-
ploying context-aware application. At run time, it enables
the application to be driven by tables and to adjust its be-
haviors accordingly.

Based on the design ideas in this section, we imple-
mented a table-driven framework on J2SE 6.0 [20]. we
added language extension to Java language [20] with the
help of JavaCC [21]. JavaCC is a popular parser generator, it
reads a grammar specification and converts it to a Java pro-
gram that can recognize matches to the grammar. The exten-
sion is named Table-Driven Java (hereinafter called Tdava).
The framework provides a preprocessing tool named Table-
Driven Java Compiler (hereinafter called TDJC). The TDJC
reads source codes in Tdava, and produces source codes in
Java and virtual tables described in XML. Figure 6 shows
the sketch map of preprocessing procedure.

The table-driven infrastructure is provided in the form
of a set of API (Application Programming Interface). The
infrastructure uses SPARQL [28] Query Language for RDF
to interact with the context-operation infrastructure. The
Ontology-Based Context Model Repository and the APIs
of Context-Operation Infrastructure are surrounded by sur-
rounded by rectangle with dotted lines in Fig. 6. Actually,
they are not part of the table-driven framework. We present
them here just for illustrative purposes.

Fig. 6 Sketch map of preprocessing procedure of the TDJC. The TDJC
reads source codes in Tdava, and produces source codes in Java and virtual
tables described in XML.

5. Validation and Evaluation

In this section, we will validate the feasibility of the pro-
gramming model by realizing the example scenario rep-
resented previously within the framework we have imple-
mented. According to the architecture shown in Fig. 4, we
need a context-operation infrastructure to support the table-
driven framework.

5.1 Context-Operation Infrastructure Simulation

Generally, the context-operation infrastructure provides
supporting for context modeling, interacts with environment
and completes the invocation of context related operation.
According to the hierarchy shown in Fig. 3, the table-driven
infrastructure need not to interact directly with the physical
environment. Therefore, we designed a context-operation
infrastructure simulation platform to support the table-
driven infrastructure. Our idea of simulation was inspired
by simulation model described in [22]. We constructed a
visualized context-operation infrastructure over OSGi [23]
framework by encapsulating the VantagePoint [24]. Van-
tagePoint is a software tool that allows the semantic mod-
eling and interactive simulation of physical real-world en-
vironments. It creates semantic models of environments
through graphical editing operations, visualizes semantic
context information using Jena [25] Semantic Web frame-
work, and allows developers to edit context information and
trigger context events through graphical user interface. The
resultant models are described by OWL [13] files that de-
fine rooms, devices, services and persons contained in the
environment [26], [27].

The infrastructure simulation platform provides an
event publication and subscription service for upper tier. It
also provides a programming interface of context retrieving.
Figure 7 shows relationship among the context-operation in-
frastructure simulation platform, the table-driven framework

Fig. 7 Relationship among the context-operation infrastructure simula-
tion platform, the table-driven framework and the context-aware applica-
tion.



122
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Fig. 8 Example scenario of an international conference. There are one
hall and several session rooms in the space. The small window located
in the left bottom corner, in which a mobile phone displays, simulates the
hand-held terminal of Mr. Smith.

and the context-aware application.
The VantagePoint encapsulated in the infrastructure

simulates real environment and acts as a context repository.
The infrastructure accepts context retrieve request from the
table-driven infrastructure, transforms it into query request
which is described in ontology query languages SPARQL
and sends it to VantagePoint. Query results from Vantage-
Point will be transformed and returned to the table-driven
infrastructure. VTM-routines in the table-driven infrastruc-
ture support both the Table-Driven Entity Management Sys-
tem (TDEMS) and the TDJC, and interact with the context-
aware application at run time.

5.2 Context-Aware Application for the Scenario

The example scenario, namely the international conference
which is described in Sect. 2, can be modeled using the Van-
tagePoint encapsulated in the context-operation infrastruc-
ture simulation platform. The resultant visualized model is
shown in Fig. 8.

We aimed at the introduction service which sends con-
ference materials of current session automatically to the
attendees’s terminal device when they roams the session
rooms. As is analyzed above, the conference materials can
be defined as a TDV which is sensitive to the user’s position,
and the send method can be define as a TDF that is sensitive
to the type of the attendees’s terminal device. Figure 9 (a)
shows excerpt from source codes of the introduction service
written in Tdava.

The introduction service is driven by event. In
Fig. 9 (a), line 6 defines the topic of the event which may
be triggered when an object in the VantagePoint is moved.
Line 7 defines a TDV named sDocs, and it’s interested con-
text subject is denoted by a string expression, namely the
“User.Position”. As is known, the ontology-based context
model is not a simple hierarchy structure. It is more a net-
work structure. For example, the conception User, De-
vice and Position are subclass of the conception Entity.
Meanwhile, both the User and the Device has the prop-

(a) Source codes in Tdava

(b) Corresponding Java source codes produced by TDJC

Fig. 9 Excerpt source codes of the service.

erty Position. The User has the property Device. In order
to clearly specify the context subject that we want to de-
scribe, we use the expression which is separated by dots.
The context subject “User.Position” here means the position
of an user (Not position of other Entity). Line 8 defines a
TDF named sendDocs, and it’s interested context subject is
“User.Device.Type”. The context subject means the type of
device that belongs to an user. Line 9 to 10 are default body
of the sendDocs. According to the matching procedure of
virtual table analyzed previously, if none of the rows in the
virtual table for sendDocs is matched, the default body of
it will be executed. Consequently, the expression “return
false;” in line 9 leads to a failure sending operation. In
practice, many reasons will lead to the result that no row is
matched. For instance, when the application is just initial-
ized, the space manager has not had the time to configure
the virtual tables. Or when a new type of device emerges,
there is no corresponding information in the virtual table.
etc. Line 11 to 14 are the event handle. When the desired
event is triggered, the TDF sendDocs is called with the TDV
sDocs as it’s parameter.

Figure 9 (b) shows the corresponding Java source codes
of the introduction service. It is generated from source codes



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
123

illustrated in Fig. 9 (a) by the TDJC. The TDJC works ac-
cording to the algorithm presented in Sect. 4.2. Line 3 is
used to import packages of the table-driven infrastructure.
The class Routines referenced in line 14 is from the infras-
tructure, and it’s instance tdrs is used to represent execut-
ing environment of the framework. Member of the class,
namely the currentSubjectValue referenced in line 15, de-
notes value of the subject on which the event occurred. Line
3, 14, 15 are added by the TDJC. Since line 7 in the Fig. 9 (a)
begins with “tdvdefine”, the TDJC extracts context subject
from it and creates corresponding virtual table. It also re-
places the definition of the TDV with it’s general format in
the host language (line 8 in Fig. 9 (b)), and changes all refer-
ences of the TDV to expression tdrs.GETV(1, sDocs) (line
16 in Fig. 9 (b)). The number “1” in the parameter list is the
ID of the TDV, and the sDocs maintains its original mean-
ing as a traditional variable. Similarly, the TDF defined in
line 8 to 10 in Fig. 9 (a) are transformed into it’s general
format in the host language (line 9 to 11 in Fig. 9 (b)). In
addition to the virtual table being created, all invocations
of the TDF will be changed to expression tdrs.EXEC(2,
this.className,“sendDocs”, ...). The number “2” in the pa-
rameter list is the ID of the TDF. Parameter this.classname
and “sendDocs” ensure that the default body of the function
will be executed when the matching of virtual table is failed.

Finally, we compiled these Java source codes us-
ing Javac into executable Java Bytecode [20]. Under the
premise of appropriate values being configured into virtual
tables of these table-driven programming entities, the intro-
duction service works well. When we “let” Mr. Smith roam
about session rooms, documents of current session are sent
to his terminal device automatically.

From the excerpt shown in Fig. 9 (a), we can see that
the codes written in Ddava is compact, succinct, and is easy
to understand and maintain. Moreover, we need not to know
details of concrete context information before development.
Those information is left to the space manager to configure
when deploying the application. For programmers, the most
important thing is to recognize which variable (or function)
could be defined as a TDV (or TDF), and to which context
subject the TDV (or TDF) is sensitive.

The table-driven programming entities isolate context-
related operations from base programming logic. What will
happen if there is no supporting of table-driven infrastruc-
ture to develop the introduction service? Suppose the pro-
grammer intends to develop the service using plain Java in
traditional way. First of all, she needs to consult the space
manager to learn information about the sessions. The in-
formation involves number and names of the rooms, con-
ference materials corresponding to each of the sessions, and
possible device type of hand-held terminal that registered
in the attendee’s receipt. In the program, she has to write
codes to retrieve the position information of the current user
from the context-operation infrastructure, and complete the
matching between the position and the conference materi-
als of session room using the switch-case statement of Java
language. She also has to retrieve device type of the cur-

Table 1 Comparison between the traditional programming in Plain Java
and the table-driven programming in Tdava.

Aspects Compared Developing in
Plain Java

Developing in
Tdava

Time Consumed in Consulting (days) 2 0.5

Time Consumed in Programming
(days)

4 0.5

Time Consumed in Deploying (days) 0.5 2

Number of Lines of Effective Codes
(lines)

340 45

rent user and choose proper function package to finish the
sending procedure. So it’s no doubt that the codes of the fi-
nal program is inevitably diffuse and difficult to understand.
In addition, switch-case statements bring about hard-coded
codes to program and make the application difficult to main-
tain.

Based on the same context-operation infrastructure
simulation platform, we have tried to develop the introduc-
tion service using plain Java, and found that the two meth-
ods were different in development cycle time and number
of lines of effective codes. The development cycle time in-
volves 1) the time consumed by the programmer in consult-
ing the space manager what the service requirements are; 2)
the time consumed by the programmer in programming; 3)
the time consumed by the space manager in deploying the
service. A comparison between the two methods is shown
in Table 1. The table shows that it takes less total time to
develop the introduction service using the table-driven pro-
gramming model than that using the traditional method. Be-
sides, number of lines of effective codes is far less than the
latter when using the former approach. Overall, the table-
driven programming model is excelled than the traditional
method in developing context-aware application. Although
the application of the introduction service is simple and is
not universal, we can get a rough idea of the potential of the
model.

5.3 Advantages of the Model

As an abstraction of context-related element, the table-
driven programming entity isolates complex context-
operations from program logic of context-aware application.
Virtual table corresponding to the entity connects knowl-
edge of both developer and space manager. By this way,
the application developers can concentrate on upper-layer
logic of program without concerning about how those con-
texts being processed, which reduces lots of programming
efforts from them. In this sense, the model provides better
isolation for development from the perspective of software
engineering.

The model also brings better flexibility. It enables both
developer and space manager to cooperate in a loosely-
coupled fashion. Preprocessing program produces virtual
table according to defining statement written by the devel-
oper, and the space manager can configure the virtual ta-



124
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

ble at any time to adapt the context-aware application to the
changing environment. For example, in the introduction ser-
vice of the example scenario, developer defines session doc-
ument variable which is sensitive to session rooms. Space
manager preliminarily configures virtual table for the vari-
able in light of the session rooms arrangement when deploy-
ing the service. When the conference is in progress, she can
reconfigure items of the table whenever necessary to adapt
the service to latest rearrangement of session rooms, mean-
while, the introduction service needs neither being repro-
grammed nor being interrupted and started over.

Besides, the model is lightweight and easy to be uti-
lized. For one thing, the framework of the model is
lightweight and is easy to be realized in the light of the
implementation suggestion proposed above; for another, no
matter what language the model is realized in, development
is in substance within the frame of the host language, and
developer needs not to learn much more about a new lan-
guage. Compared with the approaches discussed foregoing,
the programming model is easier to program and deploy,
and the source codes of application is succinct and is easy
to read and maintain.

Actually, the table-driven programming model can be
embedded into another programming model because of its
lightweight, provided both the models are based on the
ontology-based context modeling technology. When our
programming model is embedded into another model, it’s
better to process the source codes with the preprocessing
program of our model firstly. According to the algorithm
given in Sect. 4.2, the preprocessing program only processes
lines that begin with tdvDefine or tdfDefine, and the rest
codes will be left to another compiling tools. The embed-
ded programming model has no impact on the host model.
Instead, it enhances flexibility of the latter.

5.4 Limitation and Future Work

According to the definition given in Sect. 3.3, the table-
driven programming entity is sensitive to a specific context
subject. In general, we can find a specific interested context
subject for variable or function which is changed with the
environment, but it was not always the case. Sometimes, in
complex context environment, variables and functions are
sensitive to multiple context subjects. That’s to say, they are
determined by a combination of several subjects. Currently,
our programming model is insufficient to deal with this kind
of combination. As a lightweight programming model, it is
suitable to describe the situation that programming entity is
the one-to-one relationship with context subject, but its ex-
pression power is limited when the latter has a many-to-one
relationship with the former.

In fact, in the context-aware application which is based
the ontology-based context model, the “combination” prob-
lem can be partially resolved. For instance, in an intelligent
family health care system, a patient aiding service monitors
pathological status of the patient and makes some response.
when the pulse frequency, the blood pressure and the body

temperature of the patient reaches a certain level, the pa-
tient’s condition may have reached a critical state and the
doctor must be sent for. Generally speaking, the function
which is used to send for the doctor is sensitive to the pulse
frequency, the blood pressure and the body temperature.
It seems that we face the combination of context subjects
when developing the service. In fact, this situation can be
avoided by the context reasoning mechanism [15] in a typ-
ical context-operation infrastructure. We can add a context
subject named “patientConditionLevel” to context subject
“patient” when modeling the system. The context subject
“patientConditionLevel” denotes the level of the patient’s
condition. The context reasoning mechanism will reason
out a certain level value of the subject using the value of
context subjects such as the pulse frequency, the blood pres-
sure and the body temperature. The patient aiding service
can use the value of the “patientConditionLevel” to deter-
mine what action should be taken. Thus, the function which
is used to send for the doctor can be defined as a TDF which
is sensitive to the context subject “patientConditionLevel”.
It is actually a one-to-one relationship. So as is mentioned
above, it is very important for developer to recognize which
variable (or function) could be defined as a TDV (or TDF),
and to which context subject the TDV (or TDF) is sensitive.

However, the context reasoning mechanism can not
fundamentally solve the “combination” problems. Making
the model support for complex context environment is one
of our research direction in future. Furthermore, the proce-
dure that the space manager configures numbers of virtual
tables for big scale application is somewhat burdensome.
We are also exploring different ways to configure the tables
automatically.

6. Related Works

In COP [3], [4], lots of stubs are defined in the repository
of candidates. Each of the stubs corresponds with a spe-
cific context. The programmer embeds open terms in the
program when developing. The open terms are gaps which
will be replaced with selected stubs by the context-filling
operation at run time. Context-filling operation involves two
steps. First, it selects appropriate stub according to value of
the current context and description of the open term. Sec-
ond, it binds value of variables in the program to parameters
of the stub. COP separates context related operation from
application logic by matching open terms with stubs, and as
a result, factors of environment are decoupled from appli-
cation at design time. However, the developer has to know
details of the environment and how to react to them before
she writes program, otherwise she can not define stubs and
use open terms.

Layer is an important concept in ContextL [5]. Partial
class and method definitions can be associated with layers
in program logic. The layers can be activated or deactivated
according to the context of running environment. When
a layer is activated, the partial definitions become part of
the program until this layer is deactivated. A novel reflec-



ZHANG et al.: A REFERENCE PROGRAMMING MODEL FOR BUILDING CONTEXT-AWARE APPLICATION
125

Table 2 Qualitative comparison of capability between the table-driven
programming model and previously approaches.

Comparison Indexes COP ContextL MFP TDP

Q1: level of codes simplifying Low Normal Medium High

Q2: language preprocessing in-
volved

No Yes Yes Yes

Q3: approach can be embedded
into other programming model

No No Yes Yes

Q4: approach is NOT limited to
a specific language platform

Yes No Yes Yes

Q5: details of context need NOT
to be known by developer be-
forehand

No No No Yes

Q6: approach can be applied in
complex context environment

No Yes Partly Partly

Q7: behavior of application
can be adjusted while system
keep running when new situa-
tion emerges

No No Yes Yes

Note: COP = Context-Oriented Programming, MFP = Multifaceted Pro-
gramming, TDP = Table-driven Programming (our reference programming
model in this paper). Q1: the higher the level is, the easier the code of
application to be read and maintained. Q2: if yes, partial burden of devel-
oper can be reduced by preprocessing program. Q3: if yes, the approach is
sufficiently lightweight and can be used to enhance flexibility of other pro-
gramming model. Q4: if yes, the approach can be applied widely, that is,
theoretically developer can choose from most of current language she likes
to program. Q5: if yes, developer can concentrate her efforts on logic of
application without caring about how contexts are. Q6: if yes, the approach
can be applied in complex context environment; if partly, the approach can
be applied partially or be conditionally applied. Q7: if yes, it is convenient
to adjust behavior of application temporarily when new situation emerges,
with no need to stop the running system.

tive interface controls the activation and deactivation of lay-
ers [6]. As is analyzed, ContextL makes programs to adapt
to context flexibly while keeping the conceptual simplic-
ity of object-oriented programming. Nevertheless, the pro-
grammer has to define layer meta-classes, decide which lay-
ers are instances of which layer meta-classes, define meth-
ods correctly and understand the interactions between dif-
ferent methods, so development in ContextL is somewhat
complex.

Context-dependent behaviors can be abstracted as mul-
tifaceted programming entities when developing with the
multifaceted based programming paradigm [7]. Each facet
of the multifaceted programming entity denotes a pair of
specific context and corresponding behavior. Also, each
facet can be exposed or hidden by a switching process ac-
cording to the current context. The switching process is un-
der control of the exposing strategy. By switching facets of
the entity, the application behaviors suitably in the light of
changing of the environment. The multifaceted program-
ming entity can hold any number of facets, but all these
facets must be designated at design time and can not be
modified easily at run time to adapt to changing of the en-
vironment, which makes the paradigm be of less flexibility.
Besides, it is inefficient to modify program instantaneously

when the behavior adjustment of context-aware application
cannot adapt to the changing of environment any longer.

Table 2 shows qualitative comparison between the ap-
proaches discussed and the reference programming model
presented in this paper. To facilitate the description, we ab-
breviate the reference programming model as TDP (com-
bination of the first letter of “table-driven programming”).
The comparison is based on index from Q1 to Q7. From the
comparison, we can see that the TDP is lightweight and has
better flexibility when applying in general environment. As
is analyzed in Sect. 5.4, the TDP can be partially applied in
complicate context environment on the premise of the “com-
bination” problems being resolved by context reasoning.

7. Conclusion

Approaches proposed by researchers today to facilitate de-
velopment of context-aware application solve some key
problems of pervasive computing programming, but they
are either lack sufficient flexibility or somewhat complex
for programming and deploying. In this paper, a novel
lightweight reference programming model is proposed to
make up inadequacy of those approaches to some extent.
The model isolates context-dependent behaviors from the
application logic using virtual table that connects knowl-
edge of both developer and space manager, which conse-
quently enables both the roles to cooperate in the develop-
ment process in a loosely-coupled fashion. Hierarchy, ar-
chitecture and suggestions for implementing the model are
presented. We validate and evaluate the model by imple-
menting an example scenario, and compare the model with
previously related works. The experiment shows that the
model is lightweight and brings better isolation and flexibil-
ity.

As a lightweight programming model, the proposed
model provides limited supporting for developing context-
aware application in complicate context environment. Be-
sides, the procedure that the space manager configures the
virtual tables for big scale application is somewhat burden-
some. We will address these issues in future.

Acknowledgements

The work is supported by National Natural Science Foun-
dation of China under Grant No.(60933003), the Na-
tional High Technology Research and Development Pro-
gram (863 Program) of China (2006AA01Z101), and IBM
Joint Project (JLP200906008-1).

References

[1] A. Dey and G. Abowd, “Towards a better understanding of con-
text and context-awareness,” Workshop on the What, Who, Where,
When and How of Context-Awareness at CHI 2000, April 2000.

[2] K. Henricksen and J. Indulska, “A software engineering framework
for context-aware pervasive computing,” Proc. Second IEEE An-
nual Conference on Pervasive Computing and Communications’04,
2004.



126
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

[3] R. Keays and A. Rakotonirainy, “Context-oriented programming,”
Proc. 3rd ACM International Workshop on Data Engineering for
Wireless and Mobile Access, pp.9–16, San Diego, CA, USA, 2003.

[4] A. Rakotonirainy, “Context-oriented programming for pervasive
space,” Proc. ACM Dynamic Languages Symposium, 2006.

[5] P. Costanza and R. Hirschfeld, “Language constructs for context-
oriented programming: An overview of contextL,” Dynamic Lan-
guages Symposium (OOPSLA’05), San Diego, USA, Oct. 2005.

[6] P. Costanza and R. Hirschfeld, “Reflective layer activation in con-
textL,” Symposium on Applied Computing, Proc. 2007 ACM Sym-
posium, March 2007.

[7] A. Rarau, K. Iulian Benta, and M. Cremene, “Multifaceted based
language for pervasive services with deterministic and fully defined
behavior,” Pervasive Services, IEEE International Conference, July
2007.

[8] W. Cunneyworth, “Table driven sesign: A development strategy for
minial maintenance information systems,” Data Kinetics, June 1994.

[9] J.B. Zhang, Y. Qi, D. Hou, and M. Li, “A table-driven programming
paradigm for context-aware application development,” SAINT’09,
2009 Ninth Annual International Symposium on Applications and
the Internet, Seattle, USA, July 2009.

[10] A.K. Dey, D. Salber, and G.D. Abowd, “A conceptual framework
and a toolkit for supporting the rapid prototyping of context-aware
applications,” Human-Computer Interaction Journal, vol.16, no.2,
pp.97–166, Dec. 2001.

[11] T. Winograd, “Architectures for context,” Human Computer Interac-
tion, vol.16, no.2-4, pp.401–419, 2001.

[12] T. Strang and C.L. Popien, “A context modeling survey,” Workshop
on Advanced Context Modeling, Reasoning and Management as
Part of UbiComp 2004, The 6th International Conference on Ubiq-
uitous Computing, pp.33–40, Sept. 2004.

[13] W3C OWL Working Group, “OWL 2 web ontology language docu-
ment overview,” World Wide Web Consortium (W3C),
http://www.w3.org/TR/owl2-overview/, accessed Aug. 2009.

[14] P. Hayes and B. McBride, “RDF semantics,” World Wide Web Con-
sortium (W3C), http://www.w3.org/TR/rdf-mt/, accessed Aug. 23,
2009.

[15] D. Ejigu, M. Scuturici, and L. Brunie, “An ontology-based approach
to context modeling and reasoning in pervasive computing,” Proc.
Fifth Annual IEEE International Conference on Pervasive Comput-
ing and Communications Workshops (PerComW’07), 2007.

[16] D.E. Knuth, “Backus normal form vs. backus naur form,” Commun.
ACM, vol.7, no.12, pp.735–736, Dec. 1964.

[17] D. Preuveneers, Y. Vandewoude, P. Rigole, D. Ayed, and Y. Berbers,
“Context-aware adaptation for component-based pervasive comput-
ing systems,” Adjunct Proc. Pervasive 2006, Dublin, May 2006.

[18] XML Core Working Group, “Extensible markup language (XML),”
World Wide Web Consortium (W3C), http://www.w3.org/XML/, ac-
cessed Aug. 23, 2009.

[19] The Unicode Consortium, “Unicode transformation format-8,” Uni-
code, Inc., http://unicode.org/resources/utf8.html, accessed Aug. 23,
2009.

[20] Oracle Technology Network, “Java SE overview — At a glance,”
Oracle, http://www.oracle.com/technetwork/java/javase/overview/
index.html, accessed Sept. 1, 2010.

[21] S. Viswanadha and S. Sankar, “Java compiler compiler (JavaCC) -
The java parser generator,” Java.net, https://javacc.dev.java.net/, ac-
cessed Aug. 23, 2009.

[22] M.C. Huebscher and J.A. McCann, “Simulation model for self-
adaptive applications in pervasive computing,” DEXA, Database
and Expert Systems Applications, 15th International Workshop on
(DEXA’04), pp.694–698, 2004.

[23] OSGi Community, “OSGi - The dynamic module system for java,”
OSGi(TM) Alliance, http://www.osgi.org/, accessed Aug. 23, 2009.

[24] I. Niskanen, “VantagePoint,” http://www.vtt.fi/proj/vantagepoint/
index.jsp, VTT Technical Research Centre of Finland, accessed
Aug. 23, 2009.

[25] HP Labs Semantic Web Programme, “Jena — A semantic web
framework for java,” Hewlett-Packard Development Company,
http://www.openjena.org/, accessed Aug. 23, 2009.

[26] I. Niskanen, J. Kalaoja, J. Kantorovitch, and T. Piirainen, “An in-
teractive ontology visualization approach for the networked home
environment,” International Journal of Computer and Information
Science and Engineering, vol.1, no.6, pp.370–375, 2007.

[27] T. Piirainen, I. Niskanen, J. Kantorovitch, and J. Kalaoja, “Context
simulation and support for context-aware application development,”
Proc. 2nd IEEE European Conference on Smart Sensing and Con-
text, EuroSSC 2007, Kendal, UK, Oct. 2007.

[28] E. Prud’hommeaux and A. Seaborne, “SPARQL Query Language
for RDF,” World Wide Web Consortium (W3C), http://www.w3.org/
TR/rdf-sparql-query/, accessed Aug. 23, 2009.

Junbin Zhang received his Master of En-
gineering degree from Dept. of Computer Sci-
ence and Technology in Xi’an Jiaotong Univer-
sity, China, in 2004. He is currently a Ph.D. can-
didate in Dept. of Computer Science and Tech-
nology of Xi’an Jiaotong University. His in-
terests include software engineering, pervasive
computing and work flow related technologies.

Yong Qi received his Doctor of Engineer-
ing degree from Dept. of Computer Science and
technology in Xi’an Jiaotong University, China,
in 2001. He work as a professor and a doctoral
supervisor in Dept. of Computer Science and
Technology of Xi’an Jiaotong University. His
interests include Distributed Computing Sys-
tem, Pervasive Computing, Mobile Computing,
Object-oriented Technology and Middle-ware
technology. He is the syndic of China Computer
Federation (CCF), the administrative syndic of

China Computer Federation Software Committee.

Di Hou work as an associate professor of
Dept. of Computer Science and Technology in
Xi’an Jiaotong University. His interests include
software system architecture and database tech-
nology.

Ming Li received her Master of Engi-
neering degree from Department of Information
Management, Xi’an University of Technology,
2003. She works for Department of Informa-
tion Management, Xi’an University of Technol-
ogy, and is currently a Ph.D. candidate in Dept.
of Computer Science and Technology of Xi’an
Jiaotong University. Her interests include Soft-
ware Engineering, Pervasive Computing and E-
Commerce.


