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SUMMARY This paper proposes a method for using an accelerometer,
microphone, and GPS in a mobile phone to recognize the movement of
the user. Past attempts at identifying the movement associated with riding
on a bicycle, train, bus or car and common human movements like stand-
ing still, walking or running have had problems with poor accuracy due to
factors such as sudden changes in vibration or times when the vibrations
resembled those for other types of movement. Moreover, previous meth-
ods have had problems with has the problem of high power consumption
because of the sensor processing load. The proposed method aims to avoid
these problems by estimating the reliability of the inference result, and by
combining two inference modes to decrease the power consumption. Field
trials demonstrate that our method achieves 90% or better average accu-
racy for the seven types of movement listed above. Shaka’s power saving
functionality enables us to extend the battery life of a mobile phone to over
100 hours while our estimation algorithm is running in the background.
Furthermore, this paper uses experimental results to show the trade-off be-
tween accuracy and latency when estimating user activity.
key words: activity recognition, accelerometer, microphone, GPS, reliabil-
ity, power saving, latency

1. Introduction

Mobile phones have become increasingly sophisticated in
recent years with the integration of sensors such as cameras,
GPS and RF-ID, and the provision of various new services
such as human navigation and mobile payments. Another
category of mobile phone services currently being consid-
ered is those based on an awareness of user presence using
the SIP protocol and so forth. How to obtain this user pres-
ence information is one of the main technical challenges for
realizing these services.

This paper looks in particular at the user movement as-
pect of user presence information. Here, movement refers
to both the person’s state of activity, such as standing still,
walking or running, and to the movement of any vehicle they
are in such as a bicycle, car, bus or train. A wide range
of potential applications will become possible if these states
can be determined automatically using a mobile phone, such
as automatically switching the mobile phone to silent mode
when riding on public transport, detecting any abnormal
movement of a commuting student or estimating a person’s
calorie usage from their movement.
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This paper proposes a method that uses an accelerom-
eter, a microphone, and a GPS implemented in a mobile
phone to estimate the user’s movement state automatically.
The method improves estimation accuracy by estimating the
reliability of inference results, and by combining two infer-
ence modes to decrease the power consumption. The power
spectrum calculated from the accelerometer measurements
is used to identify the running, walking, stationary and bi-
cycle riding states, the power spectrum calculated from the
microphone measurements is used to identify when the user
is riding in a car, and the average speed calculated from the
GPS measurements is used to identify riding in a train or
bus. Also, the method aims to avoid the problems with poor
accuracy caused by sudden changes in vibration or periods
of time when the measurements resemble those for a differ-
ent type of movement.

This paper starts by summarizing related research, then
describes the requirements and associated problems. The
proposed method is explained next, followed by the results
of performance testing and conclusions.

2. Related Work

2.1 User Movement Estimation Based on Activity Recog-
nition

Numerous different methods have been proposed for hu-
man activity recognition. Kern et al. [1] attached acceler-
ation sensors to different parts of the body and used these to
identify activities such as “sitting”, “standing”, “walking”,
“ascending stairs”, “descending stairs”, “shaking hands”,
“writing on a blackboard” and “typing on a computer”.
Intille et al. [2], [3] fitted 5 accelerometers to the waist,
wrists, and ankles, and used these to identify 20 differ-
ent types of activity. An advantage of this work is that
threshold settings are not necessary adjusted for each in-
dividual user. The SenSay [4] system implemented appli-
cations such as switching the phone ring to silent mode on
the basis of four different states: “busy”, “active”, “idle”
and “normal”. WearNET [5] estimated the location, envi-
ronment, user status, and use activity using multiple sen-
sors. Lee [6] identified when a user was walking, climb-
ing stairs, turning left, or turning right using an accelerom-
eter, a geomagnetic sensor, and a gyroscope. Choudhury
et al. [7] estimated 12 types of user activity using a specially
designed mobile sensing device and supervised training.
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Yin et al. [8] estimated abnormal activity such as slipping on
the ground and falling down backwards using wearable sen-
sors. Györbı́ró et al. [9] estimated six types of user activity
using feed-forward/ back-propagation neural networks and
an accelerometer, geomagnetic sensor, and gyroscope called
“MotionBand”. Piero et al. [10] estimated ten types of user
activity from wearable body sensors with a system designed
for low power consumption.

Although past research has been able to identify a
range of different human activities using various different
sensors. In many cases the techniques are impractical be-
cause of their requirements about how to and how many
sensors should be attached to the human body.

Iso et al. [11] used a mobile phone fitted with an ac-
celerometer that identified the walking states (walking nor-
mally, going up and down stairs, brisk walking, running)
regardless of where the user carried the mobile phone.
Kawahara et al. [12] presented a method for identifying the
“walking”, “standing”, “sitting”, and “running” states that
used a single accelerometer and identified where the sen-
sor was fitted. Moreover, some research has been conducted
using standard commercial mobile phones. Yang [13] iden-
tified sitting, standing, walking, running, driving, and bi-
cycling activity using a mobile phone. Miluzzo et al. [14]
used various sensors (microphone, accelerometer, GPS, and
camera) implemented in a commercial smart phone for ac-
tivity recognition. Brezmes et al. [15] implemented a real-
time system for activity recognition using a mobile phone.
Anderson et al. [16] monitored user activity levels for three
types of user’s activity to promote health and fitness. A
weak point of these researches is the reliability of their per-
formance evaluation, that is, the number of subjects is 10
at most. Kwapisz et al. [17] identified walking, jogging, as-
cending stairs, descending stairs, sitting, and standing ac-
tivies using an accelerometer in an Android smart phone.
Although, the experiment scale of this research is relatively
large (29 users), there is room for improvement in the es-
timation accuracy. Kobayashi et al. [18] pointed out the
problem of sudden changes in vibration and times when
the vibrations resembled those for other types of movement.
Moreover, while their method could identify seven types of
user movement using HMM, there is also room for improve-
ment in the estimation accuracy.

Furthermore, no research has been carried out into
movement estimation methods that consider vehicle move-
ment states such as travel on a car, bus or train and that also
consider of reliability, power consumption, and the latency
when implemented on an actual commercial mobile phone.

2.2 Location-Based User Movement Estimation

Much researches has been conducted into location-based
user movement estimation. Kourogi et al. [19] estimated
user location using GPS and an accelerometer. However,
apart from the direction of movement, this approach suffers
from a high level of noise in the acceleration value which
limits where the sensor can be located.

Thrun et al. [20] proposed a robot location estimation
method called SLAM (Simultaneous Localization and Map-
ping). This method estimates robot location using a HMM
generated from interaction between the robot and its envi-
ronment. Although this approach can be applied to human
location estimation, this method needs a stereo camera and
laser range finder for recognition of the environment, and
these sensors need to be attached to the robot. Therefore,
this approach is impractical for user movement estimation.

Aoki et al. [21] proposed a user location estimation
method using a wearable camera. This method is a pat-
tern matching approach that compares the captured image
to predefined images. Therefore, this approach can be used
for user movement estimation by storing predefined images
of specific vehicles. However, performed frequent image
capture from the camera in a mobile phone is impractical
for reasons of power consumption and general practicality.

3. Requirements and Issues

This section defines the requirements for movement estima-
tion using a mobile phone. Next, the associated problems
are highlighted with reference to a previous method.

3.1 Requirements for User Movement Estimation Using a
Mobile Phone

A system for estimating user movement using a mobile
phone should identify the type of movement with a high de-
gree of accuracy under the conditions listed below.

• Requirement 1: A single sensor of each type located in
the mobile phone
For reasons including cost and the burden on the user,
it is desirable to use only a single sensor located in the
mobile phone. As mobile phones may be held in many
different ways, the estimation method must not be de-
pendent on how the phone is held.
• Requirement 2: Independent of the user

Considering the burden on the user, it is desirable that
the method should not require functions such as learn-
ing or setup that are dependent on the user.
• Requirement 3: Fully automatic estimation

Considering the burden on the user, the estimation
method should be fully automatic and not require any
manual operation by the user.
• Requirement 4: Practical level of estimation processing

load
As the available processing power and battery on a mo-
bile phone is limited, the processing load and power
consumption associated with the estimation method
must not be too large.

3.2 Issues with Previous Methods

To highlight the problems, Table 1 shows the estimation
results obtained using a previous method by Kobayashi
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Table 1 Estimation accuracy of previous method.

et al. [18]. The estimation method used HMM to consider
time-axis changes in the power spectrum calculated from
the acceleration value. The method attempted to avoid prob-
lems with loss of accuracy caused by factors such as sudden
changes in vibration or times during which vibration pat-
terns resemble those of other states. The experimental data
is the same as that referred to in Sect. 5.2. As Table 1 shows,
the accuracy of this method was 0.9 or better for running,
walking, and bike riding but much poorer for other types
of movement. This means that the above problems cannot
be avoided completely by using HMM to consider time-axis
changes in the power spectrum (problem 1). Moreover, the
previous method was not designed to minimize power con-
sumption and therefore suffers from poor battery life (prob-
lem 2). This point is very important in mobile phones.

4. Proposed Method: “Shaka”

This section describes the “Shaka†” method which aims to
solve these problems and satisfy the requirements described
in the previous section. As specified in the list of require-
ments, the Shaka method uses a single accelerometer, mi-
crophone, and GPS in the mobile phone to estimate the
user’s movement, without being dependent on how the sen-
sors are held (requirement 1), without being dependent on
the user (requirement 2), and with all operation being fully
automatic with no manual operation by the user (require-
ment 3). Also, the method uses sleep mode to keep the es-
timation processing load per iteration low (requirement 4).
The proposed method also aims to solve the problem 1 by
estimating the reliability of the inference result, and problem
2 by using sleep mode to minimize the power consumption
associated with estimation.

4.1 Overview

The proposed method consists of three steps. Figure 1
shows the overall sequence of processing for Shaka. Es-
timation is performed by applying the probabilistic infer-
ence to the power spectrum obtained from the acceleration
values. If the result indicates running, walking, biking, or
stationary, this result is output and the estimation process
changes to sleep mode. If result indicates travel in a motor
vehicle, the probabilistic inference is applied to the power
spectrum obtained from the recorded microphone data. If

Fig. 1 Processing sequence of proposed method.

the result indicates a car, this result is output and the estima-
tion process changes to sleep mode. If the result indicates
a train or bus, the probabilistic inference is applied to the
average speed obtained from GPS positioning data to deter-
mine whether the user is in a train or a bus. This result is
output and the estimation process changes to sleep mode.
This allows the different types of movement to be identified
with a high degree of accuracy while keeping the processing
load to a minimum. The steps that make up this processing
are described below.

4.2 Probabilistic Inference Using the Acceleration Data

Initially, Shaka produces an estimation result by applying
probabilistic inference to the power spectrum calculated
from the acceleration measurements. This proposed method
divides the recognition time into multiple segments called
frames. The method estimates movement type using a clus-
ter model for each frame, and evaluates the reliability of the
estimation result. The method seeks to improve the recog-
nition accuracy by only using the recognition results from
frames with high reliability called key frames to establish
the movement type result.

Figure 2 shows an overview of the recognition process.
The method achieves recognition using two different clus-
ter models. The first model is the user movement model
using the feature values obtained from the sensors to esti-
mate the movement type. The second model is the reliabil-
ity model using the movement type probabilities produced

†The name derives from a scene in the classic Chinese tale
“Xi You Ji” (Monkey: Journey to the West) in which the character
Songoku (Monkey) bets Shaka (Buddha) that he can take posses-
sion of the heavens. He makes a sketch of five pillars located at
the end of the world then goes and urinates on them, but when he
comes back it turns out he has only traveled around the palm of
Shaka’s hand. The name “Shaka” was chosen for this method to
represent how we wanted the mobile phone to be like the palm of
Shaka’s hand whereby we can obtain a shrunk-down model of the
user’s world by using sensors fitted inside a mobile phone to obtain
and share presence information about the user.
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Fig. 2 Overview of the recognition process.

by the user movement estimation process to evaluate the re-
liability. These two models are used to generate key frames.
The key frames are used to determine the high-reliability
time periods called key frame periods from the multiple key
frames produced by this process, and the final recognition
result is output.

In short, this proposed method consists of a learning
step for the power spectrum, a learning step for reliability,
an inference step using the power spectrum, a reliability es-
timation step, and a post-processing step. The sequences for
each step are as follows.

Learning step for the power spectrum learns on the
movement type estimation model using teaching data. The
learning process uses the X-Means method [22] to perform
recursive K-means clustering with K=2. The Euclidean
distance between feature values is used as the evaluation
function for clustering. The reason for using the X-Means
method is because using the standard K-Means method
would result in a large number of small clusters in cases such
as running that produce feature values with a wide variance
while failing to separate into clusters for such states that pro-
duce feature values with a narrow variance, e.g, stationary
and vehicle. Clustering is used in the proposed method be-
cause data for the different movement types is skewed in
such a way that it produces clusters that are distinctive of the
different movement types, so use of the X-Means method
is appropriate. The division stopping rule in the X-Means
method uses AIC or BIC as an index. However, given the
purpose of clustering in the proposed method, the skewing
of the distributions for each movement type contained in a
cluster is used as the index.

As shown in Fig. 3 and Table 2, the data is first sepa-
rated into two clusters and then the movement type distribu-
tion is obtained for each cluster. Next, if the most frequent
movement type makes up more than half of the cluster, the
cluster’s distribution is deemed to be sufficiently skewed to
that movement type and therefore that cluster is not divided
further. If the most frequent movement type does not make
up more than half of the cluster, clustering is performed
again to produce two further clusters and the same evalua-
tion process is repeated. Division also stops regardless of the
movement type distribution of the teaching data in the case
of small clusters that contain less than a predefined number
of teaching data. This process is repeated until there are no

Fig. 3 Creation of recognition model using feature values obtained from
teaching data.

Table 2 Clustering parameters for power spectrum learning step.

more clusters still to be divided. Next, the probability table
containing the movement type distribution for each cluster
and the mean value of their feature values are obtained for
use as the model for movement type estimation.

The inference step for the power spectrum is based on
the cluster matching method. Initially, this method divides
sensor data into time section units called frames, and then,
divides each frame into time steps of FFT window size and
calculates the power spectrums. It then searches for the
cluster with the least difference (nearest) by comparing the
power spectrum with the average power spectrum of each
cluster to obtain Pps for the nearest cluster for each power
spectrum. Finally, this method calculates the average Pps

for the frame, and selects the user movement with the best
probability as the inference result for the frame. This infer-
ence result is defined as Rps, and the average Pps in a frame
is defined as Ppsavg.

The following describes the reliability of the infer-
ence result. The learning process also uses the X-Means
method. However, the clustering target data for learning
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Fig. 4 Generation of clustering target data by resampling process for re-
liability estimation model.

on this model is produced by resampling process using the
teaching data as shown in Fig. 4. In the resampling process,
one frame of sensor data with one movement type is resam-
pled randomly from the teaching data. Next, resampled data
is split into segments, and the feature value is extracted for
each segment. Then, the nearest-neighbor clusters of model
for each segment is searched, and calculates the mean val-
ues of probabilities of nearest-neighbor cluster. That is, the
clustering target data consists of the mean values of proba-
bilities and the label of user movement type collected from
all the teaching data from all movement types (all frames),
as shown in Fig. 5.

The clustering process uses the Euclidean distance be-
tween the mean values of movement type probabilities is
used as the evaluation function for clustering as shown in
Table 3. The method uses the skew of the distribution of the
label of movement type in each cluster as its index. After
clustering is complete, the label of movement type with the
highest number of occurrences in each cluster is determined
and the mean value of movement type probabilities obtained
from each cluster is used as the reliability estimation model.

As explained in Sect. 3.2, there is a problem with loss
in performance caused by periods of time during which the
acceleration data resembles that for other types of move-
ment. When this happens, power spectrum inference pro-
duces similar Ppsavg results for different types of movement.
Therefore, the clustering result for the Ppsavg values for all
types of user movement expresses the reliability. For exam-
ple, if Ppsavg is (0.7, 0.2, 0.1, 0.0, 0.0), and the Ppt of the
nearest cluster is (0.99, 0.01, 0.0, 0.0, 0.0), this means that
most of the cases of Ppsavg (0.7, 0.2, 0.1, 0.0, 0.0) correspond
to running, so this inference result is reliable. In another ex-
ample, if Ppsavg is (0.0, 0.1, 0.2, 0.4, 0.3) and the Ppt of the
nearest cluster is (0.0, 0.0, 0.1, 0.4, 0.5), this means that Rps

is stationary, but most cases of Ppsavg (0.0, 0.1, 0.2, 0.4, 0.3)

Fig. 5 Clustering of movement type probabilities for building the relia-
bility estimation model.

Table 3 Clustering parameters for reliability learning.

correspond to vehicle travel, so this inference result isn’t re-
liable. This proposed method uses X-means clustering using
Ppsavg as the learning data for the reliability learning step.

The reliability estimation step is based on the cluster
matching method. Initially, this method gets the result of
the power spectrum inference step (Ppsavg). It then searches
for the cluster with the least difference by comparing Ppsavg

with the average probability table for each cluster to find Ppt

for the nearest cluster. The estimation result is the cluster
share for the user movement with the highest Ppt probabil-
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Fig. 6 Post-processing example.

ity. This is defined as Rpt. Finally, this method compares
Rps with Rpt. If Rps equals Rpt, the inference result Rps is a
reliable. If not, Rps isn’t reliable. In this method, a reliable
frame is called a candidate key frame.

The following describes the post-processing step. As
described in the previous paragraph, the result of the pre-
vious steps indicates whether each frame is a reliable or
unreliable frame, as in the example in Fig. 6. In the post-
processing step, the method estimates the key frame using
the following generation rule.

-Two consecutive candidate key frames have the same
estimation result for user movement.

-Some unreliable frames exist between candidate key
frames (there are no candidate key frames with a different
status).

-The key frame duration must be longer than the thresh-
old time for each type of user movement (For example, the
thresholds for running and walking are 20 seconds).

In the example in Fig. 6, frames No.1 and No.2 are
walking candidate key frames indicating that the key frame
is “walking” and therefore the estimation result is “walk-
ing”. Next, the inference result for frame No.3 and No.5 is
running, but these are unreliable frames, and therefore the
estimation result remains “walking”. At frame No.6, the
candidate key frame changes to running, and the “running”
result of frame No.8 leaves this unchanged. Although this
post-processing rule improves the accuracy of user move-
ment estimation by only using reliable frames, it means that
the latency when user movement changes becomes longer
as explained in Sect. 6.

4.3 Probabilistic Inference Using the Microphone Data

If the result of the probabilistic inference described above
indicates travel in a motor vehicle, the next step is to perform
probabilistic inference using the microphone data. This
method also includes a power spectrum learning step, re-
liability learning step, power spectrum inference step, reli-
ability estimation step, and the post- processing step. The
sequence of each step is as follows.

Although power spectrum learning for the microphone
data uses the same method as the acceleration data, the
method used to convert the raw data to an input vector is dif-
ferent. This method first calculates the power spectrum from
the recorded audio data and then calculates the average am-

Fig. 7 Example microphone power spectrum data.

plitude for each 100 Hz band between 100 Hz and 1500 Hz.
This produces input data in the form of a 14-dimensional
vector. The other parameters are the same as described in
the previous section. The method uses the microphone to
detect the ambient sounds characteristic of different types of
vehicle. Distinctive ambient sounds include the sound of the
electric motor or metallic sounds when riding in an electric
train and the engine sound when riding in a bus. As shown in
Fig. 7, the frequency range in which the three different states
can be distinguished is 100 to 1500 Hz. The ambient sound
of a car in particular is notably quieter than the other two
states. Accordingly, the proposed method uses the power
spectrum from the microphone data, and the feature value
consists of the mean amplitude for each 100 Hz band in 100
to 1500 Hz range of interest.

This method seeks to improve estimation accuracy by
using microphone data to identify characteristic differences
present when riding in a car.

The power spectrum inference step, reliability learning
step, reliability inference step, and post-processing step are
the same as those used for acceleration data as described in
the previous section.

4.4 Probabilistic Inference Using the GPS Positioning
Data

If the result of the probabilistic inference described above
indicates travel by train or bus, the next step is to per-
form probabilistic inference using GPS positioning data. Al-
though both the learning and estimation methods are the
same as described in the previous section, the method used
to convert the data to input data is different. First, regular
GPS positioning measurements are made and the average
speed calculated from pairs of consecutive measurements.
The resulting input data consists of a set of unsigned integer
values. The average speed characteristics of trains and buses
are different, as can be seen in the example in Fig. 8.

This method seeks to improve estimation accuracy by
using GPS positioning data to identify characteristic differ-
ences between travel by train or bus.

4.5 Sleep Mode

If the result of the above user movement estimation indi-
cates that the user is stationary, or travelling by car, train,
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Fig. 8 Comparison of bus and train average speed.

or bus, this method changes to sleep mode. Commercial
mobile phones usually include a pedometer implemented
by wired logic, and also have a function to obtain the lo-
cation of the nearest CDMA base station. As the load for
these processes is much lower than that for the procedures
described in the preceding sections, the proposed method
includes use of sleep modes which depends on the type of
user movement. This mode is provided to reduce power con-
sumption and involves checking the hard-wired pedometer
and the base station latitude and longitude for changes. Al-
though this mode is unable to recognize the seven different
movement types, it can determine whether a change has oc-
curred in the already established movement type.

If the movement estimation result indicates that the
user is stationary, then neither the pedometer value nor the
location of nearest CDMA base station can be expected to
change. Accordingly, the sleep mode for a stationary user
performs a polling check on the pedometer value and the
base station location. During this time, use of the sensors
(acceleration, microphone, GPS) and the methods described
in the preceding sections is suspended. If any change in
the pedometer or base station indicates a potential change
in state and triggers waking up from sleep mode. When the
movement estimation result indicates that the user is riding
in a car, train, or bus, then the pedometer value can be ex-
pected to remain unchanged. Accordingly, waking up from
sleep mode occurs if there is a change in the pedometer or
the base station latitude and longitude remain unchanged for
longer than a fixed time period. When the system resumes,
it is assumed that the next movement type is walking or run-
ning, so the system goes to the acceleration mode as shown
in Fig. 1.

This method seeks to improve power consumption by
using the pedometer and the base station location.

5. Performance Evaluation and Results

An evaluation system was implemented to verify the effec-
tiveness of the proposed method.

5.1 Evaluation System Implementation

Figure 9 shows a photograph of the device used for evalu-

Fig. 9 Evaluation device (au W62CA [23]).

Table 4 Specification of evaluation device.

Table 5 Operating parameters for the estimation method.

ation and Table 4 lists the specifications of the device. As
the device is a commercial mobile phone that already con-
tains an accelerometer, microphone, and GPS, this indicates
that the sensor configuration used by the proposed method is
practical. The estimation software was written in C and runs
on the above device. Table 5 lists the operating parameters
for the estimation methods used by the system. For the pur-
pose of this evaluation, the estimation accuracy is indicated
by the precision, recall, and F-measure.

5.2 Evaluation Data Collection

The experimental data was obtained from 214 experimental
subjects, covered seven types of movement (running, walk-
ing, bicycle, stationary, car, train, bus), and used 3 different
device locations (held in the hand, trouser pocket, and inside
a bag) as shown in Fig. 10.

Three impractical cases including holding the device
in hand while riding a bicycle were not covered. Approx-
imately 1000 hours of acceleration data, microphone data,
and GPS data were collected covering the above combina-
tions of cases, as shown in Table 6.
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Fig. 10 Device location examples.

Table 6 Experimental data combinations.

Table 7 Estimation accuracy of proposed method and previous method
for five types of user movement.

This experimental data is divided into 3 groups (each
group has the data from 71 experimental subjects). One
group of data was used for learning and the other two groups
of data were used for estimation, and this performance test
operated using each group data for learning. The perfor-
mance values were calculated from the averages of these test
results (six sets).

5.3 Result

Table 7 shows the performance test results for the es-
timation accuracy of the proposed method and a previ-
ous method [18]. Here, the “proposed method” means
the accelerometer-based probabilistic inference described in
Sect 4.2. Table 7 shows that the inference accuracy for
five types of user movement using the proposed method is
around 95% or better. This is significantly better than the
estimation performance of the previous method described in
Sect. 3.2.

Table 8 shows a comparison of the estimation accuracy
of the proposed method using accelerometer, microphone,
and GPS and a subset of the proposed method that uses ac-
celerometer data only (as described in Sect. 4.2) for seven
types of user movement. The full method improves the av-

Table 8 Estimation accuracy of proposed method and proposed method
using accelerometer only for seven types of user movement.

Table 9 Power consumption during performance testing for each esti-
mation step.

Table 10 Average of latency for proposed method.

erage estimation accuracy for the seven types of user move-
ment with 93.1%.

Table 9 shows the power consumption recording during
performance testing for the proposed method using the ex-
perimental device as shown in Fig. 9. The power consump-
tion during sleep mode is clearly much lower than in other
modes and the proposed method achieves over 100 hours of
continuous operation on a commercial mobile phone in the
office worker examples (the average of eight office workers).

Table 10 shows the average of latency for user move-
ment estimation. The latency for running and walking is
shorter than for other types of user movement, and the la-
tency depends on the threshold time used in the key frame
generation rule in the post-processing.

6. Discussion

As described in the previous section, the probabilistic infer-
ence method using acceleration data was able to recognize
running, walking, bike riding, stationary, and travel by mo-
tor vehicle with about 95% accuracy as shown in Table 7.
In particular, use of reliability estimation and the key frame
period generation rule achieved significantly improved per-
formance. In short, from the point of view of accuracy, the
user movement estimation method does not need to use all
of the time sections, and better results can be achieved by us-
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Fig. 11 Trade-off between the accuracy and the latency.

ing characteristic time sections only. This proposed method
represents one approach to the identification of characteris-
tic time sections using reliability estimation.

Table 8 shows that microphone data is effective for
identifying when the user is traveling by car and or by train
or bus, and GPS positioning data is effective for identify-
ing when the user is traveling by train or bus. The result in
Table 8 shows that the proposed method achieves 90% or
better accuracy for all seven of the different types of user
movement. Table 9 shows that the power consumption for
estimating using microphone or GPS data is higher than for
the accelerometer and Table 8 shows that probabilistic in-
ference using accelerometer data only achieves accuracy of
80% or better. Therefore, the best estimation mode depends
on the user’s circumstances. This indicates that each service
and user should be able to select the estimation mode.

Table 9 shows the power consumption in each mode
and how sleep mode contributes greatly to longer battery
life. Of course, battery life depends on the user’s activity.
For example, the worst case is for a user running a marathon
or perticipating in a bicycle race because in these cases the
proposed method can never change to sleep mode. Regard-
less of this, 22 hours of battery life is good enough for
these usage cases. On the other hand, the proposed method
achieves a battery life of over 2 weeks for a mobile phone
left on the user’s desk. This level of power consumption is

similar to that of a mobile phone in standby mode. When
we consider use cases, the ability of the method to run in the
background is a very important point.

The key frame generation rule in the proposed method
uses different threshold times for different types of move-
ment as shown in Table 5. The average latency in Table 10
becomes shorter as the movement state getting easy to be
identified, e.g. running and walking. Conversely, the latency
for car, bus, and train are longer. In this method, one key
frame period needs at least two key frames. This evaluation
uses a frame length of 10 sec as shown in Table 5, so the la-
tency of all movement types is longer than 20 sec. Moreover,
it should be noted that the latency of the proposed method
depends on the observed time of a key frame that contains
distinctive sensor data for a particular movement type. The
improvement of latency is left for further study.

Figure 11 shows a trade-off between latency and esti-
mation accuracy for each user movement type. This means
that appropriate parameters of this method should be defined
consider the service requirements.

Moreover, because the current proposed method fo-
cuses on periodic characteristic patterns, we believe there
is a potential for use in identifying other types of movement
with periodic action. On the other hand, it is difficult to
identify types of movement with the aperiodic action. This
is a subject for future work.

7. Conclusion

This paper presents a method for identifying the movement
of a user using a system that combines an accelerometer, mi-
crophone and GPS and is implemented in a mobile phone.
We found that the proposed method can improve estima-
tion accuracy by considering the reliability estimation, and
the method can improve power consumption through use of
sleep mode. Performance testing showed that the proposed
method can identify seven different types of movement with
accuracy of around 90% or better, and the power saving
functionality can extend the battery life of a mobile phone
to over 100 hours while our estimation algorithm is running
in the background.
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