IEICE TRANS. INE. & SYST., VOL.E94-D, NO.6 JUNE 2011

1201

[PAPER

TSC-IRNN: Time- and Space-Constraint In-Route Nearest
Neighbor Query Processing Algorithms in Spatial Network

Databases

Yong-Ki KIM'®, Nonmember and Jae-Woo CHANG', Member

SUMMARY Although a large number of query processing algorithms
in spatial network database (SNDB) have been studied, there exists little re-
search on route-based queries. Since moving objects move only in spatial
networks, route-based queries, like in-route nearest neighbor (IRNN), are
essential for Location-based Service (LBS) and Telematics applications.
However, the existing IRNN query processing algorithm has a problem in
that it does not consider time and space constraints. Therefore, we, in this
paper, propose IRNN query processing algorithms which take both time
and space constraints into consideration. Finally, we show the effective-
ness of our IRNN query processing algorithms considering time and space
constraints by comparing them with the existing IRNN algorithm.

key words: spatial network database, query processing algorithm, in-route
nearest neighbor query, time & space constraints

1. Introduction

Recently, there have been a large number of studies on
query processing algorithms for coordinate-based queries
and trajectory-based ones in spatial network databases
(SNDB) [1]-[9]. However, there has been little work on
route-based queries which find the closest POI while an ob-
ject is moving on a given route. Since moving objects move
on a predefined spatial network, it is essential to study effi-
cient route-based query processing algorithms in SNDB.

Route-based queries in SNDB have been classified into
two groups; continuous k-nearest neighbor query [1]-[5]
and in-route nearest neighbor query [6]. There are two lead-
ing research on continuous k-nearest neighbor query. First,
Kolahdouzan et al. [4] proposed a continuous k-NN query
processing algorithm by using a Voronoi network diagram
to calculate a network distance between two POIs (Point
of Interests). Next, Mouratidis & Yie [5] proposed both
an incremental monitoring algorithm and group monitor-
ing algorithm based on R-tree. Meanwhile, one of the most
important route-based queries is an in-route nearest neigh-
bor (IRNN) query. Shekhar & Yoo [6] proposed an IRNN
query to find a nearest neighbor by deviating minimally
from a given planned route. However, the IRNN query pro-
cessing algorithm has a problem that it cannot deal with real-
time situations, like a traffic jam or a vehicle with limited
petrol reserves.

Manuscript received July 9, 2010.
Manuscript revised December 22, 2010.
"The authors are with the Dept. of Computer Eng., Chonbuk
National Univ., Chonju, Chonbuk, 561-756, Korea.
a) E-mail: ykkim@dblab.chonbuk.ac.kr
DOI: 10.1587/transinf.E94.D.1201

To solve this problem, we propose IRNN query pro-
cessing algorithms considering time and space constraints.
Therefore, our IRNN query processing algorithms can
find the optimal deviated route to satisfy time and space
constraints in real applications, such as Telematics, car
navigation system (CNS), and Location-based commerce
(L-commerce). In addition, we show the effectiveness of
our IRNN query processing algorithms by comparing them
with the existing IRNN query processing algorithm.

The rest of the paper is organized as follow. Sec-
tion 2 presents related work on route-based query process-
ing algorithms for SNDB. In Sect. 3, we propose our IRNN
query processing algorithms considering time and space
constraints. In Sect.4, we provide the performances anal-
ysis of our IRNN query processing algorithms. Finally, we
conclude our work with further research in Sect. 5.

2. Related Work

There are two leading algorithms for processing a contin-
uous k-NN query in spatial networks. First, Kolahdouzan
et al. [4] proposed a continuous k-NN query processing al-
gorithm by using a Voronoi network diagram in spatial net-
works. In this algorithm, they pre-compute a network dis-
tance between POIs by using Voronoi nearest neighbor net-
work diagram (VN3). For a given route of moving object,
the VN3 first splits the given route into a set of node-to-
node segments or node-to-POI segments. Then, the algo-
rithm retrieves k nearest POIs by using the VN3 on each
segment. Next, it finds a split point based on the direction
of the POIs, and at the end, it retrieves k POIs by using
the distance between the given query point and POIs. Sec-
ondly, Mouratidis et al. [5] proposed two continuous k-NN
search algorithms by using R-tree; incremental monitoring
algorithm and group monitoring algorithm. The incremental
monitoring algorithm only updates objects falling in edges
in the expansion tree. The group monitoring algorithm con-
siders a path between two consecutive nodes (i.e., intersec-
tions) in the spatial network.

Meanwhile, one of the most important route-based
queries is an in-route nearest neighbor (IRNN) query.
Shekhar & Yoo [6] proposed an IRNN query to find a near-
est neighbor by deviating from the planned route as mini-
mally as possible, whereas a continuous k nearest neighbor
query finds nearest neighbors along the shortest route. To

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

1202

deal with the IRNN query, they proposed four algorithms.
The first one is a simple graph-based algorithm which finds
the nearest neighbor from each node of a given route and
then obtains candidate routes passing through each near-
est neighbor. As a result set, the algorithm finds the near-
est neighbor with the shortest distance on the route. How-
ever, it has a drawback that its performance is decreased
as the number of node increases. The second one is a re-
cursive spatial range algorithm which calculates distances
from a current node to a nearest neighbor by using a short-
est path algorithm [10]. If a new distance calculated from
another node is less than the shortest distance found from
now on, the new distance becomes the shortest distance.
Base on the current distance, the algorithm processes a range
query to find a nearest neighbor from the remaining nodes
on a given route, recursively. Although the recursive range
algorithm has less query processing time than the simple
graph algorithm, it suffers from high processing cost be-
cause of its recursive nature. The third one is a spatial
distance join algorithm which reduces the processing time
of range query at each node. Since the computation of
Euclidean distance from a node to a POI is faster than that
of network distance, this algorithm finds a nearest neigh-
bor by using a range query based on Euclidean distance be-
tween a node and a POI in the given route. The last one is
a pre-computed zone (PCZ) algorithm which pre-computes
the network distance between a node and a POI by using the
service zone defined for a POI. Thus, this algorithm finds
a nearest neighbor rapidly by using pre-computed distances
in service zones intersecting with a given route. The PCZ al-
gorithm has the best performance among the four algorithms
in terms of query processing time because it can process the
IRNN query efficiently by finding the pre-computed nearest
POI from each node.

3. IRNN Query Processing Algorithms Considering
Time and Space Constraints

For supporting such applications as Telematics, CNS, and
L-commerce, it is necessary to study on IRNN query pro-
cessing algorithms considering time and space constraints in
spatial network databases. For this, we define IRNN queries
considering time constraint, space constraint, and both time
and space constraints. We also propose our IRNN query
processing algorithms for the defined IRNN queries.

3.1 Time-Constraint IRNN Query Processing Algorithm

The existing IRNN query finds a nearest neighbor with
a minimum deviation from a planned route. An example
of the IRNN query is to find the nearest neighbor POI while
we deviate from the planned route (R1) minimally, as shown
in Fig. 1. Although routes passing through POI B or C are
the shortest ones, the existing IRNN query processing algo-
rithm returns a route R2 that passes through POI A. This
is because it deviates from the given route minimally. How-
ever, the existing IRNN query processing algorithm does not

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

[\\ Distance Limit (DL) \

s@
/ I 2km
i D
P [
7_-/

-« — givenroute (R1)

— — — IRNNroute (R2) J

— TRNN route with time constraint (R3)
\\ /

Fig.1 IRNN Query with time constraint.

consider time constraint. For example, in the real life, a user
has to find a gas station within 20 minutes from his current
position because the car does not have gas enough to travel
a whole planned route. Because the existing IRNN algo-
rithm finds the route passing through POI A, the car cannot
reach to POI A due to the lack of gas. Therefore, it is nec-
essary to find a POI which can satisfy a time constraint.

In addition, it is necessary to differentiate different
types of POIs, like gas stations where the time constraint
is very tight and restaurants where it is not relatively tight.
For example, a user wants to find a restaurant within a given
time constraint (20 minutes) by minimally deviating from
the planned route. However, since the time constraint is not
tight, it is possible to find a restaurant located beyond the
distance limit of the time constraint. To deal with this sit-
uation, we can provide a tightness degree to indicate how
tight the time constraint is. Based on the time constraint
tightness, we can define a distance limit to which a car can
travel. Definition 1 presents the distance limit based on the
original time constraint and its tightness degree.

Definition 1 We define a distance limit (DL) based on «
where « is a tightness degree of time constraint.

DL = (current car speed * original time constraint)/«,
O<a<.

For example, we assume that the current speed of a car
is 60 km/h, the original time constraint is 20 minutes, and
the time constraint is extremely tight (¢ = 1). In this
case, the distance limit is (60 km/h % 20 min)/1 = 20km.
Whereas, if a equals 0.5, the distance limit is changed into
(60 km/h % 20min)/0.5 = 40km. This means that a restau-
rant within 40 km from the current position can be consid-
ered as a candidate POI in case the time constraint is not
tight like a restaurant. By using the tightness degree (a), we
propose a time-constraint IRNN query processing algorithm
(TC-IRNN). Figure 2 shows our TC-IRNN query process-
ing algorithm. At first, our algorithm calculates a distance
limit by using the original time constraint and @, and it finds
candidate nodes located within the distance limit (lines 2-3).
Next, the algorithm finds a set of candidate POIs from the
candidate nodes, where a candidate POI is the nearest neigh-
bor of its corresponding node (line 4-5). Finally, it finds the

KIM and CHANG: TSC-IRNN: TIME- AND SPACE-CONSTRAINT IN-ROUTE NEAREST NEIGHBOR QUERY PROCESSING ALGORITHM

TC-IRNN (BaseRoute, time_boundary, o)

// BaseRoute: query route, time_boundary : time constraint,
o: weight for time constraint

1. CostTSRoute = infinite;

2. Boundary = (speed * time_boundary)/a;

3 Cand_nodes = Find_node(givenroute, Boundary);

4. for (i=0; i > sizeof(cand nodes) ;i++)

5. Cand_Set = Calculate_cost(Find_NN(Node(i), Distance));

6. return find_lowcost(Cand_Set);

End TC-IRNN Algorithm

Fig.2 TC-IRNN query processing algorithm.

- N
Sl.ll _____ I.IA;.'zk.m ______ Trafficjam
_____________ N area (R)
3k g Izékm }x; .
B o

— — — IRNNroute (R2)
\! IRNN route with space constraint (R3) /

- . — givenroute (R1) ‘

Fig.3 IRNN Query with space constraint.

best POI with the minimum deviation among a set of candi-
date POIs (line 6).

3.2 Space-Constraint IRNN Query Processing Algorithm

If there is road obstruction due to accident or traffic jam
while a moving vehicle moves on a planned route, it is nec-
essary to find an alternated route. For instance, a query is to
find the best route with minimum deviation from the planned
route R1 when R1 has a traffic jam area R, as shown in
Fig. 3. The existing IRNN algorithm focuses only on finding
a nearest neighbor which has a minimum distance from the
given route. Therefore, the existing IRNN query processing
algorithm selects a route R2 passing through a POI A. How-
ever, because traveling the traffic jam area may cause high
cost, it is necessary to design a IRNN query processing al-
gorithm considering space constraint. In the case of a light
traffic jam on a road, we usually travel the planned route
even though there is traffic jam. But, in the case of a heavy
traffic jam due to car accident, we may select a new route
which does not pass through the accident area. For this, we
define a deviated route as follows.
Definition 2 When a planned route is from N; node to
N, node and a traffic jam area is in a segment from N; to N,
we define a deviated route as a route which does not pass
through the traffic jam area while travelling from Ny to N,.
In Fig4, there is a deviated route being composed of
three parts, i.e., Ni-N;, N;-POLI-N; and N;-N,. Among
them, a deviated portion is N;-POI,-N; (dashed line) and the
traveled portion of the planned route is Ni-N; and N;-N,,.

1203
ixg Traffic jam area ® Node @ rol
NN
S 2ol
'
ol ’
—— o%b O——C——0
N, N, N; N; Ny N,

Fig.4 An example of cost function to avoid traffic jam area.

Compute_NodetoNN Algorithm (POIs, Network)
// POIs : set of POIs, Network = {Nodes, Edges)

1. POI poi, Nodes = Select Nodes(Network);

2. poi = Random_Select POI(POIs);

3 Node = Extend_POI(poi);

4. while (Stack is NULL) {

5. Extend Node(Node);

6. Push(adjacency node(Node));

7. temp_memory = Compute_info(adjacency node(Node));
8. Stack = pop_stack(); }

End Compute NodetoNN Algorithm

Fig.5 Pre-processing for storing NN and its distance from each node.

The space constraint portion means the segment(s) of the
traffic jam area, i.e., N;-N;. The deviated portion provides
a penalty because the exiting IRNN query processing al-
gorithm tends to keep the given planned route. Based on
the above three portions made from the deviated route, we
can define a cost function for traveling a deviated route or
a given panned route as follows.

Definition 3 Assume that |DP)|, |T PR|, and |S CP| represent
the length of the deviated portion, that of the traveled por-
tion of the planned route, and that of the space constraint
portion, respectively. We define the cost function of traveling
a deviated route or the planned route where B is the weight
of user preference to the planned route, vy is a penalty degree
of not passing through the planned route, and 6 is a burden
of passing through a space constraint portion.

Cost_Route
(1-B)*|DP| + 6*|SCP|, in case of planned route
={(1=pB)«|DP|+B+|TPR|+vy=*|SCP|,
in case of deviated route

To support the efficient processing of our IRNN al-
gorithm considering space constraint, we provide a pre-
processing algorithm for finding the nearest neighbor (NN)
of each node as shown in Fig. 5. At first, we select a POI and
store two nodes of a segment including the POI into a stack
which is used for network expansion. We named the stack
as Stack _NE. For each node, we also store its nearest neigh-
bor POI and the distance from the POI into another stack,
Stack_NN. Secondly, from Stack_NE, we pop a node hav-
ing shorter distance to the POI. Thirdly, we start network
expansion from the popped node. If we find a POI which
is nearer from a node than the previous POI, we change the
nearest POI and its distance to the node in both Stack_NE

1204

*Traﬁicjam area @ Node [POI

N, Ne Ne o NN

i Nj., = N

P

Fig.6 Example of two nodes containing same NN POI.

and Stack_NN. Finally, we continues until the Stack_NE be-
comes empty. Since the network is expanded just a single
time, our algorithm is efficient to find the nearest POI from
each node.

To avoid unnecessary computation while searching
a deviated path, we present theorem 1 and 2 for two routes
having the same POI as nearest neighbor.

Theorem 1 Assume that a given planned route is from
N1 node to N, node and a traffic jam area is in a seg-
ment between N; and N;. If Distance(Ni_1,POI) >
Distance(Ny, POI), the route being composed of Ni-Nj_i,
Ni-1-POI-Nj, and N j-N,, can be discarded by the route com-
posed of N1-Ni, Ni-POI-N, and N;-N,, where 0 < k < i,
k is integer.

Proof: Assuming the penalty degree v > 1 and 1 >
B = 0, according to definition 3, the cost of the former
route is (1 — B) * (Distance(Ny, Ni_1) + Distance(N;, N,,)) +
B * ((Distance(Ny_1, POI) + Distance(POI,N;)) + y x
Distance(Ny_1, N;), whereas the cost of the latter route
is (1 — B) = ((Distance(Ny, Ny) + Distance(N;,N,)) +
B * ((Distance(Ny, POI) + Distance(POI,N;)) + vy x
Distance(Ny, N;). By subtracting the cost of the latter
route from that of former route, we can obtain (y — 1 +
B) * ((Distance(Ni-1, Ny) + B * ((Distance(Ny-y, POI) —
(Distance(Ny, POI)). This is always greater than
zero because Distance(Ny-1,Ny), (y — 1 + B), and
(Distance(Ny-1, POI) — (Distance(Ny, POI) have a positive
value. Because the cost of the former route is greater than
that of the latter route, the former can be discarded by the
latter.

Theorem 2 Assume that a given planned route is from
N, node to N, node and a traffic jam area in a seg-
ment between N; and N;. If Distance(Np.1, POI) >
Distance(N,,, POI), the route being composed of N1-N;, N;-
POI-Ny.1, and Ny,.1-N), can be discarded by the route com-
posed of Ni-N;, Ni-POI-N,,, and N,,-N,,, where i < m < p,
m is integer.

Proof: This theorem can be proved in the same way as the
theorem 1.

Figure 6 shows an example for finding an optimal devi-
ated route where two nodes (N;—; and N;) having the same
POI are located before the traffic jam area. Here, there
are two possible deviated routes, such as one being com-
pOSGd of Nl‘Nk—h Nk_l—POI-Nj, and Nj—Np (i.e., Nl‘Nk—l‘
POI-N;-N,) and one being composed of Ni-Ny, Ni-POI-N;,

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

@ ro!

%Trafficjaln area @ Node

N,

Fig.7 The number of possible deviated routes for a planned route.

and N;-N, (i.e., Ni-Ny-POI-N;-N),). If the distance between
Ni-1 and POI is greater than the distance between N, and
POI, the deviated portion (Ny_;-POI-N;) in the former route
is greater than the deviated portion (N;-POI-N;) in the lat-
ter route. Therefore, we can discard the former route (i.e.,
N1-Ni-1-POI-N-N,,) because it has a greater distance.
Definition 4 Assume that a given planned route is from
N, node to N, node and a traffic jam area is in a segment
between N; and N;. If X and Y are the total number of NN
POIs for the nodes located before and after the traffic jam
area, respectively, the number of possible deviated routes
can be computed as follows.

Number of possible deviated routes
=X*x(p-m)+Y=xm,

where m is the number of nodes before the traffic jam area.

For example, a planned route has 7 nodes (p = 7) and
the number of nodes before the traffic jam area is m = 4,
as shown in Fig. 7. The total number of NN POIs for seven
nodes is 5. Among them, the number of NN POIs for nodes
located before the traffic jam area is X = 3 and that for
nodes located after the traffic jam area is Y = 2. By using
definition 4, the total number of possible deviated routes is
3%«3+2x4=17.

In order to reduce the cost of network expansion, we
select a NN POI with the shortest distance, out of K NN
POIs for the nodes. For this, we provide two definitions for
ordering K NN POlIs.

Definition 5 Assume that a given planned route is from
N\ node to N, node and a traffic jam area is in a segment
between N; and N;. If two nodes Ny, and N, being located
before the traffic jam area have POIg and POIc as NN POI,
respectively, the order of network expansion is given below.
If B = Distance(Np, N.) + v = Distance(Ny, POIg) > B
Distance(N,, POI¢)) + (1 — B) = Distance(Np, N.), the net-
work expansion starts from POlg. Otherwise, the network
expansion starts from POlI¢.

Definition 6 Assume that a given planned route is from
N node to N, node and a traffic jam area is in a segment
between N; and N;. If two nodes Ny and N, being located
after the traffic jam area have POIg and POI¢ as NN POI,
respectively, the order of network expansion is given below.
If B = Distance(Ny, N.) + v * Distance(Np, POlg) > [*
Distance(N,, POI¢)) + (1 — B) * Distance(Ny, N..), network
expansion starts from POIg. Otherwise, the network expan-
sion starts from POI¢.

KIM and CHANG: TSC-IRNN: TIME- AND SPACE-CONSTRAINT IN-ROUTE NEAREST NEIGHBOR QUERY PROCESSING ALGORITHM

X:g Trafficjamarea @ Node [POI

6 5
4
o3 ke i T ®
NN N N, N

Fig.8 Ordering of network expansion between two nodes.

® L @
Nl NQ Ni—l

*Traﬁicjam area @ Node

@ ro!

—
Nt N, N, N N N, No., N\,

Fig.9 Pruning method for network expansion.

Figure 8 shows an ordering of network expansion for
two nodes Nj and N,, (k < m) being located after the traffic
jam area. When (8 is 0.8 and vy is 1, we start the network
expansion from the POl first because the sum of the cost
of Ni-POIg and the additional TPR cost (= 0.8%6+0.2%4 =
4.2) is less than the sum of the cost of N,,-POI,; and the
additional SCP cost (= 0.8 «5+ 14 = 8).

Once we select NN POIs before and after the traf-

fic jam area, we perform the network expansion from both
sides, based on the order of NN POIs which has been com-
puted. Because we cannot decide the order between NN
POIs which have come from both sides, we select one by
one from both sides, alternatively. After deciding the order
of NN POIs, we provide a pruning method to reduce the
network expansion further.
Definition 7 Assume that a given planned route is from
N node to N, node, a traffic jam area is in a segment be-
tween N; and N;, and a nodes N, being located before the
traffic jam area have POIc as NN POI. If N,, is shortest
from POl among nodes located after the traffic jam area,
we can discard the computation of nodes which are located
far from Ny,.

For example, when POl is the NN POI of N, in Fig. 9,
the distance between POI- and N, is the shortest among
those between POl and other nodes being located in the
opposite side of POI¢. Therefore, we can reduce the net-
work expansion by discarding deviated routes including
POI--N,, ;1 to PO]C-NP.

Based on the above definitions 2-7, we propose
a space-constraint IRNN query processing algorithm
(SC-IRNN). Figure 10 shows our SC-IRNN query pro-
cessing algorithm. At first, our algorithm divides a planned
route into two parts: before a space constraint area and after
a space constraint area (lines 3—4). Next, it retrieves the can-
didate set of POIs from each node for both parts (lines 5-6).
Then, it searches the shortest deviated route by using the

1205

SC-IRNN Algorithm(BaseRoute, Link, f, 9, y)
// BaseRoute: query route, Link : traffic jam area,

B : weight for space constraint, § : weight for traffic jam area,

vy : penalty for detouring route

1. CostSCRoute = infinite;

2. Low_Cost = infinite; temp POI = 0;

3. LeftRoute = DivideRoute Left(BaseRoute, Link);

4. RightRoute = DivideRoute Right(BaseRoute, Link);

5. for (i=0; i > sizeof(LeftRoute) ;i++)
CandidateSet(Before) = Find_CandidateSet(Node(i),
Distance, f, 3, v);

6. for (i = sizeof(LeftRoute)+1; i > sizeof(TotalRoute); i++)
CandidateSet(After) = Find CandidateSet(Node(i),
Distance, B, 3, 7);

7. UpperBound =

Calculate Cost(Route PassingConstraint(Link), 3, 3);

8. while (CandidateSet(Before) != {0} &&

CandidateSet(After) != {@}) {

9. temp_Node = select_node(CandidateSet(Before));
10. CandidateSet(Before) — {temp Node};
1. temp_Cost = Calculate Cost(temp Node, B, 3, v);
12. if (temp_Cost < UpperBound) {

UpperBound = temp_Cost; }

13. temp_Node = select_node(CandidateSet(After));
14. CandidateSet(Before) —= {temp_Node}
15. temp_Cost = Calculate_Cost(temp Node, B, 9, 7);
16. if (temp_Cost < UpperBound) {

UpperBound = temp_Cost; } }
End SC-IRNN Algorithm

Fig.10 SC-IRNN query processing algorithm.

2;‘:; Trafficjam area @ Node (@ POI
Ni Np - Ny Ny N Ni MNjog No - Npg Ny
2 g b B 2 2 2 a3 a0 124 3
sesg-e"ece L e e S S)
k| iz 4 41

B A
Distance(Nq,N;) = 20 C
Distance(N;, Np)= 30

Fig.11 Example of IRNN query processing algorithm with space con-
straint.

retrieved candidate set of POIs (lines 7-16). During this pro-
cess, it reduces the network expansion by setting an upper
bound as a travel cost passing through the space constraint
area, thus leading to the reduction of both computation and
I/O cost.

Figure 11 shows an example of the SC-IRNN query
processing algorithm. Assume that a user (car) plans to
travel from node N; (S) to node N, (D) and B, §, y are
0.8, 10, 2, respectively. We also assume that the distance
from N; to N; is 20 and the distance from N; to N, is 30,
and the length of space constraint area is 4. In this example,
the cost of a route passing through the space constraint area,
i.e., UpperBound, is computed below.

UpperBound = (1 —0.8) % (20 + 4 + 30) + (10 = 4)
50.8.

There are three POIs in the planned route, i.e., A, B,
and C. Such nodes as N,, N;_1, and N; have the same POI,

1206

as NN POI. Among them, the closest node from the POI
is N,. By using definition 3, we can see that the closest
nodes of three POIs are N,, Np, and N, respectively. Next,
we calculate the costs of the deviated routes including the
POIs A, B, and C, respectively. Finally, we can select the
best deviated route with the minimum cost. If the cost of
deviated route is greater than UpperBound, our algorithm
stops calculation.

3.3 Time- and Space-Constraint IRNN Query Processing
Algorithm

Based on our previous IRNN query processing algorithms,
we propose a time- and space-constraint IRNN query pro-
cessing algorithm (TSC-IRNN). An example of TSC-IRNN
query is shown like this: “For a given time constraint and
a given traffic jam area (space constraint), find a route which
is deviated minimally from the traffic jam area while passing
through a POI being located within the time constraint”. For
processing this query, there are three solutions: i) consider-
ing time and space constraint at the same time, ii) consider-
ing space constraint after time constraint, and iii) consider-
ing time constraint after space constraint. Among them, the
solution to consider time constraint after space constraint
has the worst performance because the processing time for
space constraint is always expensive. The first and second
solutions can achieve better performance because they can
reduce the length of a planned route to be processed by us-
ing time constraint. Therefore, we consider only the first
and second solutions for designing our TSC-IRNN query
processing algorithm.

To deal with a TSC-IRNN query in an efficient way,

we decide which solution is appropriate for given time and
space constraints as follows.
Definition 8 Assume that a planned route is from N| node
to N, node and the distance from N to the space constraint
area is S. If the distance limit of time constraint is greater
than and equal to S, we select a query processing approach
which consider time and space constraint at the same time.
Otherwise, we select an approach to consider space con-
straint after time constraint.

To deal with the first solution, we set an UpperBound
as the cost of travelling a route which passes through a given
space constraint area. Secondly, the portion of planned route
within the distance limit of time constraint (DL) is divided
into two parts: before space constraint and after space con-
straint. Thirdly, the algorithm finds the best deviated route
with the minimum cost among all possible deviated routes.
The first solution can reduce both computation and I/O costs
because it can process only a portion of the planned route by
using the UpperBound. If the number of nodes located be-
fore the space constraint area and that located within DL
are I and N, respectively, the computation cost of the first
solution is I = (N — I).

Figure 12 shows an example of space constraint area
located within DL. Here, the planned route is represented
as dashed line, the original IRNN route is represented as

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

| 'g;;'.

Traffi¢

. —(..—.— givenroute
_____ IRNN route

IRNN route with time-

\ and space constraint /
\

Fig.12 Space constraint area located within DL.

S p

s
= e = — == Traffic
7 =0, jam area
ot g vl
B / D
_ __/'/.._._ given route
_____ IRNN route

IRNN route with time-

\ and space constraint /
A

Fig.13 Space constraint area located beyond DL.

chain line, and DL is shown as a curve. We see that POIs A
and B are located within DL. To find the best deviated route
from the planned route, we can compute only a portion of
the planned route, i.e., from S to DL, By using our algo-
rithm, we can find the best deviated route (shown as con-
tinuous line) that does not pass through the space constraint
area, but drops by POI B. Because our algorithm does not
need to process the remaining part of the planned route, i.e.,
from DL to D, it is efficient in terms of I/O and computation
costs.

For the second solution, our algorithm has to process
the time constraint before handling the space constraint. To
search an appropriate POI, our algorithm uses pre-computed
NN for each node within DL. Because our algorithm does
not need to search POIs located beyond DL, it can reduce
both computation and I/O costs. If the number of nodes
located before and after space constraint area is / and M re-
spectively, and the number of nodes located within DL is N,
the computation cost of the second solution is (/ — N) = M.

Figure 13 shows an example of space constraint area
located beyond DL. The POI, and POIy are located within
DL whereas POI¢ lies beyond DL. To find the nearer
POI between POI, and POIg, we compare the distances of
the two POIs from their respective nodes. Next, we find
the best deviated route with the minimum cost by using
UpperBound. Finally, we return the best deviated route as
one being represented as continuous line.

KIM and CHANG: TSC-IRNN: TIME- AND SPACE-CONSTRAINT IN-ROUTE NEAREST NEIGHBOR QUERY PROCESSING ALGORITHM

TSC-IRNN (BaseRoute, time_boundary,Link, a, B, &, ¥)
// BaseRoute: query route, time_boundary : time constraint,
Link : traffic jam area, o: weight for time constraint,
B : weight for space constraint, 6 : weight for traffic jam area,
Y : penalty for detouring route
1. CostTSCRoute = infinite; Low_Cost = infinite;
temp_POI = 0;
2. Boundary = (speed * time_boundary)/a.;
3. If (Boundary <= Distance (StartNode, Link)); {
4. LeftRoute = DivideRoute_Left(BaseRoute, Link);
5. RightRoute = DivideRoute Right(BaseRoute, Link); }
6. else {
7. LeftRoute = DivideRoute Left(BaseRoute, Link);
8. RightRoute = DivideRoute_Right(BaseRoute, Link); }
. Upp_Bound =
Calculate_Cost(Route PassingConstraint(Link),
B, d);
10. for (i = 0; i > sizeof(LeftRoute) ;i++)
11. CandidateSet(Before) =
Find_Cand_Set(Node(i), Distance, B, 8, ¥);
12. for (i = sizeof(LeftRoute)+1; i > sizeof(TotalRoute) ;i++)
13. CandidateSet(After) =
Find_Cand_Set(Node(i), Distance, B, 8, Y¥);
14. while (CandidateSet(Before) != {2}) {
15. NodeB = select_node(CandidateSet(Before));
16. while (each Node for CandidateSet(After)) {
17. temp_Cost = Calculate_Cost(NodeB, Node, B, &, ¥);
18. if (temp_Cost < Upp_Bound) {
Upp_Bound =temp_Cost; } }
End TSCIRNN Algorithm

o B

Fig.14 TSC-IRNN query processing algorithm.

Figure 14 shows our TSC-IRNN algorithm which is
based on Definitions 2~6. At first, according to the position
of space constraint area, this algorithm divides a planned
route into two parts: before space constraint and after
space constraint (lines 2-8). In order to reduce both com-
putation and I/O costs, our TSC-IRNN algorithm sets as
UpperBound a cost for travelling a route passing through
the space constraint area (line 9). Next, it finds a candidate
POI set from each node of the planned route (lines 10-13).
Finally, it returns a route with the lowest cost, i.e., the best
route passing through the nearest POI among the POIs of
the two candidate sets (lines 14—18).

4. Performance Analysis

To show the efficiency of our three algorithms, we compare
them with the PCZ algorithm which is the best one among
the existing IRNN algorithms. We do our experiments
by using the San Francisco Bay road network data[11].
The San Francisco Bay map data consists of approximately
220,000 edges and 170,000 nodes. By using RunTime21 al-
gorithm [12], we randomly generate 10,846 POIs with dif-
ferent types, such as gas stations, restaurants and so on, as
shown in Fig. 15. We decide time constraint by using the
length of the given route and the speed of a moving object.
Because we assume that the speed of the moving object is
constant, time constraint depends on the length of the given
route. In addition, we decide space constraint by selecting
one edge randomly from the given route.

1207
® /N
* i J
i‘ .
o fr %\
* e
P o\
o\
- Ty *
LI
o &
S Sphe e o g
= L 78 s T \
oo . /s s » |
R) "
o e
e S e |
L 3 » & J -
o e
LRt
i .
LS 4 |
. . . J
* Py o
s J
. o2 B
b) /
.. 4
. *s /
A .
*>

Fig.15 San Francisco Bay road network with POIs.

01 ——PCZ
TC-IRNM(a = 0.5)

== SC-IRNN

Response Time (sec)

0.06 == T5C-IRNN(z = 0.8)

0.02 //
f—

20 40 60 80 100

TSC-IRNN{= = 0.5)

Length of route

Fig.16 Total Response time (8: 0.8, y: 1.0, 6: 2.0).

Figure 16 show the performance comparison of our
three IRNN query processing algorithms with the existing
PCZ algorithm, for routes consisting of 20, 40, 60, 80, and
100 nodes, when 8 = 0.8, ¥ = 1.0, and 6 = 2.0. In
case of a route being composed of 60 nodes, the response
times of TC-IRNN, TSC-IRNN (e = 0.2), TSC-IRNN (a =
0.5), SC-IRNN, PCZ algorithms are 0.003, 0.005, 0.015,
0.040, and 0.037 seconds, respectively. It is shown that
our TC-IRNN algorithm has the best performance because
it needs to search POIs only within the distance limit of time
constraint. Whereas, our SC-IRNN algorithm achieves the
nearly same performance as the PCZ algorithm because it
has the overheads of finding the candidate set of deviated
routes even though it uses efficient pruning techniques. In
addition, our TSC-IRNN algorithm has better performance
than the existing PCZ algorithm even though we consider
both time and space constraint. This is because we can re-
duce the overhead of finding a deviated route by using both
the distance limit of time constraint and efficient pruning
techniques. Among TSC-IRNN algorithms, our TSC-IRNN
algorithms with @ = 0.2 is better than that with @ = 0.5
because only the short portion of a route can be processed
when « is small. In case of a route being composed of
100 nodes, the response times of TC-IRNN, TSC-IRNN

1208
0.14
0.12
T 0l
a
E-3
g oos —+—20
E
o 40
£ 006
3 —i—50
2 004 ——g0
0.02 ‘\\\’\. -
— - 1
fa] h . = L = - -
0.2 04 0.6 0& 1
time constraint (a)
Fig.17 Response time of TSC-IRNN algorithm in term of «.
012
01
T
£ oos
o
E
= o006 ——F=2
o
2 &=10
& ooa
&
0.02
0
0.6 07 0.8 0.8 1 8)
Fig.18 Response time of TSC-IRNN algorithm in term of .

(@ = 0.2), TSC-IRNN (@ = 0.5), SC-IRNN, PCZ algo-
rithms are 0.004, 0.016, 0.049, 0.148, and 0.098 seconds,
respectively. The performances patterns of our algorithms
are the nearly same as those with a route being composed
of 60 nodes. However, it is shown that our SC-IRNN algo-
rithm has the worst performance because the overheads of
finding the candidate set of long deviated routes overwhelm
the benefit of using its efficient pruning techniques.

To measure the performances of our three IRNN query
processing algorithms in terms of main designing parame-
ters, we do our experiment on our TSC-IRNN query pro-
cessing algorithm because it can cover both TC-IRNN and
SC-IRNN algorithms. Figure 17 shows the response time of
our TSC-IRNN algorithm in term of «, for routes consisting
of 20, 40, 60, 80, and 100 nodes, when 8 = 0.8,y = 1.0, and
6 = 2.0. This shows the impact of the different values of «,
i.e., the tightness degree of time constraint. For @ = 0.8,
the response times are 0.002, 0.005, 0.012, 0.019, and 0.036
seconds when the lengths of planned routes are 20, 40, 60,
80, and 100, respectively. In addition, it is shown that the
response time decreases according to the increase of a. The
reason is because DL decreases as the value of « increases.
As a result, a response time can be reduced when DL is
short because DL contains the small number of nodes to be
processed.

Figure 18 shows the response time of our TSC-IRNN

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.6 JUNE 2011

——G=2
5=10
0.06 —h—=5=50

Res ponse Time {sec)
o
=
]

—— 5= 100

20 40 €0 80 100 Length of route

Fig.19 Response time of TSC-IRNN algorithm in term of §.

/ |20
@40
O60

580
m 100

Accuracy of query respanse (%)
o
]

Time constraint ()

Fig.20 Accuracy of query response as compared to the optimal route.

algorithm in term of B8, when @ = 0.5, y = 1.0, and the route
consists of 100 nodes. This shows the impact of the different
values of 3, i.e., a user’s preference to follow the given query
route. When the value of 8 is 0.8 and the value ¢ is 2.0,
our TSC-IRNN algorithm requires 0.049 seconds. When the
value of ¢ is 10, it requires 0.064 seconds. It is shown that
the retrieval time decreases as the values of 5 increases. This
is because our pruning techniques can reduce the number of
deviated routes to be processed.

Figure 19 shows the retrieval time of our TSC-IRNN
algorithm in terms of §, when @ = 0.5, 4 = 0.8, and y = 1.0.
This shows the impact of the different values of ¢, i.e., the
penalty of the traffic jam area within the given query route.
When the penalty values of § are 2, 10, 50, and 100, the
response times are 0.050, 0.064, 0.112, and 0.134 seconds
respectively, where the length of planned route is 100. It is
shown that the response time is increased as the length of
route increases as well as ¢ increases. This is because our
algorithm has to process the larger number of nodes from the
deviated routes with the increase in both ¢ value and route
length.

Figure 20 shows how good the query response is. For
this, we compare the optimal route with the computed route
which is acquired based on the cost function of a detour
route in Definition 3. The optimal route is one having the

KIM and CHANG: TSC-IRNN: TIME- AND SPACE-CONSTRAINT IN-ROUTE NEAREST NEIGHBOR QUERY PROCESSING ALGORITHM

minimum cost among all possible routes between a start
node and a destination node. The result shows that the ac-
curacy of query response (our computed routes) is about
98.2% on the average as compared with the optimal ones.
This is because our algorithm generally selects the shortest
detour routes visiting NN POIs which are the optimal routes.
But, our algorithm does not select the optimal routes in few
cases since there may exist the optimal routes which do not
pass through NN POIs. As shown in Fig. 20, the probabil-
ity of the cases is only about 2%, so it is shown that our
algorithm can find the optimal routes in almost all cases.

5. Conclusions and Future Work

Since moving objects move on predefined spatial networks,
route-based queries are essential in the spatial network
databases. As a typical route-based query, the in-route
nearest neighbor (IRNN) query [6] was proposed to focus
on finding a nearest neighbor with minimal deviation from
a given route. But, the existing IRNN query processing al-
gorithm has a problem that it cannot consider real-time sit-
uation on road networks, such as a car with limited oil or
a traffic jam situation. To overcome this problem, we pro-
posed three query processing algorithms considering both
time and space constraints, i.e., TC-IRNN, SC-IRNN, and
TSC-IRNN. Our IRNN query processing algorithms find
the best deviated route with the minimum cost in real appli-
cations, such as Telematics, CNS and automatic navigation
devices. Through our performance analysis, it is shown that
the response time of our TC-IRNN and TSC-IRNN query
processing algorithms are better than the existing IRNN
query processing algorithm. As future work, we need to
apply our IRNN query processing algorithms considering
time and space constraints to real road network applications
so that we can prove their effectiveness.

Acknowledgments

This research was financially supported by the Ministry of
Education, Science Technology (MEST) and Korea Insti-
tute for Advancement of Technology (KIAT) through the
Human Resource Training Project for Regional Innovation.
This research was also supported by the MKE (The Min-
istry of Knowledge Economy), Korea, under the ITRC (In-
formation Technology Research Center) support program
supervised by the NIPA (National IT Industry Promotion
Agency)” (NIPA-2010-(C1090-1021-0009))

References

[1] Z.Song, and N. Roussopoulos, “K-nearest neighbor search for mov-
ing query point,” Proc. SSTD, pp.79-96, 2001.

[2] Y. Tao and D. Papadias, “Time parameterized queries in spatio-
temporal databases,” Proc. ACM SIGMOD, pp.334-345, 2002.

[3] Y. Tao, D. Papadias, and Q. Shen, “Continuous nearest neighbor
search,” Proc. VLDB, pp.287-298, 2002.

[4] M.R. Kolahdouzan and C. Shahabi, “Continuous k nearest neigh-
bor queries in spatial network databases,” Proc. STDBM, pp.33-40,
2004.

1209

[5] K. Mouratidis, M.L. Yiu, D. Papadias, and N. Mamoulis, “Contin-
uous nearest neighbor monitoring in road networks,” Proc. VLDB,
pp-43-54, 2006.

[6] S. Shekhar and J.S. Yoo, “Processing in-route nearest neighbor
queries: A comparison of alternative approaches,” Proc. ACM GIS,
pp-9-16, 2003.

[7]1 Y. Hsueh, R. Zimmermann, and M. Yang, “Approximate continuous
K nearest neighbor queries for continuous moving objects with pre-
defined paths,” Proc. COMOGIS, pp.270-279, 2005.

[8] H.Jung, S. Kang, M. Song, S. Im, J. Kim, and C. Hwang, “Towards
real-time processing of monitoring continuous k-nearest neighbor
queries,” Proc. ISPA, pp.11-20, 2006.

[9] J. Feng, L. Wu, Y. Zhu, N. Mukai, and T. Watanabe, “Continuous
k-nearest neighbor search under mobile environment,” Proc. WAIM,
pp-566-573, 2007.

[10] E.W. Dijkstra, “A note on two problems in connection with graphs,”
Numeriche Mathematik, vol.1, pp.269-271, 1959.

[11] T. Brinkhoff, “A framework for generating network — Based mov-
ing objects,” Geolnformatica, pp.153—180, 2002.

[12] http://www.fh-oow.de/institute/iapg/personen/brinkhoft/generator/

Yong-Ki Kim is a Ph. D. in the Chonbuk
National University. He received the B.S., M.S.
and Ph. D. degrees in Chonbuk National Uni-
versity in 2002, 2005, and 2011, respectively.
His research interests include spatial network
database, query processing and sensor network.

Jae-Woo Chang is a professor in the De-
partment of Computer Engineering, Chonbuk
National University, Korea from 1991. He re-
ceived the B.S. degrees in Computer Engineer-
ing from Seoul National University in 1984. He
received the M.S. and Ph. D degrees in Com-
puter Engineering from Korea Advanced Insti-
tute of Science and Technology (KAIST) in
1986 and 1991, respectively. During 1996—
1997, he stayed in University of Minnesota for
visiting scholar. And during 2003-2004, he
worked for Penn State University (PSU) as a visiting professor. His re-
search interests include spatial network database, context awareness and
storage system.

