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PAPER

Hilbert Scan Based Bag-of-Features for Image Retrieval

Pengyi HAO†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Generally, two problems of bag-of-features in image re-
trieval are still considered unsolved: one is that spatial information about
descriptors is not employed well, which affects the accuracy of retrieval;
the other is that the trade-off between vocabulary size and good precision,
which decides the storage and retrieval performance. In this paper, we pro-
pose a novel approach called Hilbert scan based bag-of-features (HS-BoF)
for image retrieval. Firstly, Hilbert scan based tree representation (HSBT)
is studied, which is built based on the local descriptors while spatial rela-
tionships are added into the nodes by a novel grouping rule, resulting of a
tree structure for each image. Further, we give two ways of codebook pro-
duction based on HSBT: multi-layer codebook and multi-size codebook.
Owing to the properties of Hilbert scanning and the merits of our grouping
method, sub-regions of the tree are not only flexible to the distribution of
local patches but also have hierarchical relations. Extensive experiments on
caltech-256, 13-scene and 1 million ImageNet images show that HS-BoF
obtains higher accuracy with less memory usage.
key words: image search, feature representation, bag-of-features, Hilbert
scanning

1. Introduction

Searching for similar images in a large unannotated im-
age database is a challenging task not only because of the
large memory but also due to the presence of occlusion,
background clutter, viewpoint and lighting changes. For
example, we may want to search some images contain-
ing a certain object (maybe different size or under differ-
ent viewpoints), or depicting a similar scene as the input
image. Many previous approaches have addressed the prob-
lem of matching such transformed images, like Refs. [1],
[2]. They are in most cases based on local invariant descrip-
tors, and matching descriptors using an efficient indexing
structure [3]. Various approximate nearest neighbor search
algorithms such as kd-tree [1] are also researched recently.
The problem with these approaches is that all individual de-
scriptors need to be compared to and stored.

In this context, bag-of-features (BoF) approach [4]
which captures the invariance aspects of local keypoint fea-
tures has recently attracted numerous research attentions.
The basic idea of BoF is to depict each image as an orderless
collection of local keypoint features [5]. BoF based search
first extracts a set of local descriptors for each image, such as
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the popular SIFT descriptor [1]. These descriptors are very
discriminant and invariant to local transformations. Further-
more, image comparison based on local description is ro-
bust to cropping, clutter, change in viewpoint, illumination
change, etc. [6]. Then, the distribution of descriptors in de-
scriptor space is quantized into visual words. An image can
be described as a histogram of votes for visual words. Fast
access to the frequency vectors is obtained by an inverted
file [7] system.

The BoF approach, although is simple, it doesn’t con-
sider the spatial relationship among descriptors. Different
strategies have been proposed to improve BoF. For in-
stance, Ref. [8] used pyramid matching scheme to aggregate
statistics of features over fixed subregions. This approach
was worked by computing rough geometric correspondence
on a global scale, which was an extension of an orderless
BoF image representation for recognizing natural scene cat-
egories. However, fixed subregions are not strong enough
to preserve the coherence and compactness of local fea-
tures which is very useful for extract the spatial information
among these descriptors. Reference [9] exploited spatial
relations between features using full segmentation masks,
but it did not support a large number of categories. Ref-
erence [10] proposed an ordered BoF to encode geometric
information of objects within an image by projecting local
features to different directions and then selecting the most
representative ones, which is a new class of bag-of-features
for representing images.

In our research, we focus on orderless bag-of-features
approach which can do retrieval quickly yet the search ac-
curacy is not high. For BoF approach, if a little higher accu-
racy was obtained, much larger memory would be needed.
Here, we want to explore spatial relationships among ob-
jects in an image automatically, without any label or manual
handling, then add these information into bag-of-features
to get higher accuracy with less memory usage. Hilbert
space filling curve has the property to preserve the local-
ity between objects of multidimensional space in the lin-
ear space. If the distance between two points in the two-
dimensional image is small, the distance between the same
pair of points in the one-dimensional sequence is also small
in most cases. So a novel approach called Hilbert scan based
bag-of-features (HS-BoF) is proposed in this paper. Firstly,
Hilbert scan based tree representation (HSBT) is studied,
which is built based on the local descriptors. Spatial re-
lationships are added into nodes by a new grouping rule,
resulting of a tree structure for each image. Further, vi-
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sual words with significant spatial information are gener-
ated. We have two kinds of codebook production methods,
one is multi-layer codebook which forms a hierarchically
codebook according to the tree structure of HSBT and as-
signs descriptors to visual words in a multi-layer way, the
other is multi-size codebook which gets the vocabularies
using all the nodes in the tree once. Since the regions ob-
tained using Hilbert curve are irregular, adaptable and flexi-
ble subregions are shaped according to the coherence of in-
terest points, which benefits the irregular objects in images
as much as possible. In addition, the spatial relations be-
tween descriptors are also exploited by boosting the features
of objects and suppressing background features adaptively,
which is not limited to the categories of objects.

The rest of paper is organized in the following way:
first, we introduce Hilbert scanning in Sect. 2, then, the
proposed Hilbert scan based representation (HSBT) is de-
scribed in Sect. 3, Hilbert scan based bag-of-features (HS-
BoF) is presented in Sect. 4, Sect. 5 gives dataset, evaluation
metrics, experiments and analysis, finally, conclusions and
future work are given in the last section.

2. Hilbert Scan

In 1891, David Hilbert first described a continuous frac-
tal space filling curve named Hilbert curve which passed
through each point of the unit square exactly once and never
crossing itself. In the application of data analysis, it is used
for scanning data in two-dimensional space. This scanning
way is called Hilbert scan. It is a one-to-one mapping from
two-dimensional space to one-dimensional space and has
been demonstrated that if a square corresponds to an inter-
val, its sub-squares correspond to the sub-intervals of that
interval. Because it can preserve point neighborhoods as
much as possible, Hilbert scan has been widely applied in
image processing tasks. Reference [12] gave an interactive
method for classify multi-spectral images using a Hilbert
curve, which can be performed easily instead of using N-
dimensional data directly. Reference [13] proposed a com-
pression approach for color image compression using two-
dimensional Hilbert curve.

As a mapping technology, Hilbert curve has the prop-
erty to preserve the locality between objects of multidimen-
sional space in the linear space. This property was called
clustering in some literature, such as Ref. [14]. The clus-
tering properties makes it useful in computer science. If we
take a curve like the one shown in Fig. 1 and straighten it out,
points that are close together in the two-dimensional space
will also tend to be close together in the linear sequence.
Based on the clustering merit, Ref. [15] introduced a shape
representation method using the combination of the Hilbert
space filling curve and Wavelet analysis.

Currently, there existed several algorithms for the two-
dimensional Hilbert scan like Refs. [11], [16]. However,
these algorithms had more or less restrictions on their ap-
plications, such as complex, requiring square-sized image.
In order to improve the Hilbert scan for general application,

Fig. 1 A 16 × 16 Hilbert curve in the 2D space.

a Pseudo-Hilbert scan algorithm for arbitrarily-sized arrays
was given in Ref. [17]. It is a non-recursive algorithm based
on two look-up tables and the size of a scanned rectangle is
arbitrary. The more important merit is that it holds the point
neighborhoods as well. Therefore, it is useful for our task.

3. Hilbert Scan Based Tree Representation (HSBT)

3.1 Preparation

Let m1×m2 be the resolution of image I, m1 can be not same
with m2. After extracting keypoints using the DoG detector
and described by the SIFT descriptor, image I is mapped
from 2D space to 1D sequence by Pseudo-Hilbert scan al-
gorithm for arbitrarily-sized arrays. To simplify the nota-
tions, we use Θ = {S , L, F,R} to represent the 1D sequence,
where S is the set of keypoints obtained from I, L is the set
of keypoints’ locations in image I, F is the set of keypoints’
features, R is the set of segments produced by partitioning
Θ. Here, we call each segment a region. Hilbert scan based
tree will be built for image I with several groupings based
on keypoints’ distribution and features. Here, one grouping
means incorporating or merging all the rest regions in one
set into main regions. The explanations about rest region
and main region will be given in the next section.

The structure of each region in each grouping is con-
sisted by two components: mark and data. For the region Rj

in the i-th grouping, it is marked by Ri
j. It has three data: the

number of keypoints in this region (ni
j), the center of gravity

of keypoints in this region (gi
j), and the clustering center of

keypoints in this region (bi
j). g

i
j is calculated based on the

location set Li
j, bi

j is calculated using fuzzy C-means clus-
tering on the feature set Fi

j.

3.2 Grouping Based on Hilbert Scanning

The set of regions in the i-th grouping is Ri, Ri = {Ri
j| j =

1, 2, · · · , ν(i)}, where ν(i) is the regions’ number of i-th
grouping. Let the data set of regions in the i-th grouping
are Ni, Gi and Bi. Ni = {ni

j| j = 1, 2, · · · , ν(i)}, Gi = {gi
j| j =

1, 2, · · · , ν(i)}, Bi = {bi
j| j = 1, 2, · · · , ν(i)}. The steps are

listed as follows:
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1. Initialization. Let i = 1, initialize Ri, Ni, Gi, Bi;
2. Select main regions. Select main regions from Ri. It

means Ri is divided into Ri
main and Ri

rest, ν(i) = ν
i
main + ν

i
rest,

where νimain, νirest are the number of regions in Ri
main and Ri

rest
respectively;

3. Merging regions. If νirest � 0, merge the regions in
Ri

rest to Ri
main; i = i + 1; Calculate the Ni, Gi and Bi of Ri; go

to 2;
4: If νirest = 0, stop the grouping.
The process that all the regions in Ri

rest are merged into
Ri

main which is first selected from Ri is called i-th grouping.

Initialization: In the step of initialization, an interval
δ is needed to partition Θ into ν(1) regions at first, which
means image I is divided into ν(1) irregular parts. Here,
ν(1) = (m1 × m2)/δ. Figure 6 (a), (e), (f) give some ex-
amples. Let R1 = {R1

1,R
1
2, · · · ,R1

ν(1)}, if the region R1
j ( j =

1, 2, · · · , ν(1)) has no keypoint, it will be filtered. After fil-
tering the blank regions, R1 is taken as the initial region set.
Correspondingly, N1, G1, B1 can be got based on R1.

Main region selection: In each grouping, main regions
are needed to be selected at first. The selecting process in
the i-th grouping is described as follows:

Sptep1: Sort the regions in the set Ri. After sorting,
Ri = {Ri

j| j = 1, 2, · · · , ν(i)} is changed as {Ri
ϕ( j)|ϕ( j) ∈

[1, 2, · · · , ν(i)]}; For the sorted set, ni
ϕ(1) ≥ ni

ϕ(2) ≥ · · · ≥
ni
ϕ(ν(i));

Step2: If
∑ϕ(s)

j=1 ni
ϕ( j) > Th × M and

∑ϕ(s−1)
j=1 ni

ϕ( j) <

Th × M, Where, M is the total number of keypoints in
the image, Th is a threshold, 0 < Th < 1; then Ri

main ={Ri
ϕ(1),R

i
ϕ(2), · · · ,Ri

ϕ(s)}, 1 ≤ ϕ(s) ≤ ν(i);
Step3: ν(i + 1) = ϕ(s); Ri

rest = Ri − Ri
main.

From the selecting process, it can be seen that the num-
ber of regions in the next grouping equals to the number
of main regions in the current grouping, and the number of
main regions decreases with the increase of groupings.

Merge rest regions: After selecting main regions in
the i-th grouping, it is needed to judge whether there are
remaining regions or not. If there are regions in Ri

rest, they
will be merged into main regions.

Assume that we are given three adjacent regions in the
i-th grouping onΘ: Ri

x, Ri
y, Ri

z, Where Ri
y ∈ Ri

rest, Ri
x ∈ Ri

main,
Ri

z ∈ Ri
main, x < y < z. Now a question is coming that Ri

y

will be merged into Ri
x or Ri

z. In order to solve this problem,
a merging rule is given in Eq. (1),

ni
x

|gi
x − gi

y|
>

ni
z

|gi
z − gi

y|
. (1)

It means that if the region Ri
x has larger gravitation, Ri

y

will be merged into Ri
x, otherwise, it will be merged into Ri

z.
The merging process is marked as Ri

y → Ri
x or Ri

y → Ri
z.

Note that if Ri
x and Ri

z do not exist, Ri
y will be filtered.

Here, an example about how to do grouping is given
in Fig. 2. It includes four groupings. The main regions in
the first three groupings are R1

main = {R1
1,R

1
3,R

1
6,R

1
8,R

1
10},

Fig. 2 An example of grouping.

Fig. 3 Node structure.

Fig. 4 Examples of node structure. (a) R1
1, (b) R1

2, (c) R4
8.

R2
main = {R2

3,R
2
8,R

2
10} and R3

main = {R3
8} respectively. Based

on the merging rule, the other regions in each grouping will
be merged into the main regions. For instance, in the second
grouping, R2 = {R2

1,R
2
3,R

2
6,R

2
8,R

2
10}, R2

3,R
2
8,R

2
10 are main re-

gions. Based on the merging rule, R2
1 will be merged into

R2
3, R2

6 will be merged into R2
8. So, in the third grouping,

there are three regions in the region set: R3 = {R3
3,R

3
8,R

3
10}.

3.3 Building a Tree for an Image

In fact, the process of grouping introduced above can be ex-
pressed by a tree. The node of tree is defined as Fig. 3. It
consists of three parts: current node, objective node and par-
ent node. Here, current node is one region in the current
grouping, objective node is the region that current one will
be merged into, parent node is one region in the next group-
ing. If the region is a main region and has no objective node,
its objective node is “NULL”. Specially, the regions in the
last grouping have no objective node and parent node. For
the regions R1

1,R
1
2 and R4

8 shown in Fig. 2, R1
1 is a main re-

gion in the first grouping, R1
2 is not a main region and will be

merged into R1
1 (R1

2 → R1
1), R4

8 is the region in the last group-
ing. The node structures of these regions are illustrated in
Fig. 4 (a), (b), (c) respectively.
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Fig. 5 An example of reverse tree built based on grouping.

Based on the definition of node, we can express the
grouping process by a tree, where lower levels have more
local information and higher levels contain more global in-
formation. Figure 5 gives an example which is the tree of the
groupings in Fig. 2, where the black nodes are main regions
in each grouping.

4. Hilbert Scan Based Bag-of-Features (HS-BoF)

Local descriptors extracted by SIFT are represented by
HSBT, then they are quantized into visual words. The de-
tails of codebook generation, frequency vectors production
and distance calculation will be given in this section.

4.1 Image Representation by HSBT

In Sect. 3, the details about the construction of HSBT have
been presented. Here, we give some examples (see Fig. 6)
and briefly explain the role it will play in bag-of-features
based search.

Here, in order to show the regions produced by pro-
posed HSBT clearly, they are painted by 20 colors (actu-
ally the colors have no relations with our experiments). Fig-
ure 6 (a) is the state before grouping. They are produced by
δ = 500. Figure 6 (e), (f) show the amplified results of the
first and third images in Fig. 6 (a). It can be observed that
the original images are divided into lots of regions which
are irregular with each other. In fact, the contents in an im-
age such as bird, building, people, etc., also have irregular
shapes. Figure 6 (b) and Fig. 6 (c) show the first and sec-
ond grouping results of HSBT of left images. Figure 6 (d)
is the final grouping results of the given images. It can be
seen clearly that the main objects are preserved and other
less important things are wiped out. This is very beneficial
to our work. Reference [9] used full segmentation masks
to boost the weights of objects and suppress the weights of
background features. Our approach boosts the features of
objects adaptively, which is not limited to the categories of
objects. In addition, since Hilbert scan preserves the cor-
relation of interest points in an image, the one-dimensional
sequence is divided into several parts according to the co-
herence of points. So the regions which have correlation

Fig. 6 Examples of grouping in HSBT.

with each other in image are connected. In Ref. [8], the spa-
tial information is explored by dividing image into four sub-
regions with same size and repeating this process several
times. Here, the subregions are formed by their own charac-
ters and the upper subregions (upper nodes in the tree) are
shaped by the lower subregions (lower nodes in the tree).
They contain the relationships between layers.

4.2 Codebook Generation

Assuming there are X images in the training set, after
HSBT representation, each image has a feature set Ba =

{B1
a, B

2
a, . . . , B

i
a, . . . , B

ha
a }, a = 1, 2, . . . , X, where ha is the

tree’ height of image a. In our experiments, each region in
the grouping has one clustering center of fuzzy C-means.
Then K-means algorithm is used to produce a codebook.
Clearly, the input of K-means is the feature set F′ = {Ba|a =
1, 2, . . . , X} instead of F (keypoints’ features). The size of
codebook is determined by the number of K. A small K
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may lack the discriminative power since two interest points
may be assigned into the same cluster even if they are not
similar to each other. A large K, on the other hand, is less
generalizable, less forgiving to noises, and incurs extra pro-
cessing overhead. In order to get the trade-off between dis-
crimination and generalization, two methods for generating
codebook will be given at here.

One way of codebook production is using the tree
structure of HSBT representation. One layer of images
Bi = {Bi

1, B
i
2, . . . , B

i
X} will be quantized to one set of visual

words ci, i = 1, 2, . . . , n, where n is the max height of Hilbert
scan based trees in the training set, n = max{h1, h2, . . . , hX}.
This codebook is produced from layer 1 to layer n, so, we
call it multi-layer codebook (ML-codebook). Because the
number of regions is decreasing with the growth of lay-
ers, the vocabulary sizes of lower layers are larger than up-
per layers. Assuming the numbers of clusters from layer
1 to layer n are k1, k2, . . . , kn, k1 ≥ k2 >, . . . ,≥ kn. We
can get the multi-layer codebook: {c1, c2, . . . , cn}, where
ci = {ci,1, ci,2, . . . , ci,ki }, i = 1, 2, . . . , n. The vocabulary size
of ML-codebook is kL = k1 + k2+, . . . ,+kn. In Sect. 5, the
choice of parameter n and the vocabulary size in each layer
will be given in details. Figure 7 shows this process.

The other way is using all the features in F′ once
to produce a codebook. We call it multi-size codebook
(MS-codebook). Figure 8 shows this process. In order
to distinguish from ML-codebook, we use c′ to label the
clustering center of K-means. Assuming that there are kS

clusters, we can get the multi-size codebook as follows:
{c′1, c′2, . . . , c′kS }.

Fig. 7 The formation of multi-layer visual words.

Fig. 8 The formation of multi-size visual words.

4.3 Assigning the Descriptors to Visual Words

Because ML-codebook is more complex than MS-
codebook, here the details of assigning the descriptors to
visual words according to ML-codebook are listed. Assum-
ing that the descriptor set of image x after HSBT representa-
tion is Bx. Each descriptor b j

i in Bx is assigned to the nearest
visual word. Figure 9 shows this process clearly.

Step1: For an image, all the frequencies f i, j of assign-
ing its descriptors to visual words are initialized to 0, where
j = 1, 2, . . . , k1 for i = 1; j = 1, 2, . . . , k2 for i = 2; . . . ;
j = 1, 2, . . . , kn for i = n.

Step2: For each descriptor b j
i and each centroid yh

i of
the i-th layer of the codebook, increase the frequency by
f i, j = f i, j + fq(b j

i , y
h
i ), where f q(., .) is a matching func-

tion that reflects the similarity between descriptors b j
i and

yh
i . Here, f q(., .) is defined as:

f q(b j
i , y

h
i ) =

{
1, if b j

i is a k-NN of yh
i

0, otherwise
. (2)

Step3: The histogram of visual words occurrences is
normalized with the L1 norm, generating frequency vec-
tors of n layers: { f1, f2, . . . , fn} = {( f 1,1, f 1,2, . . . , f 1,k1 ),
( f 2,1, f 2,2, . . . , f 2,k2 ),. . . , ( f n,1, f n,2, . . . , f n,kn )}.

Similarly, for MS-codebook, we can get { f ′1, f ′2, . . . ,
f ′kS }.

4.4 Weighting Frequency Vectors

Like the text retrieval, each term (image) in the database is
represented by a vector of word frequencies. However, it is
usual to apply a weighting to the components of this vector,
rather than use the frequency vector directly for indexing. A
fundamental difference with text retrieval is that text words
are sampled naturally according to language context but vi-
sual words are the outcomes of data clustering. The former
carries semantic sense, while the latter infers statistical in-
formation. Here, the components of the frequency vector are
weighted using the strategy given in Ref. [3]. Denoting by
η the number of images in the database and by η j the num-
ber of images containing the j-th visual word, the weighting

Fig. 9 An example of frequency vector generation using ML-codebook.
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component wi, j associated with the i-th layer of the image is
given by

wi, j = fi, jlog
η

η j
(3)

The visual word frequency vector got by ML-
codebook is: {(w1,1, w1,2, . . . , w1,k1 ), (w2,1, w2,2, . . . , w2,k2 ),
. . . , (wn,1, wn,2, . . . , wn,kn )}; the visual word frequency vector
got by MS-codebook is: {w′1, w′2, . . . , w′kS }. These vectors
are a compact representation of the image.

4.5 Distance Calculation

We use two kinds of methods to calculate distances. One is
the cosine of angle used in Ref. [4], the other is CHI-Square.
For the vectors generated based on MS-codebook, the dis-
tance calculation is simple. Here, we just talk about the
distance calculation between vectors got by ML-codebook.
Given the visual word vector wq = {q1, q2, . . . , qn1 } of
a query, qi = {qi,1, qi,2, . . . , qi,ki }, i = 1, . . . , n1, similar
images in the database are represented by vectors wv =
{v1, v2, . . . , vn2 }, vi = {vi,1, vi,2, . . . , vi,ki }, i = 1, . . . , n2. Here,
n1 and n2 are the max numbers of layers for wq, wv respec-
tively. The distances calculated by cosine of angle and CHI-
Square are defined as follows:

dcosine(wq, wv) =
min(n1,n2)∑

i=1

qi • vi
|qi||vi| , (4)

dCHI(wq, wv) =
min(n1,n2)∑

i=1

ki∑
j=1

(qi, j − vi, j)2

qi, j + vi, j
. (5)

5. Experiments

Datasets We evaluate our approach on an object dataset
(Caltech-256), a scene dataset (13-scene categories) and
also a large scale dataset (1066940 images from ImageNet,
we call it imageNet1M).

Caltech-256 was created by the California institute of
technology in 2007. Each object category contains between
80 and 827 images. It represents a diverse set of light-
ing conditions, poses, backgrounds, image sizes and cam-
era systematics. The categories represent a wide varity of
natural and artificial objects in various settings. 13-scenes
dataset is one of the most common scene database used in
the literature so far. Each category contains 200 to 400 im-
ages and ranges from natural scenes to man-made environ-
ments. ImageNet1M is provided for test the performance
of the proposed approach on large scale collections. The
images were crawled from about 1000 popular synsets in
ImageNet.

Evaluation criteria In order to evaluate the proposed
method, we have used two standard evaluation measures,
namely the mean average precision (mAP) and the recall at
particular ranks (Recall@R).

mAP: For each query image we obtain average preci-
sion computed as the area under the precision-recall curve.

Precision is the number of retrieved positive images relative
to the total number of images retrieved. Recall is the num-
ber of retrieved positive images relative to the total number
of positives in the corpus. The mAP is then the mean for a
set of queries. Recall@R: Measuring the recall at a particu-
lar rank R, i.e., the ratio of relevant images ranked in top R
positions.

5.1 Object Dataset

For obtaining codebook, 12800 examples were randomly
chosen from all categories (50 images from 256 categories).
Then we randomly got 5 images from the rest of each cat-
egory as queries. Figure 10 illustrates the results with dif-
ferent numbers of layers in ML-codebook. Here, in the for-
mation of HSBT, δ = 500 for dividing the 1D sequences
to segments, Th = 0.8 for selecting main regions. Clearly,
more layers bring better precision. This is because that there
are much global information with the growth of the layers.
However, there is only a slight increase from fifteen layers
to twenty layers. This is not surprising since that fewer fre-
quent visual words are generated with the increase of layers.
In this case, the information added into the codebook is not
very rich. On the other hand, the complexity of computation
and the memory usage increase with the growth of layers in
codebook. So, n = 10 will be used for the next experiments
on caltech-256 dataset.

Table 1 compares the proposed HS-BoF with other
methods under different vocabulary sizes (10k, 20k, 50k,
100k) in terms of mAP, the two different distance calcula-
tion methods are also compared. In order to be fair, same
K-means method was also used to do quantization for BoF

Fig. 10 Results on different layers of codebook.

Table 1 Comparison of mAP on caltech-256 dataset.

Word size Distance BoF SPM
HS-BoF

(MS)
HS-BoF

(ML)

10k
Cosine 0.400 0.373 0.385 0.436

CHI-Square 0.438 0.391 0.491 0.605

20k
Cosine 0.490 0.411 0.492 0.523

CHI-Square 0.541 0.437 0.588 0.667

50k
Cosine 0.515 0.446 0.514 0.531

CHI-Square 0.573 0.472 0.595 0.669

100k
Cosine 0.527 0.469 0.498 0.507

CHI-Square 0.604 0.499 0.570 0.622



1266
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

and spatial pyramid matching (SPM) in our implementation.
In this table, four methods are compared, which are tradi-
tional bag-of-features (BoF), one BoF model with spatial
information (SPM), the proposed Hilbert scan based bag-of-
features (HS-BoF) with ML-codebook and MS-codebook
respectively. Here, n = 10 for ML-codebook, two levels
in SPM. Note that, for ML-codebook, the vocabulary size is
the sum of visual words of all the layers (the vocabularies of
the first layer are 5k, 10k, 20k, 50k respectively in our ex-
periments). First, one can observe that CHI-Square achieves
better results than the Cosine of vectors. Note that most of
researches rank the images at the retrieval stage by their nor-
malized scalar product (cosine of angle) between the query
vector and all image vectors in the database. Second, SPM
has a worse performance than BoF on this dataset, maybe
it is because that SPM was particularly designed for natural
scene categorization, the horizontal and vertical divisions in
spatial space are improper for object images. Third, HS-
BoF results in significant improvements, which shows the
effectiveness of the spatial information in HS-BoF. Finally,
in spite of the better performances, mAPs of HS-BoF de-
crease slightly using 100k vocabularies. The reason is that,
for codebook generation, fuzzy c-means’ clustering features
of regions are used instead of the original keypoints’ fea-
tures. When using 100k vocabularies, the number of visual
words is almost equal to the number of descriptors, in this
case, it becomes very similar to an approach which matches
individual descriptors, therefore, quantified features are less
discriminative, which affects the precision of capturing cor-
rect spatial information.

Figure 11 shows the rate of relevant images found in
the top R images. Here, CHI-Square was used. The max
layer was teen for ML-codebook. The vocabulary size of
the first layer was 5k. In Fig. 11, it can been seen that HS-
BoF with ML-codebook gets most positive images at the
same number of top images comparing with HS-BoF (MS-
codebook) and BoF. It increases the recall by 14% in com-
parison with standard BoF when the number of top images
is 50.

5.2 Scene Dataset

650 examples were randomly chosen from all categories (50

Fig. 11 Rate of relevant images found in the top R images.

images from each category) to get codebook. 260 queries
from the rest images (20 images from each category) were
used to test. For this dataset, we also compared the perfor-
mance of HS-BoF with ML-codebook under different layers
at first. We found that 15 layers was the best choice, so in
the next experiments n = 15 for ML-codebook. CHI-square
was also used. Figure 12 gives the results of several meth-
ods under different vocabulary sizes (500, 1k, 2k, 5k, 10k,
20k). One can observe that HS-BoF with ML-codebook out-
performs others. HS-BoF with MS-codebook is comparable
with SPM using small vocabularies such as 500, 1k and 2k, a
little better than SPM using 5k and 10k. When using a large
vocabulary such as 20k, SPM performs a little better than
HS-BoF with MS-codebook, but still lower than HS-BoF
with ML-codebook. For the slightly decreased performance
of HS-BoF using 20k vocabularies, the reason is same with
object dataset. Secondly, SPM is better than traditional BoF
in this dataset. Thirdly, the best mAP for scene dataset is
0.548 by proposed HS-BoF (ML-codebook), which is lower
than caltech-256 dataset (0.669). The reason is that there
are not distinct things in most natural scene images, in other
words, natural scene images are smoother than object im-
ages, after HSBT processing, some parts will be filtered,
which affects the precision.

Table 2 illustrates the mAP of each category of 13-
scene dataset using HS-BoF (ML-codebook) with 10k vo-
cabularies. ‘forest’ obtains the best result. These categories
such as ‘street’, ‘insidecity’ have acceptable results. How-
ever, the categories such as ‘bedroom’, ‘highway’ can not
achieve satisfying mAPs by our approach. The reason is that
fewer keypoints are detected on road and bed while noisy
objects like flowers, lights, tables in this kind of images have
many keypoints, thus the road and bed are filtered finally in

Fig. 12 Comparison of mAP on scene dataset.

Table 2 The mAP of each categoty of 13-scene dataset.

Category mAP Category mAP
forest 0.758 open country 0.512

inside city 0.725 coast 0.496
street 0.716 PARoffice 0.439

tall building 0.703 living room 0.380
CALsuburb 0.629 highway 0.325

kitchen 0.611 bedroom 0.276
mountain 0.554



HAO and KAMATA: HILBERT SCAN BASED BAG-OF-FEATURES FOR IMAGE RETRIEVAL
1267

Fig. 13 Some good examples and bad examples of 13-scene dataset.

our approach. Further, those noisy objects may have large
differences in same category. Strictly speaking, these im-
ages which have many discrepant noisy objects are not sim-
ilar with each other, however, they have same meaning. If
some semantic information is added into the retrieval sys-
tem, this kind of images would be probably searched. Some
visualized examples are shown in Fig. 13. In each column,
the left images shows the extracted keypoints and the right
ones are the results of 15th’s grouping.

5.3 ImageNet1M

50000 images from all categories were used to get code-
book, 800 images from the rest were tested as queries. We
set the threshold δ to 500, Th to 0.8 again, and n = 10
for ML-codebook. CHI-square was used. The best mAP
is 0.575 for HS-BoF with ML-codebook, 0.519 for MS-
codebook, using 50k, 100k, 200k vocabularies. To achieve
comparable accuracy, HS-BoF with ML-codebook requires
784 bytes per image, to be compared, with 17952 bytes for
BOF. With a 8 GB memory computer, HS-BoF takes 5.37
seconds for feature extraction, HSBT processing and search-
ing, while the average query time is 4.74 seconds using MS-
codebook.

6. Conclusions and Future Work

In this study, Hilbert scan based bag-of-features (HS-BoF) is
proposed for image search. Hilbert scan based tree represen-
tation (HSBT) is built based on local descriptors with spatial
relationships. The features of objects are boosted and back-
ground features are suppressed adaptively by the proposed
grouping strategy, which benefits our search. Multi-layer
codebook and multi-size codebook generation are given
based on HSBT. Experiments show that HS-BoF obtains

higher accuracy than BoF with smaller memory usage. In
addition, HS-BoF with multi-layer codebook performs bet-
ter than multi-size codebook in terms of retrieval accuracy,
while multi-size codebook spends fewer query time. More-
over, we investigate CHI-Square in our research and exten-
sive experiments demonstrate that it improves our search
quality.

From the visualized HSBT results, an interesting thing
is found that the representation of that images came from the
same category is similar while different categories is dis-
tinct. This point also can be seen from Fig. 6 and Fig. 13,
even though where the colors painted are not same (these
colors are irrelevant with our experiments). So maybe it can
be improved to label objects in images automatically, then
object recognition and image search can be done based on
these labels. In addition, how to maintain the high accuracy
while using low dimensional vectors to represent images is
our future work.
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