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Comparing Process Behaviors with Finite Chu Spaces

Xutao DU†∗a), Student Member, Chunxiao XING††, and Lizhu ZHOU†††, Nonmembers

SUMMARY We develop a distance function for finite Chu spaces based
on their behavior. Typical examples are given to show the coincidence
between the distance function and intuition. We show by example that the
triangle inequality should not be satisfied when it comes to comparing two
processes.
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1. Introduction

1.1 Motivation

Various applications require the comparison between pro-
cess models. For example, when developers try to find a
software module that is the best match for their requirements
in a software module database, they need to compare the
modules with their requirements in a certain way. Require-
ments can be described in different ways, such as an exam-
ple software module, a temporal formula, a first-order for-
mula, etc. Various methods for determining the equivalence
or satisfaction between the target process and the require-
ments have been proposed. For example, bisimilarity check-
ing has been used between two processes modeled by some
kind of process calculi, modeling checking has been used
between a process model and a temporal formula. However,
all of them result in a 0 or 1 answer. In reality, a perfect
100% matching hardly exists, and we need a way to find out
how close a process is to the requirements [1].

In modern computing paradigms (e.g. services comput-
ing and cloud computing), concurrency has been used ex-
tensively. However, it is well known concurrent programs
are notoriously difficult to test and debug. Formal meth-
ods provide an effective way to tackle this problem. Chu
spaces originate from category theory and have been pro-
posed as a promising model of concurrency [2], [3]. Dif-
ferent from other formalisms (e.g. automata, Petri nets and
process calculi), Chu spaces support both the true con-
currency semantics and compositional algebraic manipula-
tion simultaneously. Moreover, Chu spaces have unique
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structures that support efficient verification algorithms for
process-algebraic specifications [4]. Theoretical researches
on Chu spaces have been fruitful (e.g. [5]–[7]). Applications
of Chu spaces include the modeling of RTL (Register Trans-
fer Level) [8], Verilog [9], general concurrent programs [4],
WS-BPEL [10], and physical systems [11]. However, there
is no research on how to measure the degree of similarity
between Chu spaces until now. In this paper, we present
a behavior-based distance function for Chu spaces, which
will provide an effective way for the analysis of concurrent
processes.

The rest of this paper is organized as follows: Sec-
tion 2 introduces the basic theory of Chu spaces. Section 3
presents the distance function for finite Chu spaces together
with typical examples. Section 4 presents concluding re-
marks and future research directions.

2. Chu Spaces

Finite Chu Spaces A finite Chu space C = (E, X) over the
alphabet K consists of a finite set E of events and a finite set
X ⊆ KE of states.

Different K presents different modeling power and
complexity of Chu spaces. In this paper, we use K =

{0, ∠, 1,×}, which is proposed in [5]. This K supports
both true concurrency and branching time semantics, which
means it is suitable for the refined modeling of concurrent
behavior [12]. The structure of K is depicted in Fig. 1.

Example Chu spaces will be given in the next section
when discussing the distance function.

3. Distance between Chu Spaces

3.1 Pseudometric Space

Pseudometric Space A pseudometric space is an ordered
pair (S , d) where S is a nonempty set and d a distance func-
tion d : S × S → [0,∞] such that for all x, y, z ∈ S

Fig. 1 The structure of K.
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1. d(x, y) ≥ 0
2. d(x, y) = d(y, x)
3. d(x, z) ≤ d(x, y) + d(y, z), i.e. the triangle inequality

We will develop a distance function dc for Chu spaces.
dc is not a metric because the third condition (i.e. the triangle
inequality) is not satisfied. However, we will show that it is
not only acceptable but also a natural result when comparing
two processes.

3.2 A Distance Function for Chu Spaces

Behavioral precision and recall Let C1 = (E1, X1) and
C2 = (E2, X2) be two finite Chu spaces. Then E = E1 ∩ E2

is the set of common events of C1 and C2. We define

precision(C1,C2) =
|X1|E ∩ X2|E|
|X1|

recall(C1,C2) =
|X1|E ∩ X2|E|
|X2|

The name precision and recall is taken after those used
in [1]. The symbol | means function restriction. A high
precision(C1,C2) means most states of C2 are also states of
C1. And a high recall(C1,C2) means most states of C1 are
also states of C2. Using both of them, the distance function
for Chu spaces is defined as follows.

A distance function Let Chu be the set of Chu spaces. The
distance function dc : Chu ×Chu→ [0,∞] is defined by

dc(C1,C2) = 1 − precision(C1,C2) + recall(C1,C2)
2

3.3 Properties of dc

Theorem 3.1: For all C1,C2 ∈ Chu, dc(C1,C2) ≥ 0.

Proof

dc(C1,C2) = 1 − precision(C1,C2) + recall(C1,C2)
2

= 1 −
|X1 |E∩X2 |E|
|X1 | +

|X1 |E∩X2 |E|
|X2 |

2

= 1 − |X2||X1|E ∩ X2|E| + |X1||X1|E ∩ X2|E|
2|X1||X2|

= 1 − (|X1| + |X2|)(|X1|E ∩ X2|E|)
2|X1||X2|

Now suppose |X1| ≥ |X2|, we have |X1| + |X2| ≤ 2|X1|
and |X1|E ∩ X2|E| ≤ |X2|. Then

dc(C1,C2) ≥ 1 − 2|X1||X2|
2|X1||X2| = 0

A similar argument can be given when |X1| ≤ |X2|.
Theorem 3.2: For all C1,C2 ∈ Chu, dc(C1,C2) =

dc(C2,C1).

Proof

dc(C1,C2) = 1 − precision(C1,C2) + recall(C1,C2)
2

= 1 −
|X1 |E∩X2 |E|
|X1 | +

|X1 |E∩X2 |E|
|X2 |

2

= 1 − |X2||X1|E ∩ X2|E| + |X1||X1|E ∩ X2|E|
2|X1||X2|

= 1 − (|X1| + |X2|)(|X1|E ∩ X2|E|)
2|X1||X2|

dc(C2,C1) = 1 − precision(C2,C1) + recall(C2,C1)
2

= 1 −
|X2 |E∩X1 |E|
|X2 | +

|X2 |E∩X1 |E|
|X1 |

2

= 1 − |X1||X2|E ∩ X1|E| + |X2||X2|E ∩ X1|E|
2|X1||X2|

= 1 − (|X1| + |X2|)(|X1|E ∩ X2|E|)
2|X1||X2|

= dc(C1,C2)

3.4 Examples

Consider the Chu spaces in Table 1.
Table 2 shows the distance between C1 and C2,

dc(C1,C2) = 3/5. Actually, only the initial state x1 and the
final state x5 of C1 have their counter parts in C2 (i.e. u1 and
u5). Hence, their distance are very far. From another per-
spective, since C1 is the sequential execution of a and b (i.e.
a; b) and C2 is the sequential execution of b and a (i.e. b; a),
they are quite different and then the distance between them
should be far. Hence, the results match with our intuition.

Table 3 shows the distance between C1 and C3 is 4/5,
which is a relatively large value in [0, 1]. C1 : a; b let a
executes first then b whereas C3 : a+b nondeterministically

Table 1 Chu Spaces C1 : a; b, C2 : b; a, C3 : a + b and C4 : a‖b.

C1 : a; b

C1 x1 x2 x3 x4 x5

a 0 ∠ 1 1 1
b 0 0 0 ∠ 1

C2 : b; a

C2 u1 u2 u3 u4 u5

a 0 0 0 ∠ 1
b 0 ∠ 1 1 1

C3 : a + b

C3 y1 y2 y3 y4 y5 y6 y7

a 0 0 ∠ 1 × × ×
b 0 × × × 0 ∠ 1

C4 : a‖b
C4 z1 z2 z3 z4 z5 z6 z7 z8 z9

a 0 ∠ 1 0 ∠ 1 0 ∠ 1
b 0 0 0 ∠ ∠ ∠ 1 1 1

Table 2 precision(C1,C2) and recall(C1,C2).

precision(C1,C2) =
|{x1, x5}|

|{x1, x2, x3, x4, x5}| = 2/5

recall(C1,C2) =
|{x1, x5}|

|{u1, u2, u3, u4, u5}| = 2/5

dc(C1,C2) = 1 − 2/5 + 2/5
2

= 3/5
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Table 3 precision(C1,C3) and recall(C1,C3).

precision(C1,C3) =
|{x1}|

|{x1, x2, x3, x4, x5}| = 1/5

recall(C1,C3) =
|{x1}|

|{u1, u2, u3, u4, u5}| = 1/5

dc(C1,C3) = 1 − 1/5 + 1/5
2

= 4/5

Table 4 precision(C1,C4) and recall(C1,C4).

precision(C1,C4) =
|{x1, x2, x3, x4, x5}|
|{x1, x2, x3, x4, x5}| = 1

recall(C1,C4) =
|{x1, x2, x3, x4, x5}|
|{z1, z2, . . . , z9}| = 5/9

dc(C1,C4) = 1 − 1 + 5/9
2

= 2/9

Table 5 Chu Spaces Ca : a, Cb : b and C1 : a; b.

Ca : a

Ca a1 a2 a3

a 0 ∠ 1

Cb : b

Cb b1 b2 b3

b 0 ∠ 1

C1 : a; b

C1 x1 x2 x3 x4 x5

a 0 ∠ 1 1 1
b 0 0 0 ∠ 1

chooses one of a and b to execute and cancel the other. Both
a and b can finish their job in C1, but only one can finish
in C3, therefore their distance should be very far from the
intuitional point of view. Thus, results also match with our
intuition in this case.

Table 4 shows the case for C1 and C4. C4 : a‖b is the
concurrent composition of a and b, in which both of them
can run independently. It is well known that sequential com-
position is just a special case of concurrent composition.
Therefore, C1 : a; b should be not so far from C4 : a‖b.
Thus the relatively small value 2/9 also matches with the
intuition.

3.5 Why Triangle Inequality Is Not Required

We argue that for a distance function between processes, the
triangle inequality is not required. Consider the Chu spaces
in Table 5. Ca and Cb are the execution of a and b, respec-
tively. C1 is the sequential execution of a and b.

From Table 6, we can see both dc(Ca,C1) and
dc(Cb,C1) are 3/10. It is also intuitive that the event a exe-
cutes from 0 to ∠ then to 1 in both Ca and C1. And event b
executes from 0 to ∠ then to 1 in both Cb and C1. Therefore,
the distance 3/10 is reasonable.

However, when it comes to Ca and Cb, they even do not
have any common events, therefore, their distance should be
the most far, i.e. dc(Ca,Cb) = 1. It then follows that

dc(Ca,Cb) = 1 ≥ dc(Ca,C1) + dc(C1,Cb) = 3/5

Table 6 dc(Ca,C1), dc(Cb,C1) and dc(Ca,Cb).

precision(Ca,C1) =
|{a1, a2, a3}|
|{a1, a2, a3}| = 1

recall(Ca,C1) =
|{a1, a2, a3}|

|{x1, x2, x3, x4, x5}| = 2/5

dc(Ca,C1) = 1 − 1 + 2/5
2

= 3/10

precision(Cb,C1) =
|{b1, b2, b3}|
|{a1, a2, a3}| = 1

recall(Cb,C1) =
|{b1, b2, b3}|

|{x1, x2, x3, x4, x5}| = 2/5

dc(Cb,C1) = 1 − 1 + 2/5
2

= 3/10

dc(Ca,C1) + dc(Cb,C1) = 3/5

precision(Ca,Cb) = 0

recall(Ca,Cb) = 0

dc(Ca,Cb) = 1 − 0 = 1

since dc(C1,Cb) = dc(Cb,C1) = 3/10.
Because the result of dc(Ca,C1), dc(Cb,C1) and

dc(Ca,Cb) all match with our intuition. It follows that it is
a natural result in comparing two Chu spaces processes that
the triangle inequality should not be satisfied by the distance
function.

4. Conclusions and Future Work

We present a distance function between Chu spaces. To our
best knowledge, it is the first one in the Chu spaces theory.
We show how this distance function can be used to compare
processes modeled by Chu spaces through typical examples.
And show why the triangle inequality is not applicable when
comparing processes’ behaviors. Since Chu spaces are ideal
new model of concurrency, we suppose our method can be
used as a base for further study of comparing concurrent
processes.

This work is partially supported by the National
Basic Research Program of China (973 Program)
No.2011CB302302.
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