
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011
1325

LETTER

Optimal Algorithms for Finding the Longest Path with Length and
Sum Constraints in a Tree∗

Sung Kwon KIM†a), Member

SUMMARY Let T be a tree in which every edge is associated with a
real number. The sum of a path in T is the sum of the numbers associated
with the edges of the path and its length is the number of the edges in it.
For two positive integers L1 ≤ L2 and two real numbers S 1 ≤ S 2, a path
is feasible if its length is between L1 and L2 and its sum is between S 1

and S 2. We address the problem: Given a tree T , and four numbers, L1,
L2, S 1 and S 2, find the longest feasible path of T . We provide an optimal
O(n log n) time algorithm for the problem, where n = |T |.
key words: length constraint, longest path, sum constraint, tree

1. Introduction

Let T be a tree. Each edge e ∈ T is associated with a real
number ze. For two nodes u, v ∈ T , let π(u, v) be the path
between them in T . The sum of the numbers associated
with the edges of π(u, v), denoted by s(u, v) =

∑
e∈π(u,v) ze,

is called the sum of π(u, v). The length of π(u, v), denoted
by l(u, v), is the number of edges in it. For two positive in-
tegers L1 ≤ L2 and two real numbers S 1 ≤ S 2, a path π(u, v)
is feasible if L1 ≤ l(u, v) ≤ L2 and S 1 ≤ s(u, v) ≤ S 2.

We address the following problem and provide an op-
timal O(n log n) time algorithm for it, where n = |T |.
TreeLFP (longest feasible path of a tree): Given a tree
T , and four numbers, L1, L2, S 1 and S 2, find the longest
feasible path of T .

Kim [5] considered the same problem on sequences,
and gave an optimal O(n log n) algorithm. Since a sequence
can be considered as a “linear” tree, he provided a solution
for a special case of TreeLFP.

In Sect. 2, we give a linear time algorithm for the case
where T is a tree with a special structure, which will be
described in detail later. In Sect. 3, we present an optimal
O(n log n) time algorithm for the problem.

2. Twin-Rooted Trees

Let T ′ and T ′′ be two rooted trees, and let g ∈ T ′ and g′ ∈
T ′′ be their roots. Let T be the tree obtained by connecting
T ′ and T ′′ with the addition of the edge ê = (g, g′). T is
twin-rooted. Each edge e ∈ T , including ê, is associated
with a real number ze. Furthermore, we are givenΛ′ andΛ′′,

Manuscript received September 13, 2010.
Manuscript revised January 19, 2011.
†The author is with School of Computer Science and Engineer-

ing, Chung-Ang University, Seoul, Korea.
∗This work was supported by the KRF grant funded by the

Korean government (MEST) (No.2009-0074076).
a) E-mail: skkim@cau.ac.kr.

DOI: 10.1587/transinf.E94.D.1325

which are lists of sum-length pairs from g to every node u of
T ′ and from g′ to every node u of T ′′, respectively, i.e., Λ′ =
{(s(g, u), l(g, u)) | u ∈ T ′ − {g}} and Λ′′ = {(s(g′, u), l(g′, u)) |
u ∈ T ′′ − {g′}}. We assume that Λ′ and Λ′′ are sorted in
increasing order of sums.

TwinLFP (longest feasible path of a twin-rooted
tree): Given a twin-rooted tree T = T ′ ∪ T ′′, four numbers,
L1, L2, S 1, S 2, and two sorted lists Λ′, Λ′′, find the longest
feasible path of T with restriction that one of the end nodes
of the path is in T ′ and the other is in T ′′.

In other words, among all pairs of nodes u ∈ T ′ and
v ∈ T ′′ such that S 1 ≤ s(u, v) ≤ S 2 and L1 ≤ l(u, v) ≤ L2,
find one that maximizes l(u, v).

To simplify TwinLFP, we first include ê into T ′′ by
letting Λ′′ = {(s(g, u), l(g, u)) | u ∈ T ′′} = {(s(g′, u) +
zê, l(g′, u) + 1) | u ∈ T ′′}. The new Λ′′ is also sorted.
Since π(u, v) for u ∈ T ′ and v ∈ T ′′ can be divided into
π(g, u) and π(g, v), the condition S 1 ≤ s(u, v) ≤ S 2 is equiv-
alent to S 1 ≤ s(g, u) + s(g, v) ≤ S 2, and the condition
L1 ≤ l(u, v) ≤ L2 is equivalent to L1 ≤ l(g, u) + l(g, v) ≤ L2.

Each pair (s(g, u), l(g, u)) of Λ′ can be represented as
a point in the plane whose x- and y-coordinates are s(g, u)
and l(g, u), respectively. Denote the set of these points by P.
Similarly, another set of points Q is obtained from Λ′′. The
Minkowski sum P ⊕ Q of P and Q is defined to be {p ⊕ q |
p ∈ P, q ∈ Q}, where p ⊕ q = (xp + xq, yp + yq).

TwinLFP can be rewritten: Given P and Q, find a point
of P ⊕ Q that maximizes the y-coordinate among all points
of P ⊕ Q whose x-coordinates are between S 1 and S 2 and
whose y-coordinates are between L1 and L2.

This is one of the constrained Minkowski sum prob-
lems in which we are to find a point maximizing an objec-
tive function among the points of P ⊕ Q which satisfy cer-
tain constraints. The constrained Minkowski sum problems
were considered by Bernholt et al. [1]. In our problem, four
constraints, namely, two x-bounds and two y-bounds, are in-
volved. A method by Bernholt et al. [1] can be used to solve
the problem in O((|P| + |Q|) log(|P| + |Q|)) time.

If S 1 ≤ (minimum x-coordinate of P ⊕ Q), then the
x-lower bound is ineffective in the sense that it can be ig-
nored. A linear-time algorithm for this case will be given
in Sect. 2.1. Section 2.2 will deal with the case of effective
x-lower bounds and present a linear-time algorithm.

2.1 Ineffective x-Lower Bounds

Since S 1 is ineffective, TwinLFP becomes: Given P and Q,

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

1326
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

find a point of P ⊕ Q maximizing the y-coordinate among
all points of P ⊕ Q whose x-coordinates are less than or
equal to S 2 and whose y-coordinates are between L1 and L2.
Three bounds, i.e, an x-upper bound, and y-upper and -lower
bounds, are involved. Our approach will first find, among all
points of P ⊕ Q that satisfy two bounds, the x-upper and y-
upper bounds, one that maximizes the y-coordinate. If the
point also satisfies the third bound, the y-lower bound, then
the point is one that we want to find. Otherwise, no point of
P ⊕ Q satisfies the three bounds.

Since both Λ′ and Λ′′ are sorted in an increasing order
of sums, s(g, u), both P and Q are sorted in an increasing
order of x-coordinates. Let P = {(ai, bi) | 1 ≤ i ≤ m} with
a1 ≤ · · · ≤ am where m = |Λ′|, and Q = {(c j, d j) | 1 ≤
j ≤ n} with c1 ≤ · · · ≤ cn, where n = |Λ′′|. TwinLFP with
an ineffective x-lower bound is rephrased as: Given P and
Q, among all pairs of i and j such that ai + c j ≤ S 2 and
L1 ≤ bi + d j ≤ L2, find one that maximizes bi + d j.

Some points of P and Q may be deleted without affect-
ing final solutions. If ai ≤ ai′ and bi = bi′ for some i, i′,
then the point (ai′ , bi′) can be deleted from further consid-
eration. Similarly, if c j ≤ c j′ and d j = d j′ for some j, j′,
then the point (c j′ , d j′) can be deleted. So, we may assume
that the y-coordinates of the points of P are all distinct, i.e.,
{b1, . . . , bm} = {1, . . . ,m}, and similarly, the y-coordinates of
the points of Q are distinct, i.e., {d1, . . . , dn} = {1, . . . , n}.

For 1 ≤ j ≤ n, compute the largest integer i(j) such
that ai(j) + c j ≤ S 2. It is easy to see that i(1) ≥ · · · ≥ i(n) and
they can be computed in linear time. Then, every pair j and
i ∈ {1, . . . , i(j)} satisfy the x-upper bound, ai + c j ≤ S 2.

Next, for each j, find i that maximizes bi+d j among all
i ∈ {1, . . . , i(j)} such that bi+d j ≤ L2. Let i∗(j) denote this i.
In other words, i∗(j) for each j is the integer i that maximizes
bi among all i ∈ {1, . . . , i(j)} such that bi ≤ L2 − d j. Among
all pairs (i∗(j), j), find one (i∗(ĵ), ĵ) maximizing bi∗(j) + d j.
If bi∗(ĵ) + d ĵ ≥ L1, then the pair (i∗(ĵ), ĵ) is the one we want
to find. Otherwise, we conclude that no pair i, j satisfies
ai + c j ≤ S 2 and L1 ≤ bi + d j ≤ L2.

We are to compute i∗(j) for each j. Make a blue point
(i, bi) for each 1 ≤ i ≤ m, and a red point (i(j), L2 − d j)
for each 1 ≤ j ≤ n. A point is dominated by another point
if the x- and y-coordinates of the former are less than or
equal to those of the latter, respectively. For each red point
(i(j), L2 − d j), find its (blue) neighbor, which is a blue point
with maximum y-coordinate among all blue points (i, bi)
dominated by the red point. Then, the x-coordinate of the
neighbor is i∗(j).

Let V = {vi = (xi, yi) | 1 ≤ i ≤ k} be a y-sorted list of
the blue and red points in P ∪ Q such that y1 ≤ · · · ≤ yk,
where k = m+ n. If a blue point and a red point have a same
y-coordinate, then the blue one is placed before the red one.
Since, as mentioned earlier, {b1, . . . , bm} = {1, . . . ,m} and
{d1, . . . , dn} = {1, . . . , n}, the sorting can be done in O(m+n)
time. Let (vσ1 , . . . , vσk) be a x-sorted list of V such that xσ1 ≤
· · · ≤ xσk . Again, a blue point appears before a red point if
they have a same x-coordinate. This sorting also takes linear
time as i(1) ≥ . . . ≥ i(n) is already sorted. An integer i is

K = (0, 1, . . . , k);
for j = k to 1
if σ j is red

β(j) = FIND(σ j); (∗)
else

UNION(predecessor(σ j), σ j);
delete σ j from K;

Fig. 1 Algorithm for computing β(j).

blue (red) if vi is blue (red).
Consider the sequence (σ1, . . . , σk). For each j such

that σ j is red, compute

β(j) = max{σi | i < j, σi < σ j, and σi blue } (1)

The condition i < j implies that xσi ≤ xσ j , and the
condition σi < σ j implies that yσi ≤ yσ j . These two to-
gether imply that vσi is dominated by vσ j . Maximizing σi

corresponds to maximizing the y-coordinate. So, vβ(j) is the
neighbor of vσ j . The problem of computing β(j) was stud-
ied by Kim [5] and an O(k · α(k)) time algorithm was given,
where α(k) is the inverse of the Ackermann function [2],
[10]. We show that a careful analysis of the algorithm by
Kim improves time complexity to O(k).

To compute β(j) for all j with σ j red, Algorithm in
Fig. 1 will be used. K, initially K = (0, 1, . . . , k), is a sorted
list of the blue and red integers, where 0 is assumed to be
blue. While scanning (σ1, . . . , σk) backward, we compute
β(j) if σ j is red, and delete σ j from K, otherwise.

K will be implemented as a combined data structure of
a doubly linked list D and a data structure for disjoint sets
S . The blue integers are stored in D. The red integers are
partitioned into disjoint sets, each of which is implemented
as a rooted tree. S is the collection of the rooted trees. The
root of each rooted tree points to exactly one blue integer of
D, the name of the set. The name of a set is not an element
of the set.

Initially, the blue integers, in an increasing order, are
stored into D. Each blue integer k′ will be associated with a
(possibly empty) set whose name is k′ in the following way:
If k′ is the largest blue integer in K, then the red integers
larger than it are all contained in the set. Otherwise, if k′′ >
k′ is the blue integer such that no blue integer lies between
k′ and k′′, the red integers between them are all contained in
the set. The sets created in this way are disjoint.

A set and its name satisfy the following property.
Property of the name: The name of a set is the largest blue
integer of K that is less than the red integers of the set.

As the algorithm in Fig. 1 proceeds, sets are merged.
If σ j is blue, it is deleted from D. Before deleting it, its
set is merged into the set of its predecessor in D by doing
UNION(predecessor(σ j), σ j). The predecessor of σ j is the
largest integer that is less than σ j in D. The predecessor of
σ j will be the name of the new set. Deleting σ j itself from
D can be done in constant time as D is a doubly linked list.
It is easy to see that the property of the name still holds for
the new set and its name. Note that σ j and predecessor(σ j)
are next to each other in D.

LETTER
1327

Computing β(j) for red σ j in (∗) is done by FINDing
the name of the set to which σ j belongs. Whenever (∗) is
executed, all blue integers in (σ j+1, . . . , σk) have been re-
moved from K. So, if we let σi0 be the name of the set, then
i0 < j. This together with the property of the name satisfies
the definition of β(j) of (1) and thus we have that β(j) = σi0 .
The algorithm correctly computes β(j) for all j with σ j red.

As there are k operations of UNIONs and FINDs, the
algorithm takes O(k · α(k)) time [2], [10]. The sequence
(σ1, . . . , σk) is given before the algorithm starts. Each of
the UNIONs performed by the algorithm is of the form
UNION(σ j′ , σ j), where σ j′ and σ j are adjacent each other
in D. So, the order of the UNIONs can be predetermined
by scanning the blue integers of (σk, . . . , σ1). This corre-
sponds to the static tree set union of Gabow and Tarjan [3].
They showed that k UNIONs and FINDs in the static tree
set union can be done in O(k) time. So, the time complexity
is reduced to O(k).

We have shown that TwinLFP with an ineffective x-
lower bound can be solved in linear time.

Lemma 1: TwinLFP with an ineffective x-lower bound
can be solved in linear time.

2.2 Effective x-Lower Bounds

TwinLFP with an effective x-lower bound is: Given P and
Q, find a point of P⊕Q maximizing the y-coordinate among
all points of P⊕Q whose x-coordinates are between S 1 and
S 2 and whose y-coordinates are between L1 and L2.

Using a method by Bernholt et al. [1], the problem can
be solved in O((m + n) log(m + n)) time as four constraints
are involved. We show that this can be reduced to O(m+ n).
We borrow an idea from Sect. 4.1 of Bernholt et al. [1].

A strip in the plane is the region bounded by two ver-
tical lines. The width of a strip is the distance between its
boundaries. Let Σ be the strip whose boundaries are x = S 1

and x = S 2, and let δ = S 2 − S 1 be its width. We say that a
strip covers a point if the point is inside the strip.

Find a minimum number of disjoint strips with width
δ/4 that together cover P. This can be done in greedy man-
ner by scanning P from left to right. Assume that m′ strips
have been found. Let Pi be the subset of P that is covered
by the i-th strip for 1 ≤ i ≤ m′. Then, P1, . . . , Pm′ is a par-
tition of P. Similarly, find a partition of Q, Q1, . . . ,Qn′ . We
compute a solution for Pi⊕Qj for every pair of i, j such that
1 ≤ i ≤ m′ and 1 ≤ j ≤ n′. The best of these solutions is the
final solution for P ⊕ Q.

Consider Pi ⊕ Qj for some i, j. The points of Pi ⊕ Qj

are covered by Σi, j, a strip of width δ/2, where Σi, j is the
Minkowski sum of the two strips of width δ/4 that covered
Pi and Qj in the previous paragraph. Since Σ is δ wide and
Σi, j is δ/2 wide, the possible relative positions of Σi, j with
respect to Σ are:

(1) Σi, j does not intersect Σ.
(2) Σi, j is totally inside Σ.
(3) The left boundary of Σ is contained in Σi, j.

(4) The right boundary of Σ is contained in Σi, j.
The pairs of Pi and Qj falling under case (1) do not

need to be further considered and thus are excluded. Case
(4) corresponds to a case with an ineffective x-lower bound:
Given Pi and Qj, find a point of Pi ⊕ Qj maximizing the y-
coordinate among all points of Pi ⊕Qj whose x-coordinates
are less than or equal to S 2 and whose y-coordinates are
between L1 and L2. Case (4) can be solved in linear time,
i.e, O(|Pi| + |Qj|) time by Lemma 1. Case (3) is symmetric
to case (4), and case (2) corresponds to a case with no x-
bounds and thus is easier to solve than case (4). So, each of
cases (2) and (3) can also be solved in O(|Pi| + |Qj|) time.

To determine how many out of m′n′ pairs of Pi and Qj

fall under cases (2)–(4), let i(j) for each j be the smallest
integer i such that Σi, j satisfies case (3). Since Σi, j ∩ Σi+1, j is
δ/4 wide for any i, six strips Σi(j), j, . . . ,Σi(j)+5, j are sufficient
to fully contain Σ. Thus, each subset Qj is paired with at
most six subsets Pi(j), . . . , Pi(j)+5.

Since
∑n′

j=1
∑i(j)+5

i=i(j) (|Pi|+ |Qj|) ≤ 6(m+n), TwinLFP can
be solved in linear time.

Lemma 2: TwinLFP can be solved in linear time.

3. General Trees

Let T be a (general) tree. T can be rooted by selecting a
node of T and making it the root. A rooted tree can be
transformed into a binary tree by adding dummy nodes and
edges so that the longest feasible path of the tree can be in-
duced from the longest feasible path of the binary tree [9],
[11]. Each dummy edge has length zero and ze = 0.

From now on, we assume that T is a binary tree with
n nodes. In T , each edge is either original (existed before
the transformation) or dummy (added in the transformation).
Note that each original edge has length one and each dummy
edge has length zero. The length of a path π(u, v) in T is
defined to be the number of the original edges of π(u, v).

If a node is deleted from T , then three subtrees T1, T2,
T3 (some may be empty) are left. A node is a centroid
of T if its deletion from T leaves three subtrees such that
|Ti| ≤ |T |/2 for i = 1, 2, 3. A tree can have at most two cen-
troids and, if there are two centroids, they are adjacent [7].
Centroids of a tree can be found in linear time [8], [11].

Let g be the centroid of T (take either one when two
centroids exist). Assume that |T1| ≥ |T2| and |T1| ≥ |T3|.
Let g′ be the node of T1 that is adjacent to g. The edge
ê = (g, g′) is the wire of T . Deleting the wire, but not its end
nodes, from T leaves two subtrees T ′, T ′′ such that g ∈ T ′
and g′ ∈ T ′′.

TreeLFP on T is recursively solved as follows:
(i) Divide T into T ′ and T ′′ by deleting the wire.
(ii) Recursively solve TreeLFP on T ′ and on T ′′.
(iii) Combine the subsolutions from (ii) to find a solu-

tion for T .
After step (ii), we have the longest feasible path π′ of

T ′, and the longest feasible path π′′ of T ′′. In step (iii), we
need to find the longest feasible path π′′′ such that one of

1328
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.6 JUNE 2011

its end nodes is in T ′ and the other is in T ′′, and return the
longest one of {π′, π′′, π′′′} as the longest feasible path of T .

To locate π′′′, we apply Lemma 2 to T = T ′ ∪ T ′′,
which is twin-rooted at ê = (g, g′). The sorted lists Λ′ and
Λ′′ required by the algorithm can be obtained in O(|T ′|) and
O(|T ′′|) time, respectively, by the method of Kim [6].

One point we need to be careful about when apply-
ing the algorithm of Sect. 2 is l(g, u): Every edge of T in
Sect. 2 has length one, whereas each edge of T here has ei-
ther length one (original edge) or length zero (dummy edge).
Only the original edges have to be taken into account in
computing l(g, u).

Theorem 1: TreeLFP can be solved in optimal O(n log n)
time.

Proof: Correctness of our TreeLFP algorithm is obvious
from our explanation given so far. Let A(n) be the time com-
plexity of the algorithm on a size n tree T . Step (i) takes
linear time, and step (iii) also takes linear time by Lemma 2.
Then, A(n) ≤ A(n′) + A(n′′) + O(n), where n′ = |T ′| and
n′′ = |T ′′|. By the definitions of a centroid and a wire,
we have 1

3 n ≤ n′, n′′ ≤ 2
3 n. So, A(n) = O(n log n). An

Ω(n log n) lower bound was proved in [4]. �

References

[1] T. Bernholt, F. Eisenbrand, and T. Hofmeister, “Constrained

minkowski sums: A geometric framework for solving interval prob-
lems in computational biology efficiently,” Discret. Comput. Geom.,
vol.42, no.1, pp.22–36, 2009.

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, and C. Stein, Introduction
to Algorithms, 2nd ed., MIT Press and McGraw-Hill, 2001.

[3] H. Gabow and R.E. Tarjan, “A linear-time algorithm for a special
case of disjoint set union,” 15th ACM STOC, pp.246–251, 1983.

[4] Y.H. Hsieh, C.C. Yu, and B.F. Wang, “Optimal algorithms for the
interval location problem with range constraints on length and av-
erage,” IEEE-ACM Trans. Comput. Biol. Bioinform., vol.5, no.2,
pp.281–290, 2008.

[5] S.K. Kim, “Optimal online and offline algorithms for finding longest
and shortest subsequences with length and sum constraints,” IEICE
Trans. Inf. & Syst., vol.E93-D, no.2, pp.250–256, Feb. 2010.

[6] S.K. Kim, “Optimal algorithms for finding density-constrained
longest and heaviest paths in a tree,” IEICE Trans. Inf. & Syst.,
vol.E93-D, no.11, pp.2989–2994, Nov. 2010.

[7] D.E. Knuth, The Art of Computer Programming, Fundamental Al-
gorithms, 2nd ed., Addison-Wesley, 1973.

[8] N. Megiddo, A. Tamir, E. Zemel, and R. Chandrasekaran, “An
O(n log2 n) algorithm for the k-th longest path in a tree with ap-
plications to location problems,” SIAM J. Comput., vol.10, no.2,
pp.328–337, 1981.

[9] A. Tamir, “An O(pn2) algorithm for the p-median and related prob-
lems on tree graphs,” Oper. Res. Lett., vol.19, pp.59–64, 1996.

[10] R.E. Tarjan, “Efficiency of a good but not linear set union algo-
rithm,” J. ACM, vol.22, no.2, pp.215–225, 1975.

[11] B.Y. Wu, K.M. Chao, and C.Y. Tang, “An efficient algorithm for the
length-constrained heaviest path problem on a tree,” Inf. Process.
Lett., vol.69, pp.63–67, 1999.

