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Improving the Accuracy of Least-Squares Probabilistic Classifiers

Makoto YAMADA†a), Masashi SUGIYAMA†,††, Members, Gordon WICHERN†††,
and Jaak SIMM†, Nonmembers

SUMMARY The least-squares probabilistic classifier (LSPC) is a
computationally-efficient alternative to kernel logistic regression. How-
ever, to assure its learned probabilities to be non-negative, LSPC involves
a post-processing step of rounding up negative parameters to zero, which
can unexpectedly influence classification performance. In order to mitigate
this problem, we propose a simple alternative scheme that directly rounds
up the classifier’s negative outputs, not negative parameters. Through ex-
tensive experiments including real-world image classification and audio
tagging tasks, we demonstrate that the proposed modification significantly
improves classification accuracy, while the computational advantage of the
original LSPC remains unchanged.
key words: least-squares probabilistic classifier, kernel logistic regression,
density ratio, PASCAL VOC 2010, freesound

1. Introduction

The least-squares probabilistic classifier (LSPC) [1] is an
efficient non-linear probabilistic classification method that
learns class-posterior probabilities. In LSPC, a linear com-
bination of kernels centered at training points is employed
as a model of class-posterior probabilities. Then the LSPC
model is trained so that the squared difference to the true
class-posterior probability is minimized. An advantage of
this linear least-squares formulation is that the global op-
timal solution can be obtained analytically (cf. kernel lo-
gistic regression [2], [3], which can be used for similar pur-
poses, but requires iterative optimization such as Newton’s
method). However, since LSPC involves a post-processing
step of rounding up negative model parameters to zero for
assuring the non-negativity of probability estimates, learned
class-posterior probabilities can change unexpectedly.

In order to mitigate this problem, we propose a sim-
ple alternative scheme that directly rounds up the classi-
fier’s negative outputs, as opposed to its negative parame-
ters. While the original parameter-rounding scheme influ-
ences learned class-posterior probabilities globally through
the change of parameters for basis functions, the proposed
output-rounding scheme confines the influence to only those
points where probabilities are negative (see Fig. 1, which
will be explained in detail later). This localization effect
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is expected to prevent the degradation of classification per-
formance. Through extensive experiments on real-world
image classification and automatic audio tagging tasks, we
demonstrate that the proposed modification to LSPC sig-
nificantly contributes to improving classification accuracy,
while maintaining the computational advantage of the orig-
inal LSPC algorithm.

2. Least-Squares Approach to Probabilistic Classifica-
tion

In this section, we review the least-squares probabilistic
classifier∗ (LSPC) [1].

2.1 Problem Formulation

Suppose we are given n paired samples of input x ∈ X ⊂ Rd

and its label y ∈ {1, . . . , c} (c denotes the number of classes):

{(xi, yi)}ni=1,

which are independently drawn from a joint probability
distribution with density p(x, y). Our goal is to esti-
mate the class-posterior probability p(y|x) from the samples
{(xi, yi)}ni=1. The class-posterior probability allows us to clas-
sify a test sample x to the class ŷ with confidence p(̂y|x):

ŷ := argmax
y

p(y|x).

Let us denote the marginal density of x by p(x). Then the
class-posterior probability can be expressed as

p(y|x) =
p(x, y)
p(x)

, (1)

where we assume p(x) > 0 for all x ∈ X. This density-ratio
expression is utilized in the derivation of LSPC.

∗More precisely, the LSPC method we are reviewing here was
referred to as ‘LSPC (full)’ in the original LSPC paper [1], where
‘full’ means that all kernels are used for learning (cf. Eq. (2)). On
the other hand, a computationally more efficient variant of LSPC
where irrelevant kernels are removed was also proposed in the orig-
inal paper. However, since the range of application of this model
simplification idea is limited to localized kernels such as Gaus-
sian kernels, we decided to adopt the more general ‘LSPC (full)’
method in this paper. We note that the results we present in this
paper can also be applied to the simplified LSPC method.
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(a) p(y = 1|x) as a function of x. (b) α̃1 as a function of sample index l.

Fig. 1 (a): True class-posterior probability, and class-posterior probabilities estimated by LSPC-new
(negative outputs are rounded up to zero), LSPC (negative parameters are rounded up to zero), and
LSPC’ (negative parameters are used as they are). (b): The parameter values of α̃1, where the training
samples were sorted as x1 ≤ x2 ≤ · · · ≤ x500.

2.2 Least-Squares Probabilistic Classifier

Let us model the class-posterior probability p(y|x) for class
y by the following linear model:

n∑
l=1

αy,lφl(x) = α�y φ(x),

where � denotes the transpose of a matrix or a vector and
αy = (αy,1, . . . , αy,n)� are parameters to be learned from
training samples. The basis function is written as

φ(x) = (k(x, x1), . . . , k(x, xn))�, (2)

where

k(x, x′) = exp

(
−‖x − x′‖2

2σ2

)

is the Gaussian kernel with width σ.
Then, an empirical and regularized solution of LSPC is

given as

α̃y := argmin
αy

[
1
2
α�y Ĥαy − ĥ�y αy + λα

�
y αy

]
, (3)

where λα�y αy for λ > 0 is a regularizer, and

Ĥ :=
1
n

n∑
i=1

φ(xi)φ(xi)
�, ĥy :=

1
n

∑
i:yi=y

φ(xi).

Since Eq. (3) is an unconstrained quadratic minimization
problem, the global optimal solution α̃y can be obtained as

α̃y = (Ĥ + λIn)−1 ĥy,

where In denotes the n-dimensional identity matrix.
By definition, the class-posterior probability should be

non-negative. However, α̃y obtained above can take negative

values. In order to assure the learned probabilities to be non-
negative, the negative elements in α̃y are rounded up to zero
as follows:

α̂y := max(0n, α̃y),

where 0n denotes the n-dimensional vector with all zeros,
and the ‘max’ operation for vectors is applied in an element-
wise manner.

Finally, given a test input point, an estimator of the
class-posterior probability is obtained via normalization as

p̂(y|x) =
α̂�y φ(x)∑c

y′=1 α̂
�
y′φ(x)

. (4)

3. Improving Accuracy of LSPC

In the original LSPC paper, it was claimed that the learned
parameters α̃y are usually non-negative when the basis func-
tions and the regularization parameter value are chosen ap-
propriately, e.g., by cross-validation. In this section, we
point out that the above claim is not always true through a
numerical example, and illustrate that rounding up negative
parameters can actually have strong influence on the learned
class-posterior probabilities. Then we describe a simple al-
ternative scheme for assuring the learned probabilities to be
non-negative, and illustrate its usefulness.

3.1 Influence of Rounding-Up Negative Parameters

First, we illustrate how the class-posterior probabilities are
learned by LSPC, and investigate the influence of rounding-
up negative model parameters.

Let us consider a one-dimensional binary classification
problem (i.e., d = 1 and c = 2). We independently draw
samples in each class from the following class-conditional
densities:

p(x|y = 1) = N (x; 0, 1) ,



LETTER
1339

p(x|y = 2) =
1
2

N (x;−2, 1) +
1
2

N (x; 2, 1) ,

where N(x; μ, τ2) denotes the Gaussian density with mean
μ and variance τ2. We used 250 training samples per class
(500 samples in total), and 250 test samples per class (500
samples in total). The kernel width σ and regularization
parameter λ in LSPC were chosen based on 2-fold cross-
validation.

Let p̃(y|x) be an estimator of the class-posterior proba-
bility for α̃y (i.e., without the rounding-up operation), which
we refer to as LSPC’:

p̃(y|x) =
α̃�y φ(x)∑c

y′=1 α̃
�
y′φ(x)

. (5)

Note that the output of LSPC’ is not necessarily a probabil-
ity since it can be negative or larger than one. Figure 1 (a)
shows the true class-posterior probability and the class-
posterior probabilities estimated by LSPC’ (4) and LSPC’
(5). The graph shows that, without the rounding-up opera-
tion, the class-posterior probability estimates take negative
values around x ∈ (−5,−3) and x ∈ (3, 5) in Fig. 1 (a). On
the other hand, the LSPC solution always takes non-negative
values thanks to the rounding-up operation. However, the
LSPC estimate of the class-posterior probability are signifi-
cantly different from the true class-posterior probability.

In order to investigate the effect of rounding-up nega-
tive parameters to zero in more detail, we plotted the values
of α̃1 in Fig. 1 (b), where the training samples were sorted
as x1 ≤ x2 ≤ · · · ≤ x500. The graph shows that many
parameters actually took negative values, even though the
estimate of class-posterior probabilities take negative val-
ues only locally. This shows that, rounding-up negative pa-
rameters to zero can actually have a strong influence on the
learned class-posterior probability even when negative val-
ues are taken only locally.

3.2 Rounding-Up Negative Outputs

In order to overcome the above drawback, we propose to
locally modify the solution as follows:

p(y|x = x̃) =

⎧⎪⎪⎨⎪⎪⎩
1
Z max(0, α̃�y φ(x̃)) if Z > 0,
1
c otherwise,

(6)

where Z =
∑c

y′=1 max(0, α̃�y′φ(x̃)). Below, we refer to this
method as ‘LSPC-new’.

Figure 1 (a) also includes the class-posterior probabil-
ities estimated by LSPC-new. As shown in the graph, the
class-posterior probability estimated by LSPC-new and the
true-class posterior probability have almost the same pro-
file. On the other hand, the class-posterior probability ob-
tained by the original LSPC has been strongly influenced by
rounding-up negative parameters to zero.

4. Experiments

In this section, we compare the performance of LSPC-new,

LSPC, and kernel logistic regression (KLR) on a real-world
image classification task using the PASCAL Visual Object
Classes (VOC) 2010 dataset [4] and a real-world automatic
audio-tagging task using te data collected by the Freesound
project [5]. All tuning parameters (i.e., the kernel width σ
and regularization parameter λ) were chosen based on 2-fold
cross-validation. We used the MATLAB R© implementation
of KLR included in the ‘minFunc’ package [6]. Compari-
son is carried out in terms of classification performance and
CPU computation time required for training each classifier
after the Gaussian width and the regularization parameter
are chosen by cross-validation.

4.1 PASCAL VOC 2010 Datasets

The VOC 2010 dataset consists of 20 binary classification
tasks of identifying the existence of a person, aeroplane,
etc. in each image. The total number of images in the dataset
is 11319, and we used 1000 randomly chosen images for
training and the rest for testing.

We first extracted visual features from each image with
the Speed Up Robust Features (SURF) algorithm [7]. We
then ran the k-means clustering algorithm [8] in the SURF
space and obtained 500 cluster centers as visual words.
Then, we computed a 500-dimensional bag-of-feature vec-
tor by counting the number of visual words in each image.

When evaluating the image classification performance,
it is important to take into account both the false positive
rate and true positive rate. Here we adopted the area under
the ROC curve (AUC) as our error metric [9]. We randomly
sampled the training and test data 50 times, and computed
the means and standard deviations of the AUC.

Table 1 shows the mean AUC values (with standard de-
viations in brackets) over 50 trials. The best method in terms
of the mean AUC and comparable methods according to the
t-test at the significance level 5% are specified by bold face.
The results showed that LSPC-new outperforms LSPC for
all tasks and is slightly more accurate than KLR with much
less computational cost.

4.2 Freesound Datasets

The Freesound dataset [5] consists of various audio files
annotated with word tags such as ‘people’, ‘noisy’, and
‘restaurant’. Note that such tags are not exclusive, mean-
ing that each audio file can have multiple tags.

We extracted audio files from among all files in the
dataset containing any of the 50 most used tags and between
3–60 seconds in length. We then used 180 randomly se-
lected uncompressed audio files with a sampling rate greater
than 44.1 kHz as our training set, and 1500 randomly se-
lected audio files which were stored in a compressed format
for testing. We used the hidden Markov kernel [10], instead
of the simple Gaussian kernel due to the sequential nature
of audio files. We repeat the audio-tagging experiment 50
times, by changing the random seed.

We computed the AUC value over all 1500 test samples
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Table 1 Mean AUC values (with standard deviations in brackets) over 50
trials for the PASCAL VOC dataset. The best method in terms of the mean
AUC and comparable methods according to the t-test at the significance
level 5% are specified by bold face.

Datasets LSPC-new LSPC KLR

Aeroplane 82.6 (1.0) 78.8 (1.3) 83.0(1.3)
Bicycle 77.7 (1.7) 60.0(12.4) 76.6(3.4)
Bird 68.7 (2.0) 49.1 (5.7) 70.8(2.2)
Boat 74.4 (2.0) 62.1 (4.1) 72.8(2.6)
Bottle 65.4 (1.8) 63.0 (2.0) 62.1(4.3)
Bus 85.4 (1.4) 80.3 (2.6) 85.6(1.4)
Car 73.0 (0.8) 69.0 (2.6) 72.1(1.2)
Cat 73.6 (1.4) 68.6 (5.0) 74.1(1.7)
Chair 71.0 (1.0) 64.8 (2.0) 70.5(1.0)
Cow 71.7 (3.2) 53.5 (9.0) 69.3(3.6)
Diningtable 75.0 (1.6) 69.1 (2.4) 71.4(2.7)
Dog 69.6 (1.0) 58.6 (6.0) 69.4(1.8)
Horse 64.4 (2.5) 54.6 (4.4) 61.2(3.2)
Motorbike 77.0 (1.7) 73.2 (2.5) 75.9(3.3)
Person 67.6 (0.9) 65.9 (1.2) 67.0(0.8)
Pottedplant 66.2 (2.6) 58.0 (4.6) 61.9(3.2)
Sheep 77.8 (1.6) 57.6(12.9) 74.0(3.8)
Sofa 67.4 (2.7) 66.1 (1.7) 65.4(4.6)
Train 79.2 (1.3) 67.0 (7.7) 78.4(3.0)
Tvmonitor 76.7 (2.2) 70.1 (2.4) 76.6(2.3)
Average 73.2 — 64.5 — 71.9 —
Train time [sec] 0.7 — 0.7 — 24.6 —

Table 2 Mean AUC values (with standard deviations in brackets) over
all audio files for the Freesound dataset.

LSPC-new LSPC KLR

AUC 70.1 (9.6) 64.4 (9.5) 66.7 (10.3)
Train time [sec] 0.005 0.005 0.612

for each tag, and this was averaged over all 50 trials and all
50 tags. Table 2 summarizes the performance of LSPC-new,
LSPC, and KLR. The results show that LSPC-new is more
accurate than LSPC with comparable computation time, and
LSPC-new provides comparable classification performance
to KLR with significantly less computation time.

5. Conclusions

Least-squares probabilistic classifier (LSPC) has been
demonstrated to be a computationally-efficient alternative
to kernel logistic regression (KLR). However, since LSPC
involves a post-processing step of rounding-up negative

parameters to zero, its performance can be degraded if many
parameters take negative values. In this paper, we pro-
posed not to round-up negative parameters, but to directly
round-up negative outputs of LSPC. This localizes the in-
fluence of the rounding-up operation on the learned class-
posterior probabilities. Through extensive experiments in-
cluding real-world image classification and audio tagging
tasks, we showed that the proposed modification signifi-
cantly improves classification accuracy, while the compu-
tational advantage of LSPC remains unchanged.
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