
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011
1369

PAPER

A Fast Divide-and-Conquer Algorithm for Indexing Human
Genome Sequences∗

Woong-Kee LOH†a), Yang-Sae MOON††, Members, and Wookey LEE†††, Nonmember

SUMMARY Since the release of human genome sequences, one of the
most important research issues is about indexing the genome sequences,
and the suffix tree is most widely adopted for that purpose. The tradi-
tional suffix tree construction algorithms suffer from severe performance
degradation due to the memory bottleneck problem. The recent disk-based
algorithms also provide limited performance improvement due to random
disk accesses. Moreover, they do not fully utilize the recent CPUs with
multiple cores. In this paper, we propose a fast algorithm based on ‘divide-
and-conquer’ strategy for indexing the human genome sequences. Our al-
gorithm nearly eliminates random disk accesses by accessing the disk in
the unit of contiguous chunks. In addition, our algorithm fully utilizes the
multi-core CPUs by dividing the genome sequences into multiple partitions
and then assigning each partition to a different core for parallel process-
ing. Experimental results show that our algorithm outperforms the previous
fastest DIGEST algorithm by up to 10.5 times.
key words: human genome sequences, indexing, suffix tree, memory bot-
tleneck problem, divide-and-conquer, parallel processing

1. Introduction

Due to recent advances in bio technology, genome se-
quences of diverse organisms including human beings have
been collected into databases. The Human Genome Project
(HGP), which were initiated in 1990, released the human
DNA sequences of approximately 3 Gbp ∗∗ size in 2003.
Since the release, a lot of researches are under their way
for harnessing the genome sequences. An essential research
issue is about indexing large-scale genome sequences for
efficient retrieving of genome subsequences of interest [1],
[3], [7], [11], [18], [19], [22]. The suffix tree is most widely
adopted for indexing genome sequences [3]–[5], [11], [18],
[22]. In general, a suffix tree is created for a given string (or
sequence) X and enables efficient exact matching and ap-
proximate matching on substrings of X [9]. We explain the
suffix tree in more detail in Sect. 2.
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∗∗bp stands for ‘base pair.’ There are four bases, namely ade-
nine (A), cytosine (C), guanine (G), and thymine (T).

A lot of algorithms have been proposed for efficient
construction of the suffix tree. Ukkonen’s algorithm [23] is
the most famous one which, given a string of length n, con-
structs the corresponding suffix tree in O(n) time. The al-
gorithm implicitly assumes that n is small enough so that
the input string and the output suffix tree can be loaded
in the main memory as a whole. However, genome se-
quences could be several million or billion times larger than
the strings dealt with by the traditional suffix tree construc-
tion algorithms such as Ukkonen’s algorithm. Moreover, the
suffix tree is about 10 ∼ 60 times larger than the input se-
quence [3], [18], [22]. Hence, the application of Ukkonen’s
algorithm for large-scale genome sequences should cause
severe disk swap in and out, which is generally called mem-
ory bottleneck problem or thrashing [3]–[5], [11], [18], [22].
Actually, TOP-Q algorithm [4], an extension of Ukkonen’s
algorithm, took seven hours for constructing the suffix tree
for genome sequences of 40 Mbp, which is much smaller
than the human genome sequences, and it could not finish
for genome sequences of 60 Mbp [18].

For coping with the memory bottleneck problem, a few
disk-based algorithms have been proposed for construct-
ing the suffix tree [3], [5], [11], [18], [22]. Disks have much
larger size than main memory at the lower cost; however,
they require much longer access time up to several hun-
dred times. Hence, the disk-based algorithms are designed
mainly to maximize the main memory utilization and the
disk access efficiency. However, these algorithms have a
common drawback that they incur random disk accesses.
The disk access performance is dependent more on access
patterns than access amount; even for accessing the same
amount, the random disk access requires much more time
than the sequential disk access. Thus, the disk-based algo-
rithms have been improved to decrease the rate of random
disk accesses.

Another problem of the previous disk-based algorithms
is that they do not fully utilize the most up-to-date CPU tech-
nologies. Instead of raising the clock speed, recent CPUs
are designed to have multiple, simultaneously running cores
that enable intra-CPU parallel processing. However, some
previous algorithms run mostly on a single core, and the oth-
ers suffer from severe interference among the threads and
hence have little gain by parallel processing. We explain
the problems of the previous algorithms in more detail in
Sect. 3.

In this paper, we propose a fast algorithm based on
‘divide-and-conquer’ strategy for constructing the suffix tree
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for large-scale human genome sequences. The most signifi-
cant difference from the previous algorithms is that the pro-
posed algorithm nearly eliminates random disk accesses by
accessing the disk in the unit of contiguous chunks each of
which stores an entire suffix subtree. In addition, our algo-
rithm fully utilizes multi-core CPUs by dividing the genome
sequences into multiple, independent partitions and then as-
signing each partition to a different core for parallel con-
struction of suffix subtrees. As an experimental result, our
algorithm finished construction of the suffix tree for the en-
tire human genome sequences in 64 minutes and outper-
formed DIGEST algorithm [3], which had previously been
the fastest disk-based algorithm, by up to 10.5 times.

This paper is organized as the following. In Sect. 2, we
briefly explain on the suffix tree. In Sect. 3, we explain on
the previous disk-based suffix tree construction algorithms.
In Sect. 4, we propose a new disk-based suffix tree construc-
tion algorithm, and then in Sect. 5, we discuss a few issues
of our algorithm. In Sect. 6, we evaluate the performance of
our algorithm through a series of experiments. Finally, we
conclude this paper in Sect. 7.

2. Suffix Tree

Figure 1 shows the suffix tree for a short DNA sequence X
= ATAGCTAGATCG$. The symbol ‘$’ is appended at the
end of X so as to prohibit any suffix in X from being the
prefix of any other suffix. Given a query sequence S , the
search begins from the root node of the suffix tree. From
the outbound edges of the root node, an edge e is chosen
such that the label of e is the prefix of S . If no such edge is
found, the search ends; if found, the child node Ne is visited
by following the edge e, i.e., e is the inbound edge of Ne. Let
l be the label length of e, pl(S ) be the prefix of S of length
l, and sl(S ) be the suffix of S of length Len(S ) − l. Then,
it holds that S = pl(S ) ⊕ sl(S ), where ⊕ is the sequence
concatenation operator. The search for query subsequence
sl(S ) begins recursively at the node Ne in the same manner
as the root node. The search goes on until a terminal node is
reached in the suffix tree or there is no query (sub)sequence
to be searched for.

Let us take a query sequence S = AGATCG for exam-
ple. In Fig. 1 (a), from the outbound edges of the root node,
the edge with label ‘A’ is followed and then the node N1 is
visited. The search for query subsequence sl(S ) = GATCG
is performed recursively at the node N1. The search con-
tinues until the terminal node with position 6 is reached; it
indicates that query sequence S is found at position 6 in
the sequence X. Figure 1 (b) shows the suffix tree whose
edge labels are represented with (start, end) positions in X.
While the labels’ representation sizes in Fig. 1 (a) are arbi-
trary, those in Fig. 1 (b) are all identical.

3. Related Work

Hunt et al. [11] proposed the first disk-based suffix tree con-
struction algorithm. Hunt’s algorithm excludes construc-

(a) Edge labels are represented with subsequences.

(b) Edge labels are represented with (start, end) positions in X.

Fig. 1 Suffix tree for a sequence X = ATAGCTAGATCG$.

tion of suffix links, which caused severe memory bottleneck
problem in Ukkonen’s algorithm [23]. Hunt’s algorithm di-
vides the given genome sequences into partitions and then
constructs a separate suffix subtree for each partition. Al-
though Hunt’s algorithm has O(n2) complexity, it shows
better indexing performance than Ukkonen’s algorithm by
reducing disk accesses. However, Hunt’s algorithm incurs
heavy random disk accesses since it stores each node in the
suffix tree as a separate object using the persistent Java ob-
ject storage interface called PJama [2]. Actually, the algo-
rithm was successful in indexing genome sequences of up
to 286 Mbp size, but it could not be used for indexing the
human genome sequences [11].

Tian et al. [22] presented the Top-Down Disk-based
(TDD) approach for constructing disk-based suffix trees.
TDD consists of two algorithms: Partition and Write Only
Top Down (PWOTD) algorithm based on Wotd-eager algo-
rithm [8] for constructing suffix trees and a memory buffer
management algorithm for maximizing the performance of
PWOTD algorithm. The performance of PWOTD algorithm
highly depend on the settings of the memory buffer manage-
ment algorithm [22]. Tian et al. [22] showed that TDD in-
curred only one sixth of disk accesses than DynaCluster al-
gorithm [5], an extension of Hunt’s algorithm, and that TDD
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constructed the suffix tree for the entire human genome se-
quences in 30 hours. However, the memory buffer man-
agement algorithm in TDD assigns only a small portion of
memory for keeping the suffix tree in main memory, while it
assigns the largest portion to input genome sequences. TDD
uses Least Recently Used (LRU) policy for swapping out
the memory buffers into disk while constructing the suffix
tree. Whenever PWOTD algorithm creates a new node N, it
needs to access N’s parent node P that could be previously
stored far away from N. This causes random disk accesses,
and the larger genome sequences should cause more random
accesses.

Phoophakdee and Zaki [18] proposed an algorithm
called TRELLIS, which eliminated data skewness among
suffix subtrees by dividing genome sequences according to
variable-length prefixes. Unlike Hunt’s algorithm [11] and
TDD [22], TRELLIS can create suffix links optionally af-
ter the suffix tree is constructed. TRELLIS consists of three
phases: prefix creation, partitioning, and merging phases.
In the prefix creation phase, variable-length prefixes are cre-
ated so that, for each prefix Pj, the suffix subtree T j corre-
sponding to the suffixes having the prefix Pj can be loaded
into main memory as a whole. In the partitioning phase,
the entire genome sequences are divided into partitions so
that each partition Ri and its corresponding suffix tree Ti

can be loaded into main memory as a whole. Then, a suf-
fix tree Ti is constructed for each partition in this phase. In
the merging phase, for each prefix Pj created in the pre-
fix creation phase, the suffix subtrees Ti, j are extracted from
the suffix trees Ti and then merged into a single suffix sub-
tree T j. Phoophakdee and Zaki [18] showed that TRELLIS
outperformed TDD by up to 4 times and that it constructed
the suffix tree for the entire human genome sequences in
4.2 hours. However, since TRELLIS extracts the suffix sub-
trees Ti, j stored at random positions in the suffix trees Ti in
the merging phase, it incurs severe random disk accesses.
Actually, the merging phase requires the longest execution
time [18].

Ghoting and Makarychev [7] proposed an algorithm
called WAVEFRONT based on ‘partition-and-merge’ strat-
egy as TRELLIS [18]. WAVEFRONT divides the entire data
into I/O-efficient partitions and processes each partition in-
dependently. In [7], WAVEFRONT was extended to be ex-
ecuted on a massively parallel system. The algorithm com-
pleted indexing the entire human genome sequences in 15
minutes on IBM Blue Gene/L system composed of 1024
processors [7]. However, WAVEFRONT executed on a sin-
gle processor showed no noticeable performance improve-
ment compared with TRELLIS [18].

Barsky et al. [3] proposed an algorithm called DIGEST
which consists of two phases similar to the merge-sort al-
gorithm. In the first phase, the entire genome sequence is
divided into partitions of the same length so that each par-
tition can be loaded into main memory. For each partition,
the suffixes contained therein are sorted in main memory
and then are stored in disk. In the second phase, the suf-
fixes sorted separately in each partition are merge-sorted.

Suffix blocks from each partition are read sequentially one
by one into main memory. The suffixes in different blocks
are compared with each other, and the smallest one is ex-
tracted and then saved in the output block. When the out-
put block becomes full, it is stored in disk. This contin-
ues until all the input blocks are empty. The sorted suffixes
is called a suffix array, and it is known that a suffix array
can be easily converted into a suffix tree [3], [21]. Barsky et
al. [3] showed that DIGEST outperformed TRELLIS+ [19],
an extension of TRELLIS [18], by up to 40% and that the
algorithm completed indexing the entire human genome se-
quences in about 85 minutes. However, DIGEST should
read suffix blocks from each partition stored at random posi-
tions in the second phase and hence suffers from severe ran-
dom disk accesses. Moreover, since the merging phases of
TRELLIS and DIGEST cannot be parallelized, they have lit-
tle performance gain even by using recent multi-core CPUs.

4. Proposed Indexing Algorithm

In this section, we propose a new algorithm for indexing
human genome sequences. The human genome is composed
of 46 chromosomes: 22 chromosome pairs numbered 1 ∼ 22
and x/y (sex) chromosomes. In this paper, we concatenate
the entire genome sequences into a single long sequence and
use this sequence as the input of our algorithm. This helps
simplify indexing and searching algorithms.

Our algorithm is designed based on divide-and-
conquer strategy: it divides the entire human genome se-
quence into multiple independent partitions and then con-
structs the suffix tree separately for each partition. The suffix
tree for each partition is constructed in a contiguous chunk
in main memory. When the construction is completed, the
chunk image is stored sequentially into disk as it is. Hence,
unlike TRELLIS and DIGEST [3], [18], our algorithm has
no performance degradation due to random disk accesses.
Moreover, since the suffix trees for different partitions are
constructed independently and are not merged thereafter,
their construction can be done in parallel by fully utilizing
the most up-to-date multi-core CPUs. According to these
features, our algorithm achieves dramatic performance im-
provement compared with the previous algorithms.

Our algorithm represents each base as a 2-bit code as
in [3], [18], [19], [24]; A, C, G, and T are represented as 00,
01, 10, and 11, respectively. Since the human genome se-
quence has the size of approximately 3 Gbp, the 2-bit coded
sequence has the size of about 3 Gbp / 4 = 750 MB. Actu-
ally, after removing unidentified base pairs, the 2-bit coded
sequence has the size of about 700 MB and can be fully
loaded in main memory. Our algorithm assigns memory re-
gion for the full 2-bit coded genome sequence at the begin-
ning and retains it to the end.

Our algorithm divides the human genome sequence
into partitions according to prefixes, i.e., the suffixes hav-
ing the common prefix belong to the same partition. We
explain how to determine the prefixes for partitioning at the
end of this section. The partitions are not necessarily cre-
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ated by physically dividing the genome sequence, but only
the suffix positions are managed for each partition. The
detailed procedure for constructing the lists of suffix posi-
tions is as follows. First, our algorithm counts the occur-
rence Oj (0 ≤ j < m) of each prefix Pj, where m is the
number of prefixes, while sequentially scanning the human
genome sequence. For a suffix at position i (0 ≤ i < n), if
the suffix has prefix Pj, Oj is incremented by 1. Since the
entire human genome sequence is loaded in main memory,
this procedure is completed quickly. Then, our algorithm
allocates m empty lists Lj for each prefix Pj. The size of
Lj is Oj × 2, and the positions of Lj are managed in an ar-
ray of size m so that each Lj could be easily located. Each
Lj is allocated in a contiguous memory region to read/write
the list in a single operation and hence to eliminate random
disk accesses. We never use hashing throughout our algo-
rithm. Since we prefer smaller m, there exists no compli-
cated memory management problem. Next, our algorithm
scans the human genome sequence again and fills Lj with
the positions of suffixes having prefix Pj; if the suffix at po-
sition i has prefix Pj, our algorithm appends the position
into Lj. Instead of appending i directly, our algorithm ap-
pends the difference (> 0) of i from the last position in Lj

for saving memory. The last positions in Lj are also man-
aged in an array of size m, and hence it is easy to append
a new value in Lj. We never perform any additional opera-
tion such as sorting on the suffixes in each partition. Since,
for each suffix in the human genome sequence, its position
appears exactly once in the lists, the size of the entire lists
is roughly 3 Gbp × 2 bytes = 6 GB. In our experiment, we
scanned the human genome sequence twice and used 3 GB
of memory in each scan. Hence, we had no problem in man-
aging main memory. This whole procedure is performed in
main memory except saving the final lists of suffix positions
into disk and hence is completed without any considerable
burden.

When the creation of partitions (i.e., the lists of suffix
positions in the human genome sequence) is completed, our
algorithm constructs the suffix tree separately for each par-
tition. At first, our algorithm creates an empty suffix tree
without any node and then adds suffixes one by one into
the suffix tree while scanning the corresponding list of suf-
fix positions. Figure 2 shows an example of adding suffixes
into a suffix tree. Figure 2 (a) shows a suffix tree before ad-
dition. Figure 2 (b) shows the result of adding a suffix S 1

= AGTG$ into the suffix tree in Fig. 2(a). S 1 has the pre-
fix p2(S 1) = AG of length 2 which matches the label of the
outbound edge of N1 and then s2(S 1) = TG$ does not have
common prefix with any label of the outbound edges of N2.
In this case, our algorithm creates a new outbound edge e of
N2 and labels it with s2(S 1) = TG$. The edge e is connected
to a new terminal node p3, i.e., e becomes the inbound edge
of p3. Figure 2 (c) shows the result of adding a suffix S 2 =

ACTG$ into the suffix tree in Fig. 2 (a). The label of the out-
bound edge of N1 partially matches the prefix p1(S 2) = A of
S 2. In this case, our algorithm cuts the outbound edge of N1

and adds a new internal node N′1; the inbound edge of N′1

(a) A suffix tree. (b) Adding a suffix
S 1 = AGTG$.

(c) Adding a suffix S 2 =

ACTG$.

Fig. 2 Example of adding suffixes into a suffix tree.

(a) Before adding a
suffix.

(b) The case of adding
a terminal node.

(c) The case of adding
an internal node and a
terminal node.

Fig. 3 Generalization of adding suffixes into a suffix tree.

has the label p1(S 2) = A. A new outbound edge e is added
to node N′1 and is labeled with s1(S 2) = CTG$. The edge e
is connected to a new terminal node p3, i.e., e becomes the
inbound edge of p3.

Each time a suffix is added into the suffix tree, a new
terminal node is created in the tree. Since every suffix ends
with the symbol $, the suffix cannot be a prefix of any other
suffixes and has a unique position in the human genome
sequence. Hence, a terminal node should exist in the suf-
fix tree for representing the unique position of each suffix.
The terminal node should have an inbound edge in the tree.
The edge is an outbound edge of either (1) an existing node
(Fig. 2 (b) case) or (2) a new node added between the cut
edges (Fig. 2 (c) case). There exist no other cases.

Figure 3 shows the generalization of adding suffixes
into the suffix tree by our algorithm. Let us assume that
we have visited the node Ni in the course of searching for a
suffix S in Fig. 3 (a). The concatenation L = L1 ⊕ · · · ⊕ Li

of edge labels from the root node to Ni should be the same
as the prefix pl(S ) of length l = Len(L), i.e., L = pl(S ). In
case Li+1 ∩ sl(S ) = ∅, an edge e labeled with sl(S ) and a
new terminal node Np with the inbound edge e are added as
in Fig. 3 (b). In case Li+1 ∩ sl(S ) = L′ (� ∅), a new inter-
nal node N′i+1 and a new terminal node Np are added as in
Fig. 3 (c), where l′ = Len(L′) and pl′ (Li+1) = pl′ (sl(S )) =
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Fig. 4 Data structure of our algorithm: the information on a node and its
inbound edge is contained together.

L′. Since the suffix always ends with $, we cannot have the
case S = L in Fig. 3.

Figure 4 shows the data structure of our algorithm. As
shown in the figure, the information on a node and its in-
bound edge is contained together in a single data structure.
The fields a and b represent the start and end positions of
the inbound edge in the human genome sequence as shown
in Fig. 1 (b). The field right contains the pointer to the next
sibling node, and foo represents either (1) a pointer to the
leftmost child node in case of an internal node or (2) the
suffix position in the genome sequence in case of a terminal
node. The field misc contains miscellaneous information on
the node. The fields a, b, right, and foo are 4-byte unsigned
integers, while the field misc is a 2-byte unsigned integer.
Hence, the data structure has the fixed length of 18 bytes.
For distinguishing between the internal and terminal nodes,
the field b is investigated. If b = n, where n is the length of
genome sequence, it is a terminal node; if b < n, it is an in-
ternal node (refer to Figure 1 (b)). The fields in the node
structure in Fig. 4 have the primitive data types provided
by C/C++ standards. The data types are machine/compiler-
independent, i.e., their sizes never change according to ma-
chine and compiler.

We can efficiently construct the suffix trees using the
data structure in Fig. 4. We explain this using Fig. 5, which
shows the representation of suffix trees in Fig. 3 using the
data structure; Figs. 5 (a) ∼ 5 (c) correspond to Figs. 3 (a)
∼ 3 (c), respectively. In Fig. 5 (a), the fields (ai, bi) and
(ai+1, bi+1) represent the start and end positions of labels Li

and Li+1, respectively. The fields with X stand for “don’t
care” fields, which are not used nor updated here. The arrow
indicates a pointer to a possibly distant node. The nodes Ni

and Ni+1 may not be adjacent as shown in the figure, though
Ni+1 is easily accessed by following the pointer. Figure 5 (b)
shows the case a new terminal node Np is added. The node
Ni+1 can be either an internal or a terminal node and is a
sibling node of Np. In the figure, the leftmost child node
of Ni has been changed from Ni+1 to Np. This is because
we can efficiently add Np as a new child node of Ni without
accessing Ni+1 and all its sibling nodes. Figure 5 (c) shows
the case a new internal node N′i+1 and a new terminal node
Np are added. The field values of the Ni+1 are copied to
the newly allocated node region, and then the field ai+1 is
adjusted (bi+1 is not changed). The field values of N′i+1 are
set in the region previously used by Ni+1 as shown in the
figure. The node Np is a sibling node of Ni+1 and is added
as the leftmost child node of N′i+1 as in Fig. 5 (b). The key
idea we would like to show in Fig. 5 is that, when a suffix
is added, there is only slight modification in the suffix tree
constructed so far; it can be done only by allocating new

(a) Before adding a suffix.

(b) The case of adding a terminal node.

(c) The case of adding an internal node and a terminal node.

Fig. 5 Data structures corresponding to the suffix trees in Fig. 3.

memory region(s) for one or two nodes and then setting a
few appropriate field values therein. This is one of the fea-
tures providing the efficiency of our algorithm.

Our algorithm constructs a suffix tree in a main mem-
ory chunk. Allocations of memory regions for new nodes
(and their inbound edges) are made sequentially in the
chunk. The pointers in Figs. 4 and 5 are relative offset values
from the beginning of the chunk. Once the construction of a
suffix tree is completed, our algorithm stores the chunk im-
age into disk without any modification. When the chunk im-
age is reloaded into main memory, the pointers are still valid
regardless of where it is reloaded. Since the chunk image is
stored in and read from the disk sequentially, there is no per-
formance degradation due to random disk accesses, and thus
we have significantly improved performance. When multi-
ple suffix trees are constructed in parallel, our algorithm al-
locates a separate memory chunk for each suffix tree. Even
in this case, the human genome sequence is loaded only
once into the memory region shared by the simultaneous
processes of our algorithm. This parallel processing enables
more significant performance improvement.

We now explain how to determine the prefixes for di-
viding the human genome sequence into partitions. Each
suffix in the genome sequence is assigned to a partition ac-
cording to its prefix; every suffix in a partition has a com-
mon prefix. Given a prefix length p, our algorithm creates
a partition for each possible prefix of length p. The num-
ber of partitions is 4p. A weakness of this scheme is that it
causes data skewness among the partitions [18]; there may
be big differences among the sizes of partitions and hence
the corresponding suffix trees. We tackle this weakness as
follows. As p increases, the number of suffixes in each par-
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tition decreases, and the size of corresponding suffix tree
also decreases. We set p to be large enough to make the
suffix tree sizes smaller than the size M of available main
memory. Then, the simultaneous processes of our algorithm
choose the partitions so that the estimated sizes of their cor-
responding suffix trees sum up very close to M. This can
be done with simple computations. By fully utilizing main
memory in this way, our algorithm achieves better indexing
performance.

The minimum length of prefixes is computed approxi-
mately using the following Eq. (1):

pmin =

⌈
log4

n · f
M

⌉
, (1)

where n is the length of human genome sequence and f is
a multiplication factor to estimate the suffix tree size. M
represents the size of remaining main memory after loading
the entire 2-bit coded human genome sequence. f is defined
as the maximum of T

s , where s is the length of a genome
sequence and T is the size of the corresponding suffix tree.
We estimate the size of a big suffix tree by test construction
of small suffix trees. The f value greatly differs according
to suffix tree construction algorithms and is about 30 ∼ 32
in our algorithm.

5. Discussion

The index proposed in this paper is identical to the tradi-
tional suffix tree except that the proposed index consists of
multiple suffix subtrees that are created and saved in disk
separately from each other. Each suffix subtree corresponds
to a partition of the human genome sequence, which is com-
posed of the suffixes having the same prefix of length p. In
general, any two suffixes are contained in the same suffix
subtree if and only if they have a common prefix. The suf-
fixes with different prefixes are contained in different suf-
fix subtrees and hence can be processed separately. Fig-
ure 6 shows an example of the proposed index for p = 2.
The leftmost suffix subtree T0 corresponds to prefix P0 =

‘AA’, and the entire suffixes starting with ‘AA’ are contained
in T0. Given a query subsequence S , if S has the prefix
P0, the search starts by accessing T0 (and optionally a few
more subtrees corresponding to approximate prefixes such

Fig. 6 Architecture of the proposed index.

as ‘AC’). Since the proposed index is designed to eliminate
random disk accesses, there should be minimal performance
degradation due to disk accesses.

Since the proposed index is identical to the traditional
suffix tree, it can be used in all kinds of suffix tree applica-
tions such as exact matching, approximate matching (allow-
ing a pre-specified number of mismatches), and finding fre-
quent substrings, common substrings, and maximal palin-
dromes [9], [11]. Many of these applications traverse the
suffix tree in depth-first manner. While running the appli-
cations, the suffix subtrees are accessed sequentially and no
subtree is accessed more than once. An important feature of
the suffix tree is that the subsequences appearing frequently
in the target sequence are mapped only to a single path in
the corresponding suffix tree [16], [17], and hence we don’t
have any problem dealing with such subsequences.

The prefix length p determines the number of partitions
and has no effect on search accuracy. We prefer smaller p
close to pmin given in Eq. (1) and set p = 4 in our experi-
ments in Sect. 6. Given p, our algorithm creates 4p parti-
tions, each of which is processed in a separate process. The
number of parallel processes effective for improving index-
ing performance is bound to the number of cores in CPU,
which is 4 in our experiments. We could obtain no notice-
able performance improvement by running more processes.
Hence, p needs not to be large on the assumption of suffi-
cient main memory.

The proposed index has the following strengths over
the existing compressed suffix array [6], [14], [15]. First,
since the proposed index is identical to the traditional suffix
tree, it can be used in diverse applications including exact
matching, approximate matching, and finding frequent sub-
strings, common substrings, and maximal palindromes [9],
[11]. Indeed, Rocke [20] and Kurtz and Schleiermacher [13]
used the suffix tree for retrieving gapped motifs and maxi-
mal repeats, respectively. Second, the proposed algorithm
supports faster search than the suffix array. For exact match-
ing, the suffix tree has O(q + x) complexity, where q is the
length of query subsequence and x is the number of match-
ing subsequences, while the suffix array has O(q+ log n+ x)
complexity [6], [10]. Although the compressed suffix array
has smaller size of memory, it requires additional processing
due to the compression. The FM-index, which is proposed
by Ferragina and Manzini [6] based on Burrows-Wheeler
Transform (BWT), has O(q + x loge n) complexity for exact
matching. Since e is a positive number, the complexity of
FM-index is higher than the suffix tree. Third, it requires a
lot of time to construct the compressed suffix array. Indeed,
the compressed suffix array for Bowtie algorithm [14] took
4 hours and 36 minutes for its construction even on a high-
end server with 16 GB main memory (there exists a trade-
off between construction time and main memory size [14].),
and the performance improvement rate is sub-linear to main
memory size. The weakness of the suffix tree is that it oc-
cupies a large size of volume. This is an inherent problem;
however, in this paper, we coped with that by accessing the
suffix subtrees in the unit of chunks. We dramatically re-
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duced disk access and CPU processing time, and hence only
minimal performance degradation was incurred due to disk
accesses.

Our algorithm for constructing the suffix subtree for
each partition has worst-case complexity O(s2), where s is
the number of suffixes in the partition. However, the suf-
fix subtrees for the human genome sequence are close to
balanced trees, whose depths are log s, rather than skewed
ones. Hence, we claim that the average-case complexity
O(s log s) describes the performance of our algorithm more
accurately. The average-case complexity is obtained as fol-
lows. When adding a new suffix into the suffix subtree, our
algorithm searches for the suffix in the subtree to find the
place to add the suffix therein. This search is performed in
the same manner as exact matching, and there is no need
to traverse the whole subtree. This search can proceed up
to the depth of the subtree, which is log s on the average.
Hence, the average-case search complexity for a suffix is
O(log s), and that for the entire suffixes is O(s log s). Actu-
ally, at most stages of construction, the suffix subtree should
have the depth less than log s, and therefore it is expected
that the search performance should show almost linear trend
to the number of suffixes s.

Although a process accesses the disk for a very short
time while constructing the suffix subtree, as the number of
such processes increases, the probability of disk access con-
tention among them should also increase. The probability
as a function of the number of processes is obtained as fol-
lows. Let r (0 < r ≤ 1) be the ratio of disk access time
divided by the entire suffix subtree construction time by a
single process. Then, r can also be considered as the prob-
ability of disk accesses by the process. Let t be the number
of such processes running in parallel. In this circumstances,
the probability of simultaneous disk accesses by i (1 ≤ i ≤ t)
of t processes is

(
t
i

)
ri. Hence, the probability R of disk access

contention by t processes is computed as follows:

R =
∑
1≤i≤t

(
t
i

)
ri . (2)

We call R as contention rate in this paper. The value r is de-
pendent on target data and system environment; r was less
than 0.01 in our experiments. Figure 7 shows a graph of
contention rate R against the number of processes t by set-
ting r = 0.01. The maximum t was 4 in our experiments and
should also be small in different environments. If the disk
access contention becomes the bottleneck on the indexing
performance, we can work around by using multiple disks.
Therefore, disk access contention can never be an issue with
our algorithm.

We do not use Ukkonen’s algorithm [23] for the fol-
lowing reason. Ukkonen’s algorithm uses suffix links to con-
struct a suffix tree in O(n) time. A suffix link is attached to
every node in a suffix tree; the suffix link of a node corre-
sponding to a string χα, where χ is a single character and α
is a string (possibly empty), leads to a node corresponding
to a string α. The algorithm constructs the suffix tree while

Fig. 7 Contention rate against the number of parallel processes.

following the suffix links. However, it is highly probable
that the strings χα and α have different prefixes and hence
are contained in different partitions. In this case, by follow-
ing the suffix links, we should access the suffix subtrees cor-
responding different partitions, which incurs severe random
disk accesses. Moreover, we cannot construct the suffix sub-
trees separately in parallel. Therefore, Ukkonen’s algorithm
is not adequate for our divide-and-conquer approach.

6. Performance Evaluation

In this section, we show the superiority of our algorithm
through a series of experiments. We use the same data sets
as those in [3]. The first set is a short genome sequence of
110 Mbp size obtained from 6643 organisms. The second
set is the entire human genome sequence of about 3 Gbp
size. These data sets are denoted as VDB and HG18, re-
spectively.

The hardware platform is a PC equipped with Intel
Core2Quad Q9550 2.83 GHz CPU, Samsung DDR3 8 GB
main memory, and a 500 GB 7200 rpm hard disk. The soft-
ware platforms are Ubuntu 10.10 32 bit Linux and Win-
dows 7 64 bit Edition. The first experiment was performed
on Ubuntu as in [3], and the second and third experiments
were performed on Windows 7. The latter two experiments
were also performed on Ubuntu, though we had 10 ∼ 15%
better performance on Windows 7. As C/C++ compilers,
we used GNU C++ 4.4.5 on Ubuntu and Visual C++ 2010
Express Edition on Windows 7.

In the first experiment, we compared the performance
of our algorithm with DIGEST [3], which had been the
fastest disk-based suffix tree construction algorithm. We
downloaded the source code of DIGEST from the author’s
web site †. In this experiment, we ran our algorithm and
DIGEST on VDB data set and compared their elapsed time
for constructing the suffix trees ††. The time for construct-
ing the lists of suffix positions is also included in the elapsed
time. Figure 8 shows the result of experiment; our algorithm

†http://webhome.cs.uvic.ca/ mgbarsky/
††We also tried the experiment on HG18 data set; however, DI-

GEST always terminated abnormally with the segmentation fault
error. We discussed on this with the author of DIGEST, but we
could not solve the problem to the end.
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Fig. 8 Result of first experiment: our algorithm outperformed DIGEST
by up to 10.5 times.

(a) Using VDB data set.

(b) Using HG18 data set.

Fig. 9 Result of second experiment: we could obtain performance im-
provement by up to 3.0 times by running four parallel processes.

with four parallel processes outperformed DIGEST by up to
10.5 times.

In the second experiment, we ran our algorithm on both
VDB and HG18 data sets and compared the elapsed time
for various numbers of parallel processes of our algorithm.
Figure 9 shows the experimental result. Since the hardware
platform has a four-core CPU, we increased the number of
parallel processes up to four. Actually, we obtained almost
no performance improvement by running more than four
parallel processes on the same platform. Note that the units
of vertical axes are seconds and minutes in Figs. 9 (a) and
9 (b), respectively. As shown in the figures, we obtained per-
formance improvement by up to 3.0 times by running four

Fig. 10 Result of third experiment: elapsed time has almost linear corre-
lation with the size of genome sequences.

parallel processes compared with a single process. We could
not obtain four times performance improvement mostly due
to inter-process communication and synchronization. Since
our algorithm is designed to minimize the effect of disk ac-
cesses, it has the potential of greater performance improve-
ment by using advanced CPUs with more cores and faster
clock speeds.

In the third experiment, we measured the elapsed time
of our algorithm for various sizes of genome sequences. We
ran four processes on the genome sequences consisting of
the first 2, 5, 8, 11, 15, and 24 chromosomes in the human
genome sequence. Figure 10 shows the result. As the result
of regression analysis on the experimental result, we could
find that the elapsed time is almost linearly correlated with
the size of genome sequences.

7. Conclusions

In this paper, we proposed a divide-and-conquer algo-
rithm for constructing the suffix tree for human genome se-
quences. The most significant difference from the previous
algorithms is that our algorithm nearly eliminates random
disk accesses by accessing the disk in the unit of contiguous
chunks. In addition, our algorithm fully utilizes multi-core
CPUs by dividing the genome sequences into separate par-
titions and then assigning each of them to a parallel process
for construction of the corresponding suffix subtree. As an
experimental result, our algorithm finished construction of
the suffix tree for the entire human genome sequence in 64
minutes and outperformed the previously fastest DIGEST
algorithm by up to 10.5 times. We believe that our algo-
rithm should achieve higher performance improvement than
the others with the advance of hardware technology.
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