
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011
1497

LETTER

A Low-Cost Standard Mode MPI Hardware Unit for Embedded
MPSoC

Won-young CHUNG†a), Student Member, Ha-young JEONG†, Won Woo RO†b),
and Yong-surk LEE†c), Nonmembers

SUMMARY In this paper, we propose a novel low-cost Message Pass-
ing Interface (MPI) unit between processor nodes, which supports message
passing in multiprocessor systems using distributed memory architecture.
Our MPI unit operates in the standard mode – using the buffered mode
for small amounts of data transaction and the synchronous mode for large
amounts of data transaction. This results in increased performance by re-
ducing the control message transmission time for the small amount of data.
We verified the performance with a simulator designed based on SystemC.
Additionally, we designed the MPI unit using VerilogHDL, and we syn-
thesized it with a synopsys design compiler. The proposed standard mode
MPI unit shows a high performance even though the size of the MPI unit
occupies less than 1 % of the whole chip. Thus, with respect to low-cost
design and scalability, this MPI hardware unit is useful to increase overall
performance of the embedded Multiprocessor System on a Chip (MPSoC).
key words: MPI, distributed memory, MPSoC, embedded systems, low-
cost

1. Introduction

With the recent increase in the use of various applications in
embedded systems, it is difficult to guarantee the timing con-
straint for QoS (Quality of Service). For this reason, there is
great demand for high-performance processing. However,
there is a limit to the pace of development of an applica-
tion to increase single processor frequency. Thus, there have
been more studies on the MPSoC (Multiprocessor System
on a Chip) recently, which can reduce the processing time of
the whole system. With this trend, many commercial MP-
SoC emerged such as ARM’s Cortext-A9 and TI’s OMAP.
However, these MPSoC use additional hardware support for
memory coherency because their design relies on shared
memory architecture. Consequently, there is a limitation
on scalability. By using distributed memory architecture on
MPSoC, however, we are able to reduce the scalability prob-
lem on conventional shared memory MPSoC [1].

The most recent research on distributed memory ar-
chitecture systems focuses on the use of a hardware MPI
Message Passing Interface (MPI) unit to improve commu-
nication performance [2]–[4]. In MPI, a message may be
sent in one of four communication modes – ready mode,
buffered mode, synchronous mode and standard mode –

Manuscript received November 9, 2010.
Manuscript revised March 15, 2011.
†The authors are with the Department of Electrical and Elec-

tronic Engineering, Yonsei University, Seoul, Korea.
a) E-mail: wychung@mpu.yonsei.ac.kr
b) E-mail: wro@yonsei.ac.kr
c) E-mail: yonglee@yonsei.ac.kr

DOI: 10.1587/transinf.E94.D.1497

which approximately corresponds to the most common pro-
tocols used for the point-to-point communication. In our
previous study, we proposed the synchronous mode MPI
hardware unit for a distributed memory architecture system,
which can manage synchronization through the unit itself,
thereby reducing the burden of implementing a software
MPI library [5]. However, when the synchronous mode
transmits small amounts of data, synchronization before the
data transmission accounts for most of the execution delay.
The synchronous mode is especially inefficient because the
size of transmit data is generally small in embedded sys-
tems.

Therefore, we proposed a standard mode MPI hard-
ware unit, supporting not only synchronous mode but also
buffered mode. When the size of data is smaller than the
threshold value, our MPI hardware unit can improve the
whole system performance due to the reduced synchronous
time.

2. Conventional Hardware MPI Unit Architecture

In our previous MPI unit, there were two kinds of mes-
sage: control message for synchronization, and data mes-
sage. Figure 1 shows processor node 1 sends data messages
to processor node 0 in the previous architecture. After syn-
chronization through the control message in steps 1-7, the
sender node sends the data message to the receiver node. In
the previous work, there is safe communication due to sav-
ing and managing the message in the queue. However, if
there is a small amount of data, the synchronization takes
comparatively longer than the data transmission time, so the
synchronization is overloaded in embedded MPSoC with a
lot of small data transmissions. Therefore, this paper pro-
poses the standard mode MPI unit adding a buffered mode
which processes small data transmission effectively to the
synchronous mode MPI unit from the previous work.

Figure 2 is a graph showing control message transmis-
sion time (synchronization time) and data message transmis-
sion time, according to the size of the data. When the size
of the data is 4 bytes, it takes the same amount of time to
send data messages and to send control messages. If this
is transmitted through the buffered mode, the synchroniza-
tion time is close to 0 in the ideal case, and then the per-
formance improves approximately twofold. Moreover, if
there is no matching send instruction in the ready queue of
the sender node, the process iterates that the sender node

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

1498
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

transmits a busy control message to the receiver node, and
the receiver node transmits a request control message to the
sender node [5]. If there is an increased exchange of the con-

Fig. 1 Data transfer and synchronization mechanism (Sync. mode).

Fig. 2 Comparing transfer time of data message and control message.

Fig. 3 Proposed standard mode hardware MPI unit architecture.

trol message before the data message transmission, there is
a longer synchronization time. In this case, when we use the
buffered mode, the performance is significantly improved.
Thus, this study suggests the standard mode hardware MPI
unit with a small data transmission applies to the buffered
mode, and a relatively large data transmission applies to the
synchronous mode.

3. Proposed Hardware MPI Unit Architecture

Figure 3 shows the entire system of the proposed standard
mode hardware MPI unit. We added SReqQ and SRdyQ,
which are the local message queues that manage the small
size data transmission. The function to schedule the mem-
ory access between small data and large data is done by
adopting Round-robin scheduling. We also added SMS and
SMR, which are exclusive ports for small size data trans-
mission. These SMS and SMR prevent bottlenecks between
large data and small data transmission.

Figure 4 shows the procedure in the buffered mode.
The P0 sends the receive instruction (request control mes-
sage) to MPI unit 0, and the P1 sends the send instruction
(ready control message) to the MPI unit 1 (1©, 1©’). At
the PW of the MPI unit 0, if the data size is smaller than
the threshold value, the receive instruction is stored in the
SReqQ. At the PW of the MPI unit 1, the send instruction is
stored in the SRdyQ, and DSS selects the transmit data from
the SrdyQ (2©, 3©). The transmit data is read from memory
through the MAS (4©). SMS sends ‘m data on’ (the control
message) with the data message, and the SMR of the re-
ceiver node stores the control message in the relevant chan-
nel buffer (5©).

The SMR compares the control message with the
match bits in the SReqQ of the MPI unit 0, and if there is
entry which matches each other, then the data message is
stored in the memory through both the DRS and the MAS
(6©, 7©). If there is no entry which matches each other, then
the data message is stored in the channel buffer of the SMR

LETTER
1499

Fig. 4 Data transfer and synchronization mechanism (Buffered mode).

as well as the control message. The size of the channel
buffer depends on the threshold value. The SMR channel
buffer does not need be large in size because only small data
messages are stored there. When the data message transmis-
sion has completed, ‘m complete’ (the control message) is
sent to MPI unit 1, and then communication between two
nodes are complete (8©).

In conclusion, when we compare the standard mode
MPI unit with the synchronous mode MPI unit, we can
see that total area of the proposed standard mode MPI unit
is increased by adding hardware logic. However, if small
amounts of data transfer frequently occur according to ap-
plication, this can highly improve performance.

4. Simulation Results

To measure the communication performance of the pro-
posed standard mode MPI unit, we compare it with the pre-
vious synchronous mode MPI unit [5]. Each unit is designed
as a Bus Functional Model (BFM) based on SystemC [6].
We designed the BFM considering the delay time of each
of the blocks, and it generates communication traffics in a
specific simulation environments.

4.1 Performance Evaluation of Transmission Time

We measure the control message transmission time (syn-
chronization time) and data message transmission time ac-
cording to the size of the data in the synchronous mode
model to determine the threshold value, which decides if it is
the synchronous mode or the buffered mode. Table 1 shows
the speed-up ratio when the synchronous mode is changed
to the buffered mode. Ideally, the buffered mode has no syn-
chronization time before transmitting the data message, be-
cause the sender node directly transmits the data message

Table 1 Speed-up ratio of changed from sync mode to buffered mode.

to the receiver node. As the buffered mode directly trans-
mits the data message from the sender node to the receiver
node, in an ideal case, there is no control message transmit
time before transmitting the data message. Therefore, we
assumed that the control message transmission time is 0 in
the buffered mode.

4.2 Performance Evaluation of Proposed Model

In this section, we compared the proposed standard mode
MPI unit with the synchronous mode MPI unit from the pre-
vious study, in terms of the results of the simulation in one-
to-one, one-to-many, and many-to-many communications.
Figures 5, 6, and 7 show the speed-up ratio of the proposed
MPI unit when the average of transmission time for each
size of data is 1 in the synchronous mode MPI unit. The sim-
ulation test vector is transmitted according to its size, from
small data to large data, and it iterates 1000 times. Also, we
simulate the proposed MPI unit using the higher threshold
value with the basis of 32 bytes, whose approximate speed
increase rate is more than 20%.

Figure 5 shows the speed-up ratio of 1-versus-1 nodes
communication. When the threshold is 8 bytes, there are
2.57 times performance improvement with the 4 bytes data,
and 2.4 times improvement in performance with the 8 bytes
data. Still, the speed decreases to 0.9 times when data size
is 16 bytes. Though the transmit bus between each MPI unit
has two transmit routes with the basis of the threshold value,
the improvement still decreases in the small interval with
excessing threshold because the MPI unit in the processor
node access the memory with one bus, which causes con-
flict between the data from small data transmit route and
large data transmit route. Also, in the case of a threshold
of 8 bytes, if the size of the message becomes larger than
16 bytes, the performance shows approximately 1. This is
because the data transmission time takes far longer than the
synchronization time. If the threshold increases, though the
width of speed-up ratio gets smaller, the speed-up rate in-
creases in a wide range of data.

Figures 6 and 7 show the simulation results of the com-
munication through 1-to-3 nodes and 3-to-1 nodes, respec-
tively. In both cases, the overall transmission delay time
is longer than in the 1-to-1 node communication, so the
speed-up ratio has increased by just a small amount. This
is because the message increased, the fixed buffer capac-
ity exceeded (which generated full), and the control mes-
sage retransmitted. Here is a summary of the simulation
results of communication through one-to-one, one-to-many,
and many-to-one:

1. If the threshold is set low, then we can expect a large

1500
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

Fig. 5 Speed-up ratio of 1 versus 1 communication.

Fig. 6 Speed-up ratio of 1 versus 3 communication.

Fig. 7 Speed-up ratio of 3 versus 1 communication.

improvement of speed-up in a small range. But if
threshold is set high, then we can expect a small im-
provement of speed-up even in wide range.

2. According to the scheduler for memory access between
the MPI unit and memory, there can be a difference in
transmission time for both small data (lower than the
threshold) and large data (higher than the threshold). If
we set a high priority for small data transmission (lower
than the threshold), then we can expect more speed-up
in the buffered mode.

3. If the speed-up ratio is increased in the buffered mode,

Table 2 Synthesized results.

then the speed-down ratio increases by a small amount
in the synchronous mode. This is because the message
transmission time is much longer than the synchroniza-
tion time, if the size of the data is large.

4.3 Implementation and Verification

After verifying the performance through SystemC simula-
tor, we designed the MPI unit using VerilogHDL. We syn-
thesized a synopsys design compiler, and we used Mag-
naChip 0.18 µm for the synthesis library. To verify the pro-
posed MPI unit, we designed the multiprocessor based on
RISC MIPS DLX architecture. There are 2 processor nodes
and a AXI bus on a chip. Each processor nodes is consisted
of one RISC core, one instruction memory, one data mem-
ory and one MPI unit. The processor nodes communicate
through an AXI interconnection [7]. While Table 2 shows
that the memory occupies most of the areas, the MPI unit as
well as the processor core occupy fewer areas. The Number
of equivalent NAND gates of the proposed standard mode
MPI unit is 24724.82, and it occupies less than 1.02 % of
the whole chip – this is a negligible size based on the en-
tire chip size. It is approximately 13.2 % larger than syn-
chronous mode MPI unit. Thus, with a negligible area in-
crease effort, the total system performance can increase by
the proposed standard mode MPI unit.

5. Conclusion

To reduce bottlenecks from communication overhead in
multiprocessor systems, we propose the MPI unit which op-
timizes MPI performance in distributed memory architec-
ture. In particular, we increase performance by adding hard-
ware logic that supports MPI buffered mode for a small-
sized data message, which is frequently used in embed-
ded MPSoC. The proposed MPI hardware unit combines
5 queues that save and manage the synchronized messages,
and it performs the multiple outstanding issue and out of or-
der completion. Additionally, the proposed standard mode
hardware MPI unit can be used for adjusting the threshold
value according to its application, so it is useful for the scal-
ability aspect. Furthermore, if the processor supports multi-
thread, the processor issues an order to the MPI unit, and
then the processor can process another thread, thereby in-
creasing overall system performance. If the proposed MPI
unit is used, the message delay time from the small hardware
overhead is minimized, and the bandwidth of transaction is

LETTER
1501

maximized. It is therefore very efficient in multiprocessor
systems that use distributed memory architecture.

References

[1] L. Benini and G.de Micheli, “Networks on chip: A new SoC
paradigm,” Computer, vol.35, no.1, pp.70–78, Jan. 2002.

[2] F. Poletti, A. Poggiali, D. Bertozzi, L. Benini, P. Marchal, M. Loghi,
and M. Poncino, “Energy-efficient multiprocessor systems-on-chip
for embedded computing: Exploring programming models and their
architectural support,” IEEE Trans. Comput., vol.56, no.5, pp.606–
621, May 2007.

[3] F. Dumitrascu, I. Bacivarov, L. Pieralisi, M. Bonaciu, and A. Jerraya,
“Flexible MPSoC platform with fast interconnect exploration for

optimal system performance for a specific application,” Design, au-
tomation and test in Europe: Designers’ Forum, pp.166–171, 2006.

[4] S. Han, A. Baghdadi, M. Bonaciu, S. Chae, and A.A. Jerraya, “An effi-
cient scalable and flexible data transfer architecture for multiprocessor
SoC with massive distributed memory,” Proc. 41st annual Design Au-
tomation Conference, pp.250–255, San Diego, CA, USA, June 2004.

[5] H.-Y. Jeong, W. Hur, and Y.-S. Lee, “Scalable distributed memory em-
bedded system with a low-cost hardware message passing interface,”
IEICE Electronics Express, vol.6, no.12, pp.837–843, 2009.

[6] S. Mahadevan, F. Angiolini, M. Storgaard, R.G. Olsen, J. Sparso, and
J. Madsen, “A network traffic generator model for fast network-on-
chip simulation,” Proc. Conf. Design, Automation and Test in Europe,
vol.2, pp.780–785, Munich, Germany, 2005.

[7] AMBA AXI Specification, ARM Limited 2003.

