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Complex Cell Descriptor Learning for Robust Object Recognition

Zhe WANG†a), Yaping HUANG†, Nonmembers, Siwei LUO†, Member, and Liang WANG†, Nonmember

SUMMARY An unsupervised algorithm is proposed for learning over-
complete topographic representations of nature image. Our method is
based on Independent Component Analysis (ICA) model due to its supe-
riority on feature extraction, and overcomes the weakness of traditional
method in fast overcomplete learning. Besides, the learnt topographic rep-
resentation, resembling receptive fields of complex cells, can be used as de-
scriptors to extract invariant features. Recognition experiments on Caltech-
101 dataset confirm that these complex cell descriptors are not only efficient
in feature extraction but achieve comparable performances to traditional
descriptors.
key words: Independent Component Analysis, overcomplete, complex cell,
invariant feature, object recognition, Caltech-101

1. Introduction

Neurophysiological studies have shown that there are many
topology structures existed in simple cells and complex cells
of primary visual cortex (V1) [2]. Receptive fields of sim-
ple cells can be regarded as Gabor-like filters. Receptive
fields of complex cells are probably organized by recep-
tive fields of simple cells and the input of complex cells
is the output of simple cells. Complex cells have good
properties, such as phase invariance and some shift invari-
ance. Recently, how to model and utilize the information
process of complex cells has been the subject of intense
study. Hyvärinen et al. developed the independent Subspace
analysis (ISA) and the topographic independent component
analysis (TICA) to model the properties of complex cell in
V1 [3]. However, ISA and TICA, based on the classic ICA,
are complete models that only learn a limited number of fil-
ters, thus, they are restricted in the application of feature
extraction. Moreover, Osindero et al. proposed a general-
ized model by extending ICA and TICA to the overcomplete
case [4]. However, their models are in general extremely
difficult to learn, e.g. using Markov chain Monte Carlo sam-
pling. The training is unacceptably slow, since it often re-
quires several days or weeks.

Because of the weakness of ICA, recent state-of-art
methods often use sparse coding with its overcomplete ba-
sis to extract rich representations of objects [5], [8]. How-
ever, the procedure of feature extractions in sparse coding
requires running some sort of iterative algorithms that are
always computationally expensive. To avoid such heavy
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computation, Kavukcuoglu et al. proposed Invariant Predic-
tive Sparse Decomposition (IPSD) to extend sparse coding
by adding a feed-forward prediction function to approxi-
mate the optimal representations and make inference effi-
cient. Besides, they introduced the nonlinear operation used
in ISA and TICA and obtained complex cell-like basis to
extract invariant features [1]. However, due to its incorpo-
rating many extra parameters in sparse coding, it leads to an
increased computing burden in training, and multiple factors
need to be adjusted.

In this paper, we propose a new method for learning the
overcomplete filter maps from nature image. We will show
that these complex cell-like filters can be obtained by a sim-
ple iterative algorithm, and will give better discriminative
power than traditional descriptors.

2. Learning Overcomplete Topographic Representa-
tion from Nature Image

ICA is a generative model for low-level features of many
types of natural data [8]. The classical version of the model
can be expressed as

si = wT
i x (1)

where wi ∈ W = {w1,w2, . . .}. In a neuroscientific inter-
pretation, the variables si can model the responses of simple
cells from nature image x and filters wi are their receptive
fields. The problem of estimating matrix W in Eq. (1) can
be resolved by maximizing the sparseness of coefficient si,
e.g. arg max E{s4}. However, four order cumulant, being the
measurement of sparseness, has the bad property that it is
susceptible to noise. In practice other functions or high or-
der cumulant may have to be used.

Here, we introduce the definition of “pairwise cumu-
lant” extended from high order cumulant for modeling the
binary relations among these complex cells. The form of
pairwise cumulant is defined as:

E
{(

g(si) + g(s j)
)2}

(2)

where the nonlinearity g(.) is strictly convex, even (rectify-
ing), and differentiable. The nonlinearity g(.) measures the
strength of coefficients, and a good choice is

g(s) = ln cosh(s) (3)

which is a more robust nonlinearity unlike the adverse sta-
tistical properties of four order cumulant. Then the form (2)
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gives E{(ln cosh si)2 + (ln cosh s j)2 + 2 ln cosh si ln cosh s j}.
The expectations of the first two terms measure sparseness
just as four order cumulant, and the expectation of the last
term measures nonlinear correlations.

In addition, a topography function is defined for repre-
senting spatial adjacency structures in complex cells. It is
based on topography of spatial organization of the cells, and
is given the form as

h(i, j) =

{
1 if ‖d(i) − d( j)‖ ≤ r and i � j

0 otherwise
(4)

where d(i) and d( j) denote the location of si and s j in the
topography, and r is a constant represented the width of the
neighborhood. In this paper, the function won’t be learnt,
and is fixed for simplicity.

For estimating the filters W in our work, we maximize
the pairwise cumulants among these components in topog-
raphy, and obtain the following objective function

arg max
wi

∑
k,k�i

h(i, k)E{(g(wT
i x) + g(wT

k x)
)2}

Subject to ‖w‖ = 1
(5)

Then some simple and frequently-used method, e.g.
stochastic gradient descent, can be employed to maximize
the object function. Besides, for making filters wi under
the constraint of unit norm and linear independence, an or-
thogonalization procedure must be performed after every it-
eration. In classic ICA, the orthogonalization procedures
require the filter set W is a square matrix, and are only ad-
equate for the complete learning. In overcomplete case —
the number of filters wi exceeds their self-dimensionality,
we combine the quasi-orthogonal estimation used in [8], [9].

The quasi-orthogonal estimation assumes that there is
much more place for vectors in high dimension data spaces.
It is possible to have more than n vectors that are practically
orthogonal in the n-dimensional space. When n is larger,
the number of quasi-orthogonal vectors grow and the an-
gles between these vectors are as close as 90 degrees. So
the following quasi-orthogonalization procedure will be per-
formed to maximize the angles between vectors wi after ev-
ery iteration:

1. Let W← 3
2

W − 1
2

WWT W

2. Normalize each w to unit norm
(6)

Note that it is approximate estimations for filters W because
of the assumption of quasi-orthogonality. We will show that
these overcomplete filters can give a good performance on
recognition.

3. Complex Cell Feature Extraction

Once parameter W are learnt, these filters will emerge topo-
graphic representation similar to the properties of complex
cells, and constitute unsupervised complex cell (UCC) de-
scriptors that are robust to minor variations of input data.

In accordance with information process of complex cell, the
invariant features can be extracted by our UCC descriptors
with the three steps:
(1) Computing the liner coefficients s of input by Eq. (1).
(2) Rectifying these coefficients si by the sigmoid function
and absolute value function.
(3) Computing a max or an average of the coefficients si

from the same descriptor to generate the final representa-
tions u.

Thus, the complex cell feature obtained by a UCC de-
scriptor Πi with max or average operations can be described
as

ui = max
w j∈Πi

(|sigmoid(wT
j x)|) (7)

or

ui = avg
w j∈Πi

(|sigmoid(wT
j x)|) (8)

Note that liner features can be obtained by the inner
products (Eq. (1)) because of the characteristic of ICA, and
no iterative algorithms need to be performed. So UCC de-
scriptors is more simple and efficient than traditional meth-
ods, e.g. sparse coding based descriptors.

4. Experiments

Our experiments include three parts. First, we use the pro-
posed algorithm to learn overcomplete the topographic rep-
resentation from nature image. Second, we study the invari-
ance of these learnt representation to object transformations.
Finally, Caltech-101 database is used to test their discrimi-
native power on object recognition.

4.1 Overcomplete Topographic Representation

The 50000 image patches of size 16 × 16 pixels sampled
from 13 nature images† are used as training data for our al-
gorithm. In the preprocess, these patches are removed mean
and whitened by Principal Component Analysis (PCA), and
the dimension of the data vectors is down to 196. In the re-
sults shown below, the inverse of these preprocessing steps
is performed. Besides, the topography function h(i, k) labels
the neighbors of component si to 1 in the 5×5 neighborhood.

We train 512 filters, which is overcomplete, by the
stochastic gradient descent with 600 iterations. Learning is
quite rapid — less than half an hour to reach convergence.
Figure 1 shows the learnt filters organized a topographic
map. First, they are localized, oriented, and bandpass filters
resembling Gabor-like filters. In addition, it demonstrates a
clear topography of filters with local continuity of orienta-
tion, frequency, and location, whereas the phases seem to be
random. These representations conform to the properties of
complex cell spatial receptive fields in V1.

†Available on www.cis.hut.fi/projects/ica/data/images/
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Fig. 1 A learnt 32 × 16 filter map. These filters located in the red box group a UCC descriptor Πi.

Fig. 2 NMSE results between the features of generated stimulus and its
translation. The operations used in UCC descriptors are specified in paren-
theses.

4.2 UCC Descriptor and Its Invariance

We set 5 × 5 subregion which is identical to the neighbor-
hood size used in learning, and choose 128 subregions over-
lapped by three filters both horizontally and vertically from
the learnt filters map. These filters, located in a same subre-
gion, have similar properties and belong to a same UCC de-
scriptor as shown in Fig. 1. So we obtain 128 UCC descrip-
tors which can produce 128-dimensional features similar to
Scale-Invariant Feature Transform (SIFT) [7] and IPSD de-
scriptors.

Then, Gabor functions are used as stimulus to test the
invariance of UCC descriptors under horizontal and verti-
cal translations. There are 2925 Gabor stimulus randomly
generated in the center location, and then normalized mean
squared errors (NMSE) are compared between the features
of generated stimulus and features of its translation, aver-
aged over all of these generated stimulus. Figure 2 shows
the NMSE results obtained by the 128 learnt UCC descrip-
tors. For comparison, we employ 128 ICA filters as descrip-
tors and their testing results are also given. It can be seen
that the features produced by UCC descriptors with max or
average operations are robust to minor variations of input
data, whereas, liner features produced by ICA filters are not
invariant — a small change in the input results in a large
change in the representations.

4.3 Object Recognition

In this experiment, the performance of UCC descriptors
on the recognition task is tested using the well known
Caltech-101 database. The Caltech-101 database contains
102 classes (101 categories of objects as well as a back-
ground class) with high shape variations. We follow the
common experiment setup for Caltech-101, training on 30
images per category and testing on 30 images per category
randomly. Each image is converted to gray-scale and is pre-
processed by removing the image mean and normalizing the
pixel values so that their standard deviation is equal to 1.

By employing the 128 UCC descriptors obtained from
the 32× 16 topographic map with corresponding the feature
extraction method described in Sect. 3, the detailed feature
extraction procedure is as follows:
(1) Extracting complex cell features on 16 × 16 image
patches spaced by 4 pixels over each image to produce 128
feature maps of size 32 × 32.
(2) A locally normalized step is performed by using a 5 × 5
Gaussian window and a 5 × 5 boxcar filter to smooth the
feature maps.
(3) The dimensionality of the representations is further re-
duced to 3060 components by PCA.
(4) Finally, the 3060-dimensionality representations are fed
to a linear SVM classifier with the “one against all” tech-
nique.

This architecture is similar to that of IPSD and SIFT
used in [1], as shown in Fig. 3. Table 1 gives the av-
erage recognition results of different descriptors. It turns
out that UCC descriptors achieve powerful performance on
recognition, which confirms UCC descriptors give invari-
ant features as well as good intrinsic representations of ob-
jects. Besides, UCC descriptors, which belong to unsuper-
vised learned descriptors, embody the statistic characteris-
tics of objects and outperform these hand-designed descrip-
tors, e.g. SIFT and C2 features. Finally, the UCC descrip-
tors with average operation achieve the better accuracy in
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Fig. 3 The architecture of feature extraction for object recognition.

Table 1 Recognition rate comparison on Caltech-101.

Descriptor Average Rate (%)
UCC (max/average) 51.4/53.1

IPSD [1] 50.9
SIFT [1], [7] 51.2

(without orientation invariance)
SIFT [1], [7] 45.7

(with orientation invariance)
C2 features [6] 47.1

this task. The excellent performance of average operation is
also approved by Jarrett et al. [10].

5. Conclusion

A simple overcomplete algorithm is developed for learn-
ing topographic representations from nature images. Exper-
iments confirm that these learnt filters resemble receptive
fields of complex cells, and bring a measure of invariance
against the change of input. Though fast and simple pro-
cedures both in training and inference, our approach gives
the internal and invariance representations of objects. Clas-
sification results demonstrate state-of-the-art performances
using SVM classifiers, and also show the superiority of com-
plex cells modeling for solving recognition task.

Further work to improve the performance of recogni-

tion is shown as the following aspects: introducing spatial
pyramid techniques, building a multi-stage architecture of
feature extraction, and developing a supervised learning al-
gorithm.
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