
1510
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

LETTER

Quantization-Based Approximate Nearest Neighbor Search with
Optimized Multiple Residual Codebooks

Yusuke UCHIDA†a), Koichi TAKAGI†, and Ryoichi KAWADA†, Members

SUMMARY Nearest neighbor search (NNS) among large-scale and
high-dimensional vectors plays an important role in recent large-scale mul-
timedia search applications. This paper proposes an optimized multiple
codebook construction method for an approximate NNS scheme based on
product quantization, where sets of residual sub-vectors are clustered ac-
cording to their distribution and the codebooks for product quantization
are constructed from these clusters. Our approach enables us to adaptively
select the number of codebooks to be used by trading between the search
accuracy and the amount of memory available.
key words: approximate nearest neighbor search, product quantization

1. Introduction

Nearest neighbor search in a high-dimensional space plays
an important role in many computer vision algorithms and
applications, where high-dimensional feature vectors such
as SIFT [1] or GIST [2] are frequently used. Given a set of
data points in a metric space and a query point in the same
metric space, NNS is defined as the problem of identifying
the data point(s) nearest to the query point. In this paper, we
focus on Euclidean space NNS, which is relevant to many
applications.

The kd-tree [3] is one of the best solutions for NNS in
a low-dimensional space, while its effectiveness declines as
dimensionality increases due to the so-called curse of di-
mensionality. For the sake of dealing with this problem,
approximate approaches such as ANN [4] or LSH [5] have
attracted much attention. In approximate NNS, a search re-
sult cannot be the exact nearest neighbor point with a prob-
ability that is characterized by the parameters of approxi-
mate NNS algorithms. It is reported that a randomized kd-
tree algorithm [6], [7] and a hierarchical k-means tree algo-
rithm show better performance over ANN and LSH [8]. The
randomized kd-tree algorithm constructs multiple random-
ized kd-trees, and these trees are explored simultaneously
according to a single priority queue. The priority is deter-
mined by the distance between a query point and each bin
boundary in the kd-trees (best-bin-first). The hierarchical k-
means tree algorithm also explores the hierarchical k-means
tree in a best-bin-first manner based on the distance between
a query point and each branch node in the tree. The algo-
rithm referred to as FLANN [8] optimally selects random-
ized kd-tree or hierarchical k-means tree for the indexing

Manuscript received October 8, 2010.
Manuscript revised December 27, 2010.
†The authors are with KDDI R&D Laboratories Inc.,

Fujimino-shi, 356–8502 Japan.
a) E-mail: ys-uchida@kddilabs.jp

DOI: 10.1587/transinf.E94.D.1510

according to the given data distribution and the user’s re-
quirements, and it provides fully automated parameter se-
lection. Recently, the product quantization based method
has been proposed and it has been shown that it outperforms
FLANN and LSH in terms of the trade-off between accuracy
and search speed [9]. The most important advantage of this
approach is memory efficiency. It stores only short codes
created from feature vectors instead of keeping all feature
vectors in the memory. It has a significant impact on large-
scale multimedia search, where it is impossible to store all
feature vectors in the main memory.

In addition to the product quantization based method,
several methods have been proposed for generating effi-
cient short codes: random orthogonal projection (ROP) [10],
principal component analysis (PCA) [10], spectral hashing
(SH) [11], and transform coding with optimized bit alloca-
tion [12]. The product quantization based method has been
shown to achieve the best performance among the methods
mentioned above [9], [12]. This is because these methods
basically rely on scalar quantization and product quantiza-
tion essentially outperforms scalar quantization in terms of
the trade-off between code length and quantization error [9].

In this paper, focusing on large-scale multime-
dia search, an optimized multiple codebook construction
method for an approximate NNS scheme based on prod-
uct quantization is proposed. It enables the utilization of
an arbitrary number of codebooks in product quantization,
while only a single codebook can be used in the conven-
tional scheme. Use of a larger number of codebooks in-
creases the accuracy of NNS at the expense of increased
memory requirements. In practice, one can select the num-
ber of codebooks based on the trade-off between the desired
search accuracy and available memory.

2. Approximate NNS Based on Product Quantization

In this section, we briefly review the product quantization
based method [9] and its problems. In this algorithm, a ref-
erence vector is decomposed into S low-dimensional sub-
spaces and these sub-vectors are quantized separately into
a short code, which is composed of their subspace quanti-
zation indices. The distance between a query vector and a
reference vector is approximated by the distance between a
query vector and the short code of a reference vector.

The product quantization based scheme can be inte-
grated with an inverted index, referred to as IVFADC in [9],
which enables it to avoid exhaustive searches. In IVFADC, a

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

LETTER
1511

reference vector is first quantized by a coarse quantizer with
the size of N, then the residual vector from the correspond-
ing centroid is encoded into a short code by product quanti-
zation. The distance between a query vector and a reference
vector is approximated by the distance between the residual
vector of a query vector and the short code of a reference
vector. In [9], a residual sub-vector is quantized by a single
codebook irrespective of the cell that each vector is quan-
tized into, which results in increasing quantization error and
degrades search accuracy, because these cells have differ-
ent residual sub-vector distributions. On the other hand, if
each cell has an identical codebook for product quantiza-
tion for better search accuracy, the memory requirements
for the codebooks become very large relative to the num-
ber of cells N in the coarse quantization. This requirement
would be intractable in some situations where large N (e.g.,
from 10 K to 1 M in [6]) is often used. For example, as-
suming that N = 100 K, each codebook has 256 centroids
and 128-dimensional SIFT features are indexed, it requires
100 K×256×128∼3 G byte memory to store only the resid-
ual sub-vector codebooks.

3. Proposed Approach

This paper proposes the use of an arbitrary number (1 <
M < N) of codebooks in product quantization (Fig. 1 (b))
instead of using 1 codebook or N codebooks (Fig. 1 (a) or
(c)), which provides a trade-off between search accuracy and
the memory requirements for the codebooks. An algorithm
to create optimized codebooks for arbitrary M is also pro-
posed, where N sets of residual sub-vectors are clustered
into M clusters and M codebooks are created from these
clusters. The notation used in this paper is shown in Table 1.

3.1 Multiple Codebook Construction for Product Quanti-
zation

In this section, the codebook construction scheme is de-
scribed. It includes constructing the codebook C for the
coarse quantization, S ×M codebooksDs,m (1 ≤ s ≤ S , 1 ≤
m ≤ M) for the residual sub-vector encoding and the table
TID[s][n] which indicates the codebook identifier m̂, i.e., the
s-th residual sub-vector in the n-th cell in the coarse quanti-
zation should be encoded by the codebookDs,m̂.

Let F denote a set of training vectors with dimension
D. We first construct the codebook C by clustering F into N
clustersF1, · · · ,FN and calculating the centroids c1, · · · , cN .
Then the residual vector sets R1, · · · ,RN are created from
F1, · · · ,FN as

Rn = {f − cn | f ∈ Fn}. (1)

These residual vectors are decomposed into S residual sub-
vectors with dimension D/S for product quantization. Let
Rn,s denote a set of s-th residual sub-vectors in the n-th cell.
Our objective is to create M codebooks Ds,1, · · · ,Ds,M for
each s ∈ [1, S] that minimize the sum of squared errors in

(a) M = 1

(b) 1 < M < N

(c) M = N

Fig. 1 N (= 5) residual sub-vector distributions and M codebooks.

Table 1 Notations.

D dimension of vector space
N codebook size of coarse quantizer

C = {cn}Nn=1 codebook of coarse quantizer,
where cn ∈ RD

S number of residual vector decomposition
M number of codebooks for each residual sub-vector
L codebook size of residual sub-vector quantizer

Ds,m = {ds,m,l}Ll=1 codebook of residual sub-vector quantizer,
where ds,m,l ∈ RD/S

the quantization of R1,s, · · · ,RN,s using their optimal code-
books:

minimize

⎛⎜⎜⎜⎜⎜⎝
N∑

n=1

min
1≤m≤M

e(Rn,s,Ds,m)

⎞⎟⎟⎟⎟⎟⎠ , (2)

where e(Rn,s,Ds,m) indicates the sum of squared errors in
quantizing a set of sub-vectors Rn,s using the codebook
Ds,m:

e(Rn,s,Ds,m) =
∑

r∈Rn,s

min
d∈Ds,m

||r − d||2. (3)

We propose to iteratively optimize the codebooks {Ds,m}Mm=1
for each s ∈ [1, S] by the following procedure. It corre-
sponds to clustering {Rn,s}Nn=1 into M clusters via the code-
books {Ds,m}Mm=1.

1. Randomly select M sets of sub-vectors {R f (m),s}Mm=1 out
of N sets of sub-vectors {Rn,s}Nn=1, where f (·) indicates
a random permutation.

1512
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

2. For each m ∈ [1,M], initialize codebook Ds,m by clus-
tering R f (m),s into L centroids.

3. For each n ∈ [1,N], assign a set of sub-vectors Rn,s to
optimal codebookDs,m̂, where m̂ is determined by

m̂ = argmin
m

e(Rn,s,Ds,m). (4)

The identifier m̂ is also stored in the table TID[s][n].
4. For each m ∈ [1,M], update codebookDs,m by cluster-

ing all sets of sub-vectors that are assigned to Ds,m in
Step 3 into L centroids.

5. Iterate Step 3 and Step 4 until
∑N

n=1 minm e(Rn,s,Ds,m)
converges.

Codebook C, S × M codebooks Ds,m (1 ≤ s ≤ S , 1 ≤
m ≤ M) and the table TID created in this procedure are used
in both indexing and searching procedures.

3.2 Indexing Using Multiple Codebooks

In the indexing procedure, input reference vectors are en-
coded into short codes and stored in the inverted index. This
step is almost the same as described in [9] except for the use
of multiple codebooks in residual sub-vector quantization in
our scheme. First, each input vector y is quantized using the
codebook C by

n̂ = arg min
n
||y − cn||2. (5)

Then, residual vector r of y is calculated by

r = y − cn̂. (6)

The residual vector r is divided into S sub-vectors r1, · · · ,
rS . Each residual sub-vector rs (1 ≤ s ≤ S) is quantized
into l̂s using the pre-defined codebook Ds,m̂, where m̂ =
TID[s][n̂]:

l̂s = arg min
l
||rs − ds,m̂,l||2. (7)

Finally, the code of S -tuple (l̂1, · · · , l̂S) is stored in the n̂-th
list of the inverted index with the vector identifier.

3.3 Approximate NNS Using Multiple Codebooks

In the search step, for each input query vector x, the system
returns the k-nearest neighbor vectors for k-NN search or
the vectors with the distance less than ε for range search.
This is performed by calculating the approximate distance
ḋ(x, y) between query vector x and reference vector y in the
inverted index. First, query vector x is quantized using the
codebook C by

n̂ = arg min
n
||x − cn||2. (8)

The residual vector r of y is calculated and divided into S
sub-vectors r1, · · · , rS . Then, the distance table TDIST[s][l]
(1 ≤ s ≤ S , 1 ≤ l ≤ L) is created for subsequent distance
calculations:

TDIST[s][l] = ||rs − ds,m̂,l||2, (9)

where m̂ = TID[s][n̂]. Finally, the approximate distances
between the query vector and the reference vectors in the
n̂-th list of the inverted index are calculated. The distance
between the query vector x and the reference vector y with
code (l1, · · · , lS) is efficiently calculated using the lookup
table:

ḋ(x, y) =
S∑

s=1

TDIST[s][ls]. (10)

The search result is a set of top k-nearest reference vectors
in the approximate distance for k-NN search or a set of ref-
erence vectors {yi} that satisfies ḋ(x, yi) ≤ ε for range search.

4. Experimental Results

4.1 Experimental Setup

In our experiments, local SIFT descriptor [1], which is one
of the most frequently used features in the area of image
retrieval, is used as a dataset. These SIFT descriptors are
extracted from randomly selected pictures on Flickr. The
dataset consists of 1,000,000 reference vectors and 10,000
query vectors. The following parameters are used in the ex-
periments: D = 128, N = 1000, S = 8, M ∈ [1, 1000] and
L = 256.

4.2 The Impact of M on RMSE in Product Quantization

In this section, we evaluate our method in terms of root mean
square error (RMSE) in optimizing the codebooks {Ds,m}.
RMSE corresponds to the upper bound of the distance be-
tween estimated distance and true distance in the searching
procedure [9]. Figure 2 shows RMSE at each iteration step
(calculated after Step 4) for M = 1, 2, · · · , 64. Note that the
norm of the SIFT descriptor is normalized to 1 here. It is
found that each iteration optimizes the codebooks properly.
The impact of the optimization is relatively large in case
1 � M � N and the optimization almost converges at the
first iteration in larger M where the room for optimization

Fig. 2 Root mean squared error after each iteration.

LETTER
1513

Fig. 3 Root mean squared error for each M.

is relatively small. Figure 3 shows RMSE for each M after
20 iterations. It shows the proposed scheme provides a good
trade-off between RMSE and M, where M is in proportion
to the amount of required memory for the codebooks {Ds,m}.
RMSE continues to decline as M becomes larger, which im-
plies the distributions of sub-vectors in a coarse quantiza-
tion cell are quite different from one another. This observa-
tion encourages a product quantization based scheme to use
multiple codebooks for more accurate search results.

4.3 Approximate NNS Accuracy

In this section, the search accuracy of the proposed method
is evaluated. The search quality is measured with recall@R
in the same way as [9]. It indicates the proportion of query
vectors for which the correct nearest neighbor is ranked in
the first R-nearest neighbors. Figure 4 shows Recall@R for
R = 10, 20, 30 and 40. Here w indicates the number of
searched lists in the inverted index. Instead of searching
the single n̂-th list obtained from Eq. (8), w lists correspond-
ing to the w-nearest neighbors of x in the coarse quantiza-
tion should be searched. In this case, computational cost
in the search procedure becomes w times larger, providing
more accurate search results. In both cases and for each
R, the proposed method provides a good trade-off between
search accuracy and the memory requirements. Again, M
is in proportion to the amount of required memory for the
codebooks.

4.4 Computational Complexity

The approximate NNS with multiple codebooks has the
same computational complexity as [9] in the search step.
For very high-dimensional vectors, PCA is applicable as a
preprocessing step to reduce computational complexity [13].

In constructing codebooks, although this is an off-line
procedure, it takes much more time than the time required in
constructing a single residual codebook in proportion to M
(about 10 hours for M = 256 using a machine with a Core 2
Quad 3 GHz CPU in a single-thread program).

(a) w = 1

(b) w = 10

Fig. 4 Recall@R.

Fig. 5 Utilization rates of M codebooks.

4.5 Utilization Rates

Figure 5 shows utilization rates of M codebooks for each
M = 1, 2, · · · , 256, and 1000 (only the rates of codebooks
for first residual subvectors (s = 1) are shown). Here the
utilization rate of a codebook represents the proportion of
residual subvectors encoded by the codebook. In the case
where M = N = 1000, the distribution of the utilization
rates correspond to the distribution of N words, which fol-
lows Zipf’s law [14]. Figure 5 indicates that most codebooks
are used efficiently: in the case where M = 64, the utiliza-
tion rate of 43 out of 64 codebooks is greater than one-half

1514
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.7 JULY 2011

of the average (1/128), while several codebooks have very
low utilization rates.

5. Conclusion

An optimized multiple codebook construction method for
an approximate NNS scheme based on product quantiza-
tion is proposed that enables it to use an arbitrary number
of codebooks in product quantization. Experimental results
show that the proposed method provides a good trade-off
between search accuracy and memory requirements for the
codebooks, realizing the optimization of search accuracy
according to available memory resources. Future work in-
cludes the application of the proposed method to an image
retrieval task and its performance evaluation.

References

[1] D.G. Lowe, “Distinctive image features from scale-invariant key-
points,” Int. J. Comput. Vis., vol.60, no.2, pp.91–110, 2004.

[2] A. Oliva and A. Torralba, “Modeling the shape of the scene: A
holistic representation of the spatial envelope,” Int. J. Comput. Vis.,
vol.42, no.3, pp.145–175, 2001.

[3] J.H. Friedman, J.L. Bentley, and R.A. Finkel, “An algorithm for find-
ing best matches in logarithmic expected time,” ACM Trans. Math.
Softw., vol.3, no.3, pp.209–226, 1977.

[4] S. Arya, D.M. Mount, N.S. Netanyahu, R. Silverman, and A.Y. Wu,
“An optimal algorithm for approximate nearest neighbor searching
in fixed dimensions,” JACM, vol.45, no.6, pp.891–923, 1998.

[5] A. Andoni, “Near-optimal hashing algorithms for approximate near-
est neighbor in high dimensions,” Proc. FOCS, pp.459–468, 2006.

[6] J. Philbin, O. Chum, M. Isard, J. Sivic, and A. Zisserman, “Object
retrieval with large vocabularies and fast spatial matching,” Proc.
CVPR, 2007.

[7] C. Silpa-Anan and R. Hartley, “Optimised kd-trees for fast image
descriptor matching,” Proc. CVPR, 2008.

[8] M. Muja and D.G. Lowe, “Fast approximate nearest neighbors with
automatic algorithm configuration,” Proc. VISAPP, 2009.

[9] H. Jégou, M. Douze, and C. Schmid, “Product quantization for
nearest neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol.33, no.1, pp.117–128, 2011.

[10] H. Jégou, M. Douze, and C. Schmid, “Improving bag-of-features for
large scale image search,” Int. J. Comput. Vis., vol.87, no.3, pp.316–
336, 2010.

[11] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” Proc.
NIPS, 2008.

[12] J. Brandt, “Transform coding for fast approximate nearest neighbor
search in high dimensions,” Proc. CVPR, 2010.

[13] H. Jégou, M. Douze, C. Schmid, and P. Pérez, “Aggregating local de-
scriptors into a compact image representation,” Proc. CVPR, 2010.

[14] J. Yang, Y.G. Jiang, A.G. Hauptmann, and C.W. Ngo, “Evaluating
bag-of-visual-words representations in scene classification,” Proc.
MIR, pp.197–206, 2007.

