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Hypercomplex Polar Fourier Analysis for Image Representation

Zhuo YANG†a), Nonmember and Sei-ichiro KAMATA†b), Member

SUMMARY Fourier transform is a significant tool in image processing
and pattern recognition. By introducing a hypercomplex number, hyper-
complex Fourier transform treats a signal as a vector field and generalizes
the conventional Fourier transform. Inspired from that, hypercomplex po-
lar Fourier analysis that extends conventional polar Fourier analysis is pro-
posed in this paper. The proposed method can handle signals represented by
hypercomplex numbers as color images. The hypercomplex polar Fourier
analysis is reversible that means it can be used to reconstruct image. The
hypercomplex polar Fourier descriptor has rotation invariance property that
can be used for feature extraction. Due to the noncommutative property of
quaternion multiplication, both left-side and right-side hypercomplex polar
Fourier analysis are discussed and their relationships are also established
in this paper. The experimental results on image reconstruction, rotation
invariance, color plate test and image retrieval are given to illustrate the
usefulness of the proposed method as an image analysis tool.
key words: hypercomplex polar Fourier analysis, hypercomplex polar
Fourier descriptor, rotation invariance, image representation

1. Introduction

Fourier transforms have been widely used in image process-
ing, pattern recognition and other engineering fields [1]. By
representing image as hypercomplex numbers, especially
the quaternions discovered by Hamilton [2], Hypercomplex
Fourier transform is proposed as generalization of quater-
nion Fourier transform for color image processing [3], [4].
Efficient algorithm for quaternion Fourier transform is dis-
cussed by using two complex two dimensional Fourier trans-
forms [5]. The relationship between right-side quaternion
Fourier transform and left-side quaternion Fourier transform
is established [6]. Fourier transform for biquaternion-valued
signals and its fast algorithm that based on four complex
two dimensional Fourier transforms is proposed [7]. Based
on hypercomplex Fourier transform, effective algorithms for
motion estimation in color image sequences are studied [8].
Quaternion Fourier-Mellin moments are proposed as rota-
tion and scale invariant feature by using quaternion Fourier
transform [9]. Rather than separating a color image into sev-
eral scalar images, Hypercomplex Fourier transform treats it
as vector field and acts as holistic manner.

By applying Fourier analysis to polar and spherical
coordinates, Polar Fourier Descriptor (PFD) and Spherical
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Fourier Descriptor (SFD) are proposed as rotation invari-
ant descriptors for analyzing 2D and 3D images, and they
demonstrated superior performances comparable with other
methods [10]. PFD introduces Foureir-Bessel series that is
mainly used on physics-related applications [11], [12] to im-
age analysis. Different from other Fourier descriptors that
have been used for shape description [13] and image re-
trieval [14], [15], PFD and SFD hold orthogonal property
and can characterize the image using a set of mutually in-
dependent functions. Unfortunately, the high computational
complexity is the constraint for widely use because the coef-
ficients computation involves many Bessel function, associ-
ated Legendre polynomials [16] and trigonometric compu-
tations. Our previous work [17] studied fast algorithms to
reduce the computational complexity.

This paper focuses on hypercomplex polar Fourier
analysis and its properties. Inspired by the hypercomplex
Fourier transforms, we establish theory for polar Fourier
analysis with hypercomplex numbers representation. The
proposed transform is reversible that means can be used for
signal reconstruction as shown in Fig. 1. Hypercomplex Po-
lar Fourier Descriptor (HPFD) is proposed as rotation in-
variant feature that can be used to represent image visual
patterns. HPFD is not scale invariant comparing to [9].
Due to non commutative property of hypercomplex multi-
plication, both left-side and right-side hypercomplex polar
Fourier analysis are studied. The proposed method treats
image in a holistic manner and visual patterns are directly
extracted from color images. To demonstrate the usefulness
of proposed method as image analysis tool, experiments like
image reconstruction, color plate test and image database re-
trieval are designed.

The organization of this paper is as follows. The ba-
sic theories of polar Fourier analysis, quaternion number
and hypercomplex Fourier transform including mathematics
descriptions are provided in Sect. 2. The proposed hyper-
complex polar Fourier analysis with its properties are pre-
sented in Sect. 3. In Sect. 4, three experiments are designed
to demonstrate the properties of the proposed method. The
experimental results illustrate the effectiveness of our pro-
posed method. Finally, Sect. 5 concludes this study.

2. Background

In this section, introductions about polar Fourier analysis,
hypercomplex number and hypercomplex Fourier transform
are given.

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers
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(a) Original Image (b) n = 5 (c) n = 10 (d) n = 20

(e) n = 40 (f) n = 60 (g) n = 80 (h) n = 100

Fig. 1 Image reconstruction using hypercomplex polar Fourier analysis.

2.1 Polar Fourier Analysis

Given a 2D image function f (x, y), it can be transformed
from cartesian coordinates to polar coordinates f (r, ϕ),
where r and ϕ denote radius and azimuth respectively. It
is defined on the unit circle that r ≤ 1, and can be expanded
with respect to the basis functions Ψnm(r, ϕ) as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

PnmΨnm(r, ϕ), (1)

where the coefficient is

Pnm =

∫ 1

0

∫ 2π

0
f (r, ϕ)Ψ∗nm(r, ϕ)rdrdϕ. (2)

The basis function is given by

Ψnm(r, ϕ) = Rnm(r)Φm(ϕ), (3)

where

Rnm(r) =
1√
N(m)

n

Jm(xmnr), (4)

in which Jm is the m-th order first class Bessel series [16],
and

Φm(ϕ) =
1√
2π

eimϕ. (5)

N(m)
n can be deduced by imposing boundary conditions ac-

cording to the Sturm-Lioville (S-L) theory [18]. Two bound-
ary conditions are interesting. With zero-value boundary
condition,

N(m)
n =

1
2

J2
m+1(xmn), (6)

in which xmn is the nth positive root for Jm(x). With deriva-

tive boundary condition,

N(m)
n =

1
2

(
1 − m2

x2
mn

)
J2

m(xmn), (7)

in which xmn is the nth positive root for J′m(x).
Rewrite (2) with (3)–(7),

Pnm =
1√
2π

∫ 1

0

∫ 2π

0
f (r, ϕ)Rnm(r)e−imϕrdrdϕ. (8)

|Pnm| is rotation invariant and is called Polar Fourier De-
scriptors (PFD). Pnm is complex number and its real part
is

Re(Pnm) =
1√
2π

∫ 1

0

∫ 2π

0
f (r, ϕ)Rnm(r) cos(mϕ)rdrdϕ,

(9)

and its imaginary part is

Im(Pnm) =
1√
2π

∫ 1

0

∫ 2π

0
f (r, ϕ)Rnm(r) sin(−mϕ)rdrdϕ,

(10)

these two equations are used to deduce the relationship be-
tween Hypercomplex polar Fourier descriptor and conven-
tional PFD as shown in Sect. 3.4. By using mathemat-
ical properties of trigonometric functions and associated
Legendre polynomials, fast algorithms [17] are proposed to
compute Pnm efficiently from digital images. Its computa-
tion time is one eighth of traditional one [10].

2.2 Quaternion Number

As a type of hypercomplex number and generalization of
complex number, the quaternion was formally discusses by
Hamilton in 1843 [2]. Its properties and applications have
been studied [19]. Complex number has two components,
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the real part and imaginary part. Quaternion has one real
part and three imaginary parts. Given a, b, c, d ∈ R, a quater-
nion q ∈ H (H denotes Hamilton) is defined as

q = S(q) +V(q),S(q) = a,V(q) = bi + c j + dk (11)

where S(q) is scalar part and V(q) is vector part. i, j, k are
imaginary operators obeying the following rules

i2 = j2 = k2 = −1, i j = − ji = k,

jk = −k j = i, ki = −ik = j,
(12)

From Eq. (12), the multiplication rule of quaternions is not
commutative. The conjugate of a quaternion q is

q = S(q) −V(q) = a − bi − c j − dk. (13)

The norm of quaternion q is

‖q‖ =
√

a2 + b2 + c2 + d2. (14)

Quaternion q is named as unit quaternion if it is in set

U = {q|q ∈ H, ‖q‖ = 1}. (15)

If quaternion q in following set,

P = {q|q ∈ H,S(q) = 0}, (16)

it is called pure quaternion. The quaternions belonging to
set

S = {q|q ∈ U, q ∈ P}, (17)

are called unit pure quaternion. For two quaternions p and
q, following rule holds

p · q = q · p. (18)

Euler formula holds for hypercomplex numbers,

eμφ = cos(φ) + μ sin(φ) (19)

We also have: ‖eμφ‖ = 1. The quaternion q can be repre-
sented in polar form: q = ‖q‖eμφ.

Color image can be represented in pure quaternion
form [4]

f (x, y) = fR(x, y)i + fG(x, y) j + fB(x, y)k, (20)

where fR(x, y), fG(x, y) and fB(x, y) are the red, green and
blue components of the pixel, respectively.

2.3 Hypercomplex Fourier Transform

As the generalization of traditional Fourier transform, hy-
percomplex Fourier transform, its extensions and applica-
tions are studied [3]–[8]. Because of the noncommutative
property of quaternion multiplication, three definitions for
quaternion Fourier transform (QFT) are defined. The QFTs
are defined by placing the integral kernels on the left side,
right side and two sides of a quaternion function f (x, y).
Left-side QFT is defined as,

F(l)(ω, ν) =
∫ ∞

−∞

∫ ∞

−∞
e−μ1(ωx+νy) f (x, y)dxdy, (21)

right-side QFT is defined as,

F(r)(ω, ν) =
∫ ∞

−∞

∫ ∞

−∞
f (x, y)e−μ1(ωx+νy)dxdy, (22)

two-sides QFT is defined as,

F(t)(ω, ν) =
∫ ∞

−∞

∫ ∞

−∞
e−μ1ωx f (x, y)e−μ2νydxdy, (23)

where μ1 and μ2 are two unit pure quaternions that are or-
thogonal. Their relationships are studied [6].

3. Hypercomplex Polar Fourier Analysis and Its Prop-
erties

Inspired by Hypercomplex Fourier transform, we propose
Hypercomplex Polar Fourier analysis. By introducing hy-
percomplex number to polar Fourier analysis, we define the
transform function in Sect. 3.1. Its rotation invariance prop-
erty is introduced in Sect. 3.2. In Sect. 3.3 relationship be-
tween right-side hypercomplex polar Fourier analysis and
left-side hypercomplex polar Fourier analysis is established.
Expansion of hypercomplex Polar Fourier analysis and its
relationship with conventional Polar Fourier analysis are
discussed in Sect. 3.4.

3.1 Hypercomplex Polar Fourier Descriptor

Given a 2D function f (x, y), it can be transformed from
cartesian coordinate to polar coordinate f (r, ϕ), where r and
ϕ denote radius and azimuth respectively. The following
equations transform from cartesian coordinate to polar co-
ordinate,

r =
√

x2 + y2, (24)

and

ϕ = arctan
y
x
. (25)

Hypercomplex Polar Fourier analysis involves points within
the largest inner circle of the image. After normalization,
it is defined on the unit circle that r ≤ 1 and can be ex-
panded with respect to the basis function. Due to the non-
commutative property of quaternion multiplication, here we
define left-side Hypercomplex Polar Fourier analysis and
right-side Hypercomplex Polar Fourier analysis.

Left-side Hypercomplex Polar Fourier analysis is de-
fined as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

Rnm(r)eμmϕHP(l)
nm, (26)

where the coefficient is

HP(l)
nm[ f (r, ϕ); μ]

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)e−μmϕ f (r, ϕ)rdrdϕ, (27)
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(a) (1, 1) (b) (1, 3) (c) (2, 1) (d) (2, 3)

(e) (3, 2) (f) (3, 4) (g) (4, 3) (h) (5, 2)

Fig. 2 Basic functions of HPFD.

where μ is unit pure quaternion and is defined as μ = 1√
3
i +

1√
3

j + 1√
3
k.

Right-side hypercomplex polar Fourier analysis is de-
fined as

f (r, ϕ) =
∞∑

n=1

∞∑
m=−∞

HP(r)
nmRnm(r)eμmϕ, (28)

where the coefficient is

HP(r)
nm[ f (r, ϕ); μ]

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r) f (r, ϕ)e−μmϕrdrdϕ. (29)

The basis functions with different m, n values are shown in
Fig. 2. Both left-hand hypercomplex polar Fourier analysis
and right-hand hypercomplex polar Fourier analysis are re-
versible. Figure 1 shown that by using HP(r)

nm, image can be
reconstructed. With n increases bigger, more detail part of
the image can be reconstructed.

3.2 Rotation Invariance

Given an image f (r, ϕ), after rotated by an angle α the image
is f (r, ϕ + α). We have

HPαnm =
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)e−μm(ϕ+α) f (r, ϕ + α)rdrdϕ

= e−μmα
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)e−μmϕ f (r, ϕ)rdrdϕ

= e−μmαHPnm. (30)

After applying norm operation, we have

‖HPαnm‖ = ‖e−μmαHPnm‖
= ‖e−μmα‖ · ‖HPnm‖ = ‖HPnm‖. (31)

As shown in Eq. (31), ‖HPnm‖ is rotation invariant and is
named as Hypercomplex Polar Fourier Descriptor (HPFD).
HPFD can be used to represent visual patterns. As hyper-
complex polar Fourier analysis uses hypercomplex number
representation, HPFD can directly represent patterns from
color image.

3.3 Relationship between Right-Side and Left-Side Hy-
percomplex Polar Fourier Analysis

In this subsection, we discuss about the relationship be-
tween right-side hypercomplex polar Fourier analysis coef-
ficient HP(r)

nm and left-side one HP(l)
nm. Following the con-

jugate quaternion multiplication rule as shown in Eq. (18),
conjugate operation is applied to HP(r)

nm,

HP(r)
nm[ f (r, ϕ); μ]

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r) f (r, ϕ)e−μmϕrdrdϕ

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)e−μmϕ · f (r, ϕ)rdrdϕ

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)eμmϕ · f (r, ϕ)rdrdϕ

= HP(l)
nm[ f (r, ϕ);−μ] (32)

Equation (32) shows that we can get right-side hyper-
complex polar Fourier analysis from left-side one. They
have equivalent effect on describing image patterns. In this
paper, we use right-side one and denoted as HPnm.

3.4 Expansion of HPnm

In this subsection, we discuss about the expansion of hyper-
complex polar Fourier analysis coefficient and its relation-
ship with conventional polar Fourier analysis coefficient. By
substitute Eqs. (9), (10), (19), and (20), we have

HPnm

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r) f (r, ϕ)e−μmϕrdrdϕ

=
1√
2π

∫ 1

0

∫ 2π

0
Rnm(r)( fRi + fG j + fBk)

(cos(−mϕ) + μ sin(−mϕ))rdrdϕ

= i(Re(Pnm( fR)) + μIm(Pnm( fR)))

+ j(Re(Pnm( fG)) + μIm(Pnm( fG)))

+ k(Re(Pnm( fr)) + μIm(Pnm( fB)))

= − 1√
3

(Im(Pnm( fR)) + Im(Pnm( fG)) + Im(Pnm( fB)))

+

{
Re(Pnm( fR)) +

1√
3

[Im(Pnm( fG)) − Im(Pnm( fB))]

}
i

+

{
Re(Pnm( fG)) +

1√
3

[Im(Pnm( fB)) − Im(Pnm( fR))]

}
j

+

{
Re(Pnm( fB)) +

1√
3

[Im(Pnm( fR)) − Im(Pnm( fG))]

}
k

(33)

Equation (33) shows that the relationship between hyper-
complex polar Fourier analysis coefficent and conventional
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one. Rather than single channel analysis, the proposed
method works in a holistic manner and directly extracts vi-
sual patterns from color images.

4. Experimental Results

Three experiments are given to demonstrate the usefulness
of the proposed method as a image analysis tool. The first
experiment is to test the rotation invariance of HPFD. The
second experiment is color plate test. The last experiment is
color image retrieval with HPFD.

Images with different content are tested to illustrate the
effectiveness and feasibility of the proposed method. PC
environment (Xeon 2.6 GHz, 2 G Memory) is used to per-
form these experiments. Following quaternion computation
rules [20], algorithms are implemented by C++ and com-
plied by gcc 4.3.2 on Linux 2.6.26. GNU Scientific Li-
brary [21] is used to calculate Bessel function and associated
Legendre polynomials.

4.1 Rotation Invariance Evaluation

The objective of this experiment is to evaluate the rotation
invariance property of HPFD. Eight standard images are
used for this experiment as shown in Fig. 3. All the images
are 256 × 256 pixels. As discussed in Eq. (31), magnitude
of HPFD denoted as ‖HPnm‖ is invariant under rotation. To
verify this property, relative error

ηnm =

∣∣∣∣∣ ‖HPnm‖ − ‖HPαnm‖
‖HPnm‖

∣∣∣∣∣ , (34)

is calculated. The smaller the relative error is, the better it
works under rotation.

As shown in Table 1, HPFD holds good invariance
property under rotation. PFDs of the R, G, B images are cal-
culated and integrated by average. The results are shown in

(a) (b) (c) (d)

(e) (f) (g) (h)

Fig. 3 Standard images for rotation invariance.

Table 2. From the tables we can observe that mean value and
standard deviation of HPFD relative error is smaller than
that of PFD relative error. This experiment shows the ro-
tation invariance property of HPFD and demonstrates that
processing color image in a holistic way is robust.

4.2 Color Plate

In this experiment, the purpose is to compare the proposed
HPFD and PFD for color plate test. As shown in Fig. 4 color
plate images were used for color blind test. Figures 4 (a)–
(d) are different images in color space. We can observe that
they represent 1, 2, 3 and 4 respectively. Unfortunately they
share same gray level image as shown in Fig. 4 (e). Both
HPFD {HPmn|m = 1, 2, 3, 4, 5, n = 1, 2, 3, 4, 5} and PFD
{Pmn|m = 1, 2, 3, 4, 5, n = 1, 2, 3, 4, 5} are extracted for these
four images. Features are extracted and compared with each
other by normalized cross correlation,

ncc(Pm, P) =

〈
Pm

‖Pm‖ ,
P
‖P‖

〉
, (35)

where 〈·, ·〉 is the inner product, ‖ · ‖ is the L2 norm and Pm

is the features of match image.
As shown in Table 3 PFD failed to classify these four

images. HPFD that process color image in a holistic way
can successfully discriminate color images as demonstrated
in Table 4.

(a) (b) (c) (d) (e)

Fig. 4 Color plate images.
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Table 1 Relative error of HPFD under rotation.

Image η11 η12 η13 η21 η22 η23 η31 η32 η33 Mean Stdev
a 0.016 0.014 0.091 0.015 0.011 0.180 0.040 0.047 0.048 0.027 0.036
b 0.014 0.004 0.016 0.003 0.007 0.002 0.026 0.048 0.010 0.024 0.033
c 0.012 0.046 0.020 0.001 0.022 0.011 0.010 0.034 0.021 0.015 0.011
d 0.007 0.001 0.002 0.007 0.001 0.023 0.012 0.005 0.060 0.025 0.037
e 0.035 0.052 0.055 0.001 0.007 0.045 0.041 0.009 0.021 0.026 0.035
f 0.006 0.013 0.040 0.019 0.009 0.008 0.016 0.176 0.007 0.029 0.040
g 0.004 0.004 0.003 0.014 0.021 0.032 0.011 0.012 0.032 0.022 0.030
h 0.005 0.002 0.010 0.002 0.003 0.023 0.019 0.015 0.004 0.020 0.028

Table 2 Relative error of PFD under rotation.

Image η11 η12 η13 η21 η22 η23 η31 η32 η33 Mean Stdev
a 0.032 0.014 0.105 0.017 0.024 0.182 0.108 0.052 0.049 0.033 0.039
b 0.012 0.010 0.064 0.004 0.007 0.001 0.027 0.037 0.017 0.035 0.051
c 0.013 0.039 0.021 0.003 0.025 0.012 0.010 0.035 0.019 0.018 0.011
d 0.011 0.006 0.003 0.027 0.009 0.024 0.024 0.019 0.064 0.038 0.058
e 0.041 0.052 0.075 0.003 0.015 0.053 0.071 0.009 0.047 0.038 0.054
f 0.005 0.041 0.042 0.055 0.009 0.006 0.096 0.353 0.009 0.042 0.064
g 0.004 0.029 0.003 0.015 0.023 0.062 0.015 0.016 0.031 0.033 0.046
h 0.017 0.023 0.009 0.016 0.042 0.021 0.061 0.016 0.023 0.031 0.043

Table 3 Similarity by PFD.

a b c d
a 1.000 1.000 1.000 1.000
b 1.000 1.000 1.000 1.000
c 1.000 1.000 1.000 1.000
d 1.000 1.000 1.000 1.000

Table 4 Similarity by HPFD.

a b c d
a 1.000 0.451 0.122 0.000
b 0.451 1.000 0.492 0.000
c 0.122 0.492 1.000 0.220
d 0.000 0.000 0.220 1.000

4.3 Color Image Retrieval

This experiment is designed to demonstrate effectiveness of
the proposed method HPFD for color image retrieval. Con-
tent based image retrieval uses visual patterns to analyze ac-
tual content of images. Local binary pattern (LBP) treats
images as local visual textures. By applying uniform op-
eration LBP achieves rotation invariance [23]. Coordinated
clusters representation (CCR) extracts spatial correlation be-
tween pixel intensities using the distribution function of the
occurrence of texture units [24]. CCR and LBP work on
gray image. Valuable information are lost by treating color
image as gray level. Extending CCR to color image by color
quantization, multilayer coordinated clusters representation
(ML-CCR) has better retrieval result [25].

In this experiment we use Outex image database [22]
that same as [25] (see Fig. 5). Outex image database is taken
by rotating hardware device by following angles 0◦, 5◦, 10◦,
15◦, 30◦, 45◦, 60◦, 75◦, 90◦. To search image database, pro-
posed retrieval algorithm works as following steps

1. For the images { fi(x, y)|i = 1, 2, . . .} in database, every

image is processed one by one;
2. Given an image, interest points {Ii|i = 1, 2, . . . ,T } are

extracted by interest points detector [26], where T is
total number of the interest points;

3. For image patch that is near interest point Ii within ra-
dius R, hypercomplex polar Fourier descriptor |HPnm|
is extracted, in our experiment 25 features (m =

1, 2, 3, 4, 5 and n = 1, 2, 3, 4, 5) are computed;
4. Normalized cross correlation as shown in Eq. (35) is

used to compare similarity of different image patches
when retrieve the images. If the ncc is larger than pre-
defined threshold τ. It is treated as matched image
patch;

5. Similarity between two images depends on the number
of total interest points T and the number of matched
ones M;

sim( fi(x, y), f j(x, y)) =
M
T
, (36)

6. The retrieved images are ordered by the similarity
value sim(·, ·).
The detail experimental results are shown in Table 5.

From the result we can observe that CCR and LBP work
in gray image. CCR performs worse than LBP with uni-
form operation. ML-CCR works better than CCR after
color quantization. Proposed image retrieval algorithm has
promising accuracy. By treating color image in a holistic
manner, proposed HPFD is effective for color textures and
performs better than PFD. In RGB color space proposed
algorithm using HPFD achieves best retrieval rate. This ex-
periment testifies the effectiveness of the proposed method
for color image retrieval.

5. Conclusions

In this paper, Hypercomplex Polar Fourier Analysis the-
ory is proposed and its applications are studied. Inspired
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Fig. 5 Outex color image database.

Table 5 Outex Image database retrieval.

Feature Color Space Mean 0◦ 5◦ 10◦ 15◦ 30◦ 45◦ 60◦ 75◦ 90◦
LBP Gray 0.705 0.706 0.707 0.687 0.699 0.713 0.711 0.713 0.720 0.684
CCR Gray 0.571 0.570 0.557 0.548 0.569 0.561 0.587 0.572 0.582 0.586
PFD Gray 0.902 0.915 0.924 0.928 0.915 0.897 0.893 0.888 0.875 0.880

ML-CCR RGB 0.848 0.863 0.860 0.842 0.833 0.855 0.840 0.857 0.854 0.827
ML-CCR HSV 0.880 0.892 0.887 0.892 0.882 0.898 0.880 0.878 0.866 0.846

HPFD RGB 0.929 0.933 0.946 0.937 0.946 0.933 0.915 0.924 0.911 0.920

by hypercomplex Fourier transform, hypercomplex number
theory is introduced to polar Fourier analysis. By treat-
ing image in a holistic manner, hypercomplex polar Fourier
analysis and mathematical properties are discussed. Hy-
percomplex Polar Fourier Descriptor that holds rotation in-
variance property is proposed. The relationship between
left-side and right-side Hypercomplex polar Fourier anal-
ysis is established. By expanding the hypercomplex po-
lar Fourier analysis coefficient, the relationship between the
proposed one and conventional one has been found. Exten-
sive experiments like image reconstruction, rotation invari-
ance evaluation, color plate test and image database retrieval
are designed to demonstrate the usefulness of the proposed
method. Based on the experimental results, we can find
that proposed method can extract valuable information from
color images. Future works focus on extensions for spheri-
cal Fourier analysis and fast algorithms.
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