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SUMMARY Let C be a set of colors, and let ω(c) be an integer cost
assigned to a color c in C. An edge-coloring of a graph G is to color all
the edges of G so that any two adjacent edges are colored with different
colors in C. The cost ω( f ) of an edge-coloring f of G is the sum of costs
ω( f (e)) of colors f (e) assigned to all edges e in G. An edge-coloring f of
G is optimal if ω( f ) is minimum among all edge-colorings of G. In this pa-
per, we show that the problem of finding an optimal edge-coloring of a tree
T can be simply reduced in polynomial time to the minimum weight per-
fect matching problem for a new bipartite graph constructed from T . The
reduction immediately yields an efficient simple algorithm to find an opti-
mal edge-coloring of T in time O(n1.5Δ log(nNω)), where n is the number
of vertices in T , Δ is the maximum degree of T , and Nω is the maximum
absolute cost |ω(c)| of colors c in C. We then show that our result can be
extended for multitrees.
key words: algorithm, cost edge-coloring, multitree, perfect matching, tree

1. Introduction

Let G = (V, E) be a graph with vertex set V and edge set
E, and let C be a set of colors. An edge-coloring of G is
to color all the edges in E so that any two adjacent edges
are colored with different colors in C. The minimum num-
ber of colors required for edge-colorings of G is called the
chromatic index, and is denoted by χ′(G). It is well-known
that Δ(G) ≤ χ′(G) ≤ Δ(G) + 1 for every simple graph G
and that χ′(G) = Δ(G) for every bipartite (multi)graph G,
where Δ(G) is the maximum degree of G [9]. The ordinary
edge-coloring problem is to compute the chromatic index
χ′(G) of a given graph G and find an edge-coloring of G us-
ing χ′(G) colors. Let ω be a cost function which assigns an
integer ω(c) to each color c ∈ C, then the cost edge-coloring
problem is to find an optimal edge-coloring of G, that is, an
edge-coloring f such that

∑
e∈E ω( f (e)) is minimum among

all edge-colorings of G. An optimal edge-coloring does not
always use the minimum number χ′(G) of colors. For ex-
ample, suppose that ω(c1) = 1 and ω(ci) = 5 for each index
i ≥ 2, then the graph G with χ′(G) = 3 in Fig. 1 (a) can be
uniquely colored with the three cheapest colors c1, c2 and
c3 as in Fig. 1 (a), but this edge-coloring is not optimal; an
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Fig. 1 (a) Edge-coloring using χ′(G) = 3 colors, and (b) optimal edge-
coloring using χ′(G) + 1 = 4 colors, where ω(c1) = 1 and ω(c2) = ω(c3) =
ω(c4) = 5.

optimal edge-coloring of G uses the four cheapest colors c1,
c2, c3 and c4, as illustrated in Fig. 1 (b). However, every
simple graph G has an optimal edge-coloring using Δ(G)
or Δ(G) + 1 colors [6], [8], and every bipartite (multi)graph
G and hence every tree has an optimal edge-coloring us-
ing Δ(G) (= χ′(G)) colors [1], [6]. The edge-chromatic sum
problem, introduced by Giaro and Kubale [5], is merely
the cost edge-coloring problem for the special case where
ω(ci) = i for each integer i ≥ 1.

The cost edge-coloring problem has a natural applica-
tion for scheduling [10]. Consider the scheduling of bipro-
cessor tasks of unit execution time on dedicated machines.
An example of such tasks is the file transfer problem in
a computer network in which each file engages two cor-
responding nodes, sender and receiver, simultaneously [2].
Another example is the biprocessor diagnostic problem in
which links execute concurrently the same test for a fault
tolerant multiprocessor system [7]. These problems can be
modeled by a graph G in which machines correspond to
the vertices and tasks correspond to the edges. An edge-
coloring of G corresponds to a schedule, where the edges
colored with color ci ∈ C represent the collection of tasks
that are executed in the ith time slot. Suppose that a task
executed in the ith time slot takes the cost ω(ci). Then the
goal is to find a schedule that minimizes the total cost, and
hence this corresponds to the cost edge-coloring problem.

The cost edge-coloring problem is APX-hard even for
bipartite graphs [3], and hence there is no polynomial-time
approximation scheme (PTAS) for the problem unless P =
NP. On the other hand, Zhou and Nishizeki gave an algo-
rithm to solve the cost edge-coloring problem for trees T in
time O(nΔ1.5 log(nNω)), where n is the number of vertices in
T , Δ is the maximum degree of T , and Nω is the maximum
absolute cost |ω(c)| of colors c in C [10]. The algorithm is
based on a dynamic programming approach, and computes
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Fig. 2 (a) Optimal compact edge-coloring of a tree T , and (b) perfect
matching of BT , whose edges are drawn by thick lines.

a DP table for each vertex of a given tree T from the leaves
to the root of T . For computing the DP tables, the algorithm
needs to construct O(n) bipartite graphs in total and solves
the minimum weight perfect matching problem for each of
them.

In this paper, we first show that the cost edge-coloring
problem for a tree T can be simply reduced in polyno-
mial time to the problem of finding a minimum weight per-
fect matching in an edge-weighted bipartite graph BT con-
structed from T , as illustrated in Fig. 2. The reduction takes
time O(nΔ), and yields an efficient simple algorithm to find
an optimal edge-coloring of T in time O(n1.5Δ log(nNω)).
Our algorithm constructs a single bipartite graph BT , and
solves only once the minimum weight perfect matching
problem for BT . Thus, our algorithm is much simpler than
the known algorithm [10], and can be easily implemented.
We then show that the algorithm for trees can be extended
for multitrees, which will be defined in Sect. 5.

The rest of the paper is organized as follows. In Sect. 2
we first define some basic terms which will be used through-
out the paper. We then give the reduction in Sect. 3. In
Sect. 4 we prove a lemma used by the reduction. In Sect. 5
we show that the algorithm for trees can be extended for
multitrees. Finally, in Sect. 6 we give a conclusion.

2. Preliminaries

In this section, we define some basic terms.
Let T = (V, E) be a tree with a set V of vertices and a

set E of edges. We sometimes denote by V(T ) and E(T ) the

vertex set and the edge set of T , respectively. We choose an
arbitrary vertex r of T as the root, and regard T as a rooted
tree. We denote by n the number of vertices in T , that is,
n = |V |. One may assume that n ≥ 2. The degree d(v) of
a vertex v is the number of edges in E incident to v. We
denote the maximum degree of T by Δ(T ) or simply by Δ.
We denote by ch(v) the number of edges joining a vertex v
and its children in T . Then, ch(r) = d(r), and ch(v) = d(v)−1
for every vertex v ∈ V \ {r}. We denote by p(v) the parent of
a vertex v ∈ V \ {r} in T .

Although T has an optimal edge-coloring using Δ(T )
colors [1], [6], we assume for the sake of convenience that
|C| = Δ(T ) + 1, and we write C = {c1, c2, · · · , cΔ+1}. An
edge-coloring f : E → C of a tree T = (V, E) is to color
all the edges of T by colors in C so that any two adjacent
edges are colored with different colors. Let ω : C → Z be
a cost function, where Z is the set of all integers. One may
assume without loss of generality that ω is non-decreasing,
that is, ω(ci) ≤ ω(ci+1) for every index i, 1 ≤ i ≤ Δ. The cost
ω( f ) of an edge-coloring f of a tree T = (V, E) is defined as
follows:

ω( f ) =
∑
e∈E
ω( f (e)).

An edge-coloring f of T is optimal if ω( f ) is minimum
among all edge-colorings of T . The cost edge-coloring
problem is to find an optimal edge-coloring of a given tree.

For an edge-coloring f of a tree T and a vertex v of T ,
we denote by C( f , v) the set of all colors that are assigned to
the edges incident to v, that is,

C( f , v) = { f (e) | e is an edge incident to v in T }.
We say that a color c ∈ C is missing at v if c � C( f , v). We
denote by Miss( f , v) the set of all colors missing at v, that
is, Miss( f , v) = C \C( f , v).

Interchanging colors in an “alternating path” is one
of the standard techniques for ordinary edge-colorings [9],
which we also use in the paper. Let f be an edge-coloring
of a tree T , let cα and cβ be any two colors in C, and let
T (cα, cβ) be the subgraph of T induced by all edges colored
with cα or cβ. Since T is a tree, each connected component
of T (cα, cβ) is a path, called a cαcβ-alternating path, whose
edges are colored alternately with cα and cβ. A vertex v ∈ V
is an end of a cαcβ-alternating path if and only if exactly
one of the two colors cα and cβ is missing at v. We denote
by P(v; cα, cβ) a cαcβ-alternating path starting with v. In-
terchanging colors cα and cβ in P(v; cα, cβ), one can obtain
another edge-coloring f ′ of T .

For a graph G = (V, E), a subset M of E is called a
matching of G if no two edges in M share a common vertex.
A matching M of G is perfect if every vertex of G is an
end of an edge in M. Thus, |M| = 1

2 |V | for every perfect
matching M of G. Let w : E → Z be a weight function
which assigns an integer weight w(e) ∈ Z to each edge e in
G. Then, the weight w(M) of a matching M of G is defined
as follows:
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w(M) =
∑
e∈M

w(e).

The minimum weight perfect matching problem is to find
a perfect matching M of a given graph G such that w(M)
is minimum among all perfect matchings in G. The prob-
lem can be solved for a bipartite graph G = (V, E) in time
O(
√|V ||E| log(|V |Nw)), where Nw is the maximum absolute

weight |w(e)| of edges e in E [4].

3. Reduction

Our main result is the following.

Theorem 1: The cost edge-coloring problem for a tree T
can be reduced in time O(nΔ) to the minimum weight per-
fect matching problem for a single bipartite graph BT con-
structed from T .

Before presenting the reduction, we introduce a “com-
pact” edge-coloring of a tree. Let T = (V, E) be a tree with
root r. An edge-coloring f of T is compact if the following
two conditions (i) and (ii) hold:

(i) for the root r of T , C( f , r) = {c1, c2, · · · , cch(r)}; and
(ii) for each vertex v ∈ V \ {r}, C( f , v) = {c1, c2, · · · ,

cch(v), ck} for some index k such that
(a) k ≥ ch(v) + 1; and
(b) if k ≥ d(v) + 1, then k ≤ d(u) and ck is assigned

to the edge joining v and the parent u = p(v).
For example, the edge-coloring in Fig. 2 (a) is compact.
Clearly, a compact edge-coloring uses colors c1, c2, · · · , cΔ
and does not use color cΔ+1. We then have the following
lemma, whose proof will be given in Sect. 4.

Lemma 1: Every tree T has an optimal edge-coloring
which is compact.

We now give the reduction from the cost edge-coloring
problem for a tree T to the minimum weight perfect match-
ing problem for a bipartite graph BT .

The bipartite graph BT = (VB, EB) can be constructed
from a tree T = (V, E), as follows. (See Figs. 2 and 3.)

(i) For each vertex v ∈ V , add d(v) vertices v1, v2, · · · , vd(v)

to VB.
(ii) For each edge (u, v) ∈ E with u = p(v), add d(u) edges

to EB, as follows: for each index i, 1 ≤ i ≤ d(u),
join vertices ui and v j by an edge whose weight is
w((ui, v j)) = ω(ci), where

j =

{
i if i ≤ d(v);
d(v) otherwise.

Clearly, |VB| = ∑
v∈V d(v) = 2(n − 1) and |EB| =∑

(u,v)∈E d(u) = O(nΔ). Therefore, the bipartite graph BT

can be constructed from T in time O(nΔ). Clearly, the
maximum absolute weight Nw = max

{|ω(c1)|, |ω(cΔ)|} of
edges in BT is not greater than the maximum absolute cost
Nω = max

{|ω(c1)|, |ω(cΔ+1)|} of colors in C.

For each edge (u, v) in T , we denote by BT (u, v) the

Fig. 3 Subgraph BT (u, v) of BT corresponding to an edge (u, v) of T .

subgraph of BT induced by vertices u1, u2, · · · , ud(u) and
v1, v2, · · · , vd(v). BT (u, v) corresponds to edge (u, v) of T .
(See Fig. 3.) We then have the following lemma.

Lemma 2: For every tree T , the following (a) and (b) hold:
(a) every perfect matching M of BT contains exactly one

of the edges in BT (u, v) for every edge (u, v) of T , as
illustrated in Fig. 3 where edges in M are drawn by
thick lines; and

(b) every perfect matching M of BT induces a compact
edge-coloring f of T . Conversely, every compact
edge-coloring f of T induces a perfect matching M of
BT . Furthermore, ω( f ) = w(M).

Proof. (a) Let M be a perfect matching of BT . We prove
from the leaves to the root that M contains exactly one of
the edges of BT (u, v). One may assume that u = p(v).

If v is a leaf of T , then BT (u, v) is a star with center
v1 and only the edges of BT (u, v) are incident to v1 in BT .
Therefore, the perfect matching M of BT contains exactly
one edge of BT (u, v), say (uk, v1) for some index k, 1 ≤ k ≤
d(u).

One may thus assume that v is an internal vertex of T ,
and that M contains exactly one of the edges of BT (v,w)
for each child w of v in T . Since v has a parent u in T ,
we have v � r and hence ch(v) = d(v) − 1. Therefore, M
contains exactly d(v) − 1 edges in the bipartite subgraphs
corresponding to the edges of T joining v and its d(v) − 1
children. Hence, exactly one of the vertices v1, v2, · · · , vd(v),
say v j, is not an end of these d(v) − 1 edges in M. Since
M is a perfect matching of BT , M contains exactly one edge
(uk, v j) of BT (u, v) for some index k, 1 ≤ k ≤ d(u).

(b) Every perfect matching M of BT induces an edge-
coloring f of T , in which each edge (u, v) of T is colored
with ck for the index k above; the edge of BT (u, v) contained
in M has an end uk, 1 ≤ k ≤ d(u). One can easily observe
that the edge-coloring f is compact.

Conversely, every compact edge-coloring f of T in-
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duces a perfect matching M of BT ; if u = p(v) and
f ((u, v)) = ci, 1 ≤ i ≤ d(u), then M contains an edge joining
ui and v j where

j =

{
i if i ≤ d(v);
d(v) otherwise.

Obviously, ω( f ) = w(M). 	

By Lemma 1 every tree T has an optimal edge-coloring

f which is compact, and hence by Lemma 2 (b) BT has
a perfect matching M such that w(M) = ω( f ). Remem-
ber that |VB| = O(n), |EB| = O(nΔ), and the maximum
absolute weight Nw of edges in BT is not greater than the
maximum absolute cost Nω of colors in C. Since a mini-
mum weight perfect matching of BT can be found in time
O(
√|VB||EB| log(|VB|Nw)) [4], we can find an optimal edge-

coloring of T in time O(n1.5Δ log(nNω)).

4. Proof of Lemma 1

In this section, we give a proof of Lemma 1.
Let T = (V, E) be a tree with root r. For a vertex w

of T , we denote by Tw the subtree of T which is rooted at
w and is induced by w and all descendants of w in T . (See
Fig. 4 (a).) Clearly, T = Tr.

Let w be an arbitrary vertex of T . Since χ′(Tw) ≤ Δ(T )
and |C| = Δ(T ) + 1, for each color ci ∈ C, Tw has an edge-
coloring f in which ci is not used and hence ci ∈ Miss( f ,w).
Let

ω(Tw, i) = min{ω( f ) | f is an edge-coloring of Tw

such that ci ∈ Miss( f ,w)}.
For a color ci ∈ C, an edge-coloring f of Tw is defined to
be (w, i)-compact if the following two conditions (i) and (ii)
hold:

(i) ci ∈ Miss( f ,w); and
(ii) if i ≥ ch(w) + 1 then C( f ,w) = {c1, c2, · · · , cch(w)},

and otherwise C( f ,w) ∪ {ci} = {c1, c2, · · · , cch(w)+1}.
We then have the following lemma.

Lemma 3: For each color ci ∈ C, Tw has a (w, i)-compact
edge-coloring f such that ω( f ) = ω(Tw, i).

Proof. We give a proof only for the case where i ≥
ch(w) + 1. (The proof for the other case is similar.)
The definition of ω(Tw, i) implies that Tw has an edge-
coloring f such that ci ∈ Miss( f ,w) and ω( f ) = ω(Tw, i).
In particular, let f be an edge-coloring of Tw such that
|C( f ,w) ∩ {c1, c2, · · · , cch(w)}| is maximum among all these
edge-colorings. Suppose for a contradiction that f is not
(w, i)-compact. Then, C( f ,w) � {c1, c2, · · · , cch(w)}. Since
|C( f ,w)| = ch(w), there exist two colors cα and cβ such that

cα ∈ {c1, c2, · · · , cch(w)} \C( f ,w)

and

cβ ∈ C( f ,w) \ {c1, c2, · · · , cch(w)}.

Since α ≤ ch(w) < β, we have ω(cα) ≤ ω(cβ). Since
i ≥ ch(w) + 1, we have cα � ci. Since ci ∈ Miss( f ,w)
and cβ ∈ C( f ,w), we have cβ � ci. Since cα ∈ Miss( f ,w)
and cβ ∈ C( f ,w), there is a cαcβ-alternating path P(w; cα, cβ)
starting from w. We obtain another edge-coloring f ′ of Tw

by interchanging colors cα and cβ in P(w; cα, cβ). Since
ω(cα) ≤ ω(cβ), ω( f ′) ≤ ω( f ). Since ci � cα, cβ and
ci ∈ Miss( f ,w), we have ci ∈ Miss( f ′,w) and hence
ω(Tw, i) ≤ ω( f ′). Therefore, ω(Tw, i) ≤ ω( f ′) ≤ ω( f ) =
ω(Tw, i) and hence ω( f ′) = ω(Tw, i). Since cα ∈ C( f ′,w)
and α ≤ ch(w) < β, we have

C( f ′,w) ∩ {c1, c2, · · · , cch(w)}
=
(
C( f ,w) ∩ {c1, c2, · · · , cch(w)}

)
∪ {cα}

and hence

|C( f ′,w) ∩ {c1, c2, · · · , cch(w)}|
> |C( f ,w) ∩ {c1, c2, · · · , cch(w)}|,

a contradiction. 	

A (w, i)-compact edge-coloring f of Tw is defined to be

(Tw, i)-compact if the following condition (iii) holds:
(iii) for each vertex v ∈ V(Tw)\{w}, C( f , v) = {c1, c2, · · · ,

cch(v), ck} for some index k such that
(a) k ≥ ch(v) + 1; and
(b) if k ≥ d(v)+ 1, then k ≤ d(u) and ck is assigned

to the edge joining v and the parent u = p(v).
Clearly, an edge-coloring f of T with root r is compact if f
is (Tr, ch(r) + 1)-compact. One can show that the cost ω( f )

Fig. 4 (a) A (w, i)-compact edge-coloring f of Tw, and (b) a (Tw, i)-
compact edge-coloring f ′ of Tw.
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of an optimal edge-coloring f of T is equal to ω(Tr, ch(r) +
1) [10, Lemma 4]. Therefore, as a proof of Lemma 1, it
suffices to prove the following lemma.

Lemma 4: For each vertex w of T and each color ci ∈ C,
Tw has a (Tw, i)-compact edge-coloring f such that ω( f ) =
ω(Tw, i).

Proof. We prove the lemma by induction on the number of
vertices in Tw.

For the base case, let w be a leaf of T . Then, Tw is a tree
of a single vertex w, and hence the lemma trivially holds.

Let ci be a color in C, and let w be an internal vertex of
T . Let w1,w2, · · · ,wch(w) be the children of w, as illustrated
in Fig. 4 (a). Suppose as the induction hypothesis that the
lemma holds for each color cl ∈ C and each subtree Tw j , 1 ≤
j ≤ ch(w). Then, for each color cl ∈ C, Tw j has a (Tw j , l)-
compact edge-coloring g j,l such that ω(g j,l) = ω(Tw j , l).

By Lemma 3, Tw has a (w, i)-compact edge-coloring f
such that ω( f ) = ω(Tw, i). If f is (Tw, i)-compact, then we
have done. So we may assume that f is not (Tw, i)-compact.
For each subtree Tw j , 1 ≤ j ≤ ch(w), let f j = f |Tw j be the
restriction of f to Tw j , that is, f j(e) = f (e) for each edge e of
Tw j . Let cl j be the color assigned to the edge (w,wj), 1 ≤ j ≤
ch(w), by f , as illustrated in Fig. 4 (a). Then one can easily
observe that cl j ∈ Miss( f j,wj) and ω( f j) = ω(Tw j , l j) =
ω(g j,l j ) for each j, 1 ≤ j ≤ ch(w). We now construct another
edge-coloring f ′ of Tw, as follows (see Fig. 4 (b)):

f ′(e) =

{
g j,l j (e) if e ∈ E(Tw j ) for some j, 1 ≤ j ≤ ch(w);
f (e) otherwise.

Clearly, f ′ is (Tw, i)-compact and ω( f ′) = ω( f ) = ω(Tw, i).
	


5. Multitrees

Replace each edge in a tree by multiple edges, as illustrated
in Fig. 5 (a). The resulting multigraph is called a multitree.
In this section, we show that our reduction for trees can be
extended for multitrees.

Theorem 2: The cost edge-coloring problem for multi-
trees T = (V, E) can be reduced in time O(|E|Δ) to the mini-
mum weight perfect matching problem for a bipartite graph
BT , and can be solved in time O(|E|1.5Δ log(|E|Nω)).

Let T = (V, E) be a multitree with root r. Since T
is a bipartite multigraph, T has an optimal edge-coloring
using Δ colors [1]. For a vertex v ∈ V \ {r}, we denote by
m(v) the number of multiple edges joining v and p(v). Thus
m(v) = d(v) − ch(v). Similarly as for trees, an edge-coloring
f of a multitree T is defined to be compact if the following
two conditions (i) and (ii) hold:

(i) for the root r of T , C( f , r) = {c1, c2, · · · , cch(r)}; and
(ii) for each vertex v ∈ V \ {r}, C( f , v) = {c1, c2, · · · , cch(v),

ck1 , ck2 , · · · , ckm(v) } for some indices k j, 1 ≤ j ≤ m(v),
such that

(a) k j ≥ ch(v) + 1; and

Fig. 5 (a) Optimal compact edge-coloring of a multitree T , and (b) its
corresponding perfect matching in BT whose edges are drawn by thick
lines.

Fig. 6 Subgraph BT (u, v) of BT corresponding to multiple edges joining
v and u = p(v) in T .

(b) if k j ≥ d(v)+ 1, then k j ≤ d(u) and ckj is assigned
to an edge joining v and the parent u = p(v).

Figure 5 (a) depicts a compact edge-coloring of a multitree.
Clearly, a compact edge-coloring uses colors c1, c2, · · · , cΔ
and does not use color cΔ+1. Similarly as Lemma 1, one
can prove that every multitree has an optimal edge-coloring
which is compact.

The bipartite graph BT = (VB, EB) for a multitree T =
(V, E) can be constructed as follows. (See Figs. 5 and 6.)

(i) For each vertex v ∈ V , add d(v) vertices v1, v2, · · · , vd(v)

to VB.
(ii) For each set of m(v) multiple edges joining vertices v
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and u = p(v), add edges to EB, as follows: for each
index i, 1 ≤ i ≤ d(u), join vertices ui and v j by an edge
whose weight is w((ui, v j)) = ω(ci), where

j =

{
i if i ≤ d(v);
ch(v) + 1, ch(v) + 2, · · · , d(v) otherwise.

Clearly, |VB| = 2|E|. If d(u) ≤ d(v), then |E(BT (u, v))| =
d(u). If d(u) > d(v), then |E(BT (u, v))| = d(v) +

(
d(u) −

d(v)
)
m(v). In either case, |E(BT (u, v))| ≤ d(u)m(v) because

m(v) ≥ 1. Therefore, |EB| ≤ ∑ d(u)m(v) = O(Δ|E|), where
the summention is taken over all pairs (u, v) such that u =
p(v).

Similarly as in Lemma 2, one can prove that every
perfect matching M of BT contains exactly m(v) edges in
BT (u, v); every compact edge-coloring f of a multitree T
induces a perfect matching M of BT , and vice versa; and
ω( f ) = w(M). Thus, our reduction for trees can be extended
for multitrees, and hence Theorem 2 holds.

6. Conclusions

In this paper, we show that the cost edge-coloring prob-
lem for a tree T can be reduced in time O(nΔ) to the min-
imum weight perfect matching problem for the bipartite
graph BT . This reduction immediately yields an algorithm
which actually finds an optimal edge-coloring of T in time
O(n1.5Δ log(nNω)). We then show that the algorithm for
trees can be extended for multitrees.
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