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SUMMARY Kernel biased discriminant analysis (KBDA), as a sub-
space learning algorithm, has been an attractive approach for the relevance
feedback in content-based image retrieval. Its performance, however, still
suffers from the “small sample learning” problem and “kernel learning”
problem. Aiming to solve these problems, in this paper, we present a
new semi-supervised scheme of KBDA (S-KBDA), in which the projec-
tion learning and the “kernel learning” are interweaved into a constrained
optimization framework. Specifically, S-KBDA learns a subspace that pre-
serves both the biased discriminant structure among the labeled samples,
and the geometric structure among all training samples. In kernel optimiza-
tion, we directly optimize the kernel matrix, rather than a kernel function,
which makes the kernel learning more flexible and appropriate for the re-
trieval task. To solve the constrained optimization problem, a fast algorithm
based on gradient ascent is developed. The image retrieval experiments are
given to show the effectiveness of the S-KBDA scheme in comparison with
the original KBDA, and the other two state-of-the-art algorithms.
key words: multimedia information systems, content based image retrieval,
biased discriminant analysis, kernel optimization, relevance feedback

1. Introduction

With the rapid growth of digital image records and the rapid
increase of computer power, content-based image retrieval
(CBIR) becomes one of the most active research fields [1]
in the last decade. Basically, there are two factors affecting
the performances of an image retrieval system, the visual
features, extracted from images, and the distance metric,
used to measure the similarity between two image samples.
Given a specific feature representation, the performance of
a retrieval system depends heavily on the similarity metric.
Instead of using a predetermined metric, more promising ap-
proach is to learn an appropriate metric from the returning
results of the relevance feedback [2], [3].

In the past years, many subspace learning algorithms,
such as LDA [4], ERCA [5], DCA [6], BDA [7], etc. are ap-
plied to find a good distance metric, among which the BDA
scheme shows the superiority in image retrieval over other
methods, because of its “biased” strategy. The “biased”
means that BDA only let the relevant samples be clustered
closely in the discriminant subspace, but does not apply to
the irrelevant samples. Since the irrelevant samples usually
come from multiple image classes, this “biased” strategy is

Manuscript received December 30, 2010.
Manuscript revised May 5, 2011.
†The authors are with the Department of Automation,

Shanghai Jiao Tong University, and Key Laboratory of System
Control and Information Processing, Ministry of Education of
China, Shanghai 200240, China.

a) E-mail: feilang@foxmail.com
DOI: 10.1587/transinf.E94.D.1901

more reasonable for the task of image retrieval. Moreover,
to capture the nonlinear discriminant components, the ker-
nel trick [8] has been introduced to the BDA scheme to for-
mulate the kernel version of biased discriminant analysis,
denoted by KBDA. Many investigations [9]–[11] show that
KBDA outperforms SVM [12], KFDA [13], etc. in image re-
trieval.

However, KBDA has two shortcomings when applied
to the relevance feedback scheme in CBIR. First, in practice,
the number of the returned images in the relevance feedback
scheme is usually limited. Therefore, the learned projec-
tion by KBDA may not well adapt to other images of the
database. Secondly, kernel selection [14] is crucial for the
performance of KBDA. Simple kernel cannot capture the
intrinsic nonlinear structure of data, whereas complicated
kernels may result in over-fitting. Furthermore, in image
retrieval, the training data set is always in change with the
user feedback, which makes the situation even worse. In
this paper, we refer to these two problems as “small sample
learning” problem and “kernel learning” problem, respec-
tively.

To address these problems, we develop a semi-
supervised scheme of KBDA learning (S-KBDA), which
simultaneously formulates the projection learning and the
“kernel learning” into a constrained optimization frame-
work. Specifically, to handle the “small sample learning”
problem, we adopt a semi-supervised way in the biased dis-
criminant learning, by adding the neighborhood information
of the unlabelled samples. In this way, the S-KBDA scheme
can learn not only the biased discriminant structure among
the labeled samples, but also the geometric structure among
the unlabeled samples. Secondly, instead of learning the pa-
rameters of a specific kernel function, we take the kernel
matrix as the target to be learned, which makes the kernel
learning more flexible. Moreover, to maintain the quick re-
trieval, our scheme first focuses on learning the labeled part
of the kernel matrix, and then estimates the other parts of the
kernel matrix using a recently developed technique, referred
as Kernel Propagation [15]. The final constrained optimiza-
tion in our scheme is solved by an efficient gradient-based
algorithm.

The paper is organized as follows. In Sect. 2, we
first review the KBDA algorithm, and then present our S-
KBDA scheme. An efficient optimization algorithm to solve
the S-KBDA learning is also given in this Section. Sec-
tion 3 presents the experimental results on an image retrieval
database. Finally, Sect. 4 concludes this paper.
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2. Problem Formulation

2.1 Kernel Biased Discriminant Analysis

Let {x1, x2, . . . , xm} ∈ Rd be m image feature vectors, in
which l vectors are labeled as relevant (positive) samples or
irrelevant (negative) samples to the query, and the remained
m − l vectors are unlabeled. Without loss of generality, let
us assume that the first lp samples belong to the positive
class, and the following ln samples belong to the negative
class, (lp + ln = l). Employing the kernel function, each
feature vector is mapped to a high dimensional kernel space
F, xi → φ(xi) ∈ F. Essentially, the KBDA scheme tries
to find an optimal linear projection from F to a lower di-
mensional subspace S , so that the positive samples would
be well clustering together and the negative ones be pushed
away from the positive ones as far as possible. This opti-
mal KBDA projection can be obtained by maximizing the
following objective function [7]:

J(w) =
wT S npw

wT S pw

S p =

lp∑
i=1

[φ(xi) − mp][φ(xi) − mp]T

S np =

l∑
i=lp+1

[φ(xi) − mp][φ(xi) − mp]T (1)

where mp =
1
lp

∑lp

j=1 φ(x j) is the mean vector of the labeled
positive samples in F. We call S p the positive scatter matrix
and S np the negative biased scatter matrix.

Let Φ denote the mapped data matrix in F, which con-
tains the labeled samples Φl = (φ(x1), . . . , φ(xl)) and the un-
labeled samples Φu = (φ(xl+1), . . . , φ(xm)). We can rewrite
the scatter matrices as follows

S p = Φl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
lp∑

i=1

⎛⎜⎜⎜⎜⎜⎜⎝ei − 1
lp

lp∑
j=1

e j

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ei − 1

lp

lp∑
j=1

e j

⎞⎟⎟⎟⎟⎟⎟⎠
T ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ΦT

l

= ΦlMpΦ
T
l

S np = Φl

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
l∑

i=lp+1

⎛⎜⎜⎜⎜⎜⎜⎝ei − 1
lp

lp∑
j=1

e j

⎞⎟⎟⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎜⎜⎝ei − 1

lp

lp∑
j=1

e j

⎞⎟⎟⎟⎟⎟⎟⎠
T ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦ΦT

l

= ΦlMnpΦ
T
l (2)

where e j is an l-dimensional unit vector whose entries are
all 0 except the j-th, which is 1. Mp and Mnp are two l × l
constant matrices, which only depend on the label of the
data.

By the representer theorem [16], we know that the so-
lution to the learning problem in (1) can be expressed as

w = Φlβ (3)

where β ∈ Rl is the coefficient vector. Therefore, optimiz-
ing the projection vector w means to find the optimal coeffi-
cient vector β. Since the objective function J(w) is invariant

with respect to rescaling of the projection vector w, we can
always choose β such that the denominator in problem (1)
equals to 1. Therefore, the problem of maximizing J(w) is
transformed to a constrained optimization problem. Specif-
ically, substituting (2) and (3) into (1), the constrained opti-
mization problem can be formulated as

max
β
βT KllMnpKllβ

subject to βT KllMpKllβ = 1 (4)

where Kll is the labeled part of the kernel matrix K = ΦTΦ =(
Kll Klu

KT
lu Kuu

)
.

The columns of the optimal β are the eigenvectors of(
KllMpKll + μI

)−1
KllMnpKll corresponding to the non-zero

eigenvalues, where μ is a regularization factor, set empir-
ically to 0.01 in our experiment. Thus, the projection of
sample x j in the KBDA subspace is

f
(
x j

)
= wTφ

(
x j

)
= βT

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
k1 j
...

kl j

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (5)

where f (·) is called the projection function.

2.2 Semi-Supervised Kernel Biased Discriminant Analy-
sis

KBDA learns the optimal discriminant projection only from
the labeled samples. However, in the case of image retrieval,
where the number of labeled samples from the relevance
feedback is quite small, the subspace learned by KBDA
may not be optimal to other unlabeled samples. This could
lead to serious over-fitting. An effective way to improve the
robustness of the KBDA learning is to utilize the intrinsic
structure information provided by the abundant unlabeled
samples. To do so, we introduce the smoothness regulariza-
tion technique, according to the spectral graph theory [17],
to the KBDA scheme, aiming to preserve the local neigh-
boring relation of the training samples.

Let G = (V, S ) be an undirected, weighted graph con-
structed on the whole dataset, with the node set V = {xi}mi=1

and the weight matrix S =
[
si j

]
m×m

. si j measures the simi-
larity between nodes xi and x j, which can be calculated us-
ing various similarity criteria, such as the local neighbor-
hood relationship as in [18], the heat kernel similarity as in
[19], and the binary similarity frequently used in [20]–[22].
For the sake of computational efficiency, the simple-minded
binary similarity is used in this paper, which is defined as
follows:

si j =

{
1, if xi ∈ Np

(
x j

)
or x j ∈ Np (xi)

0, otherwise.
(6)

where Np (xi) denotes the set of p-nearest neighbors of xi.
The so called normalized graph Laplacian is defined as
L = D−

1
2 (D − S ) D−

1
2 , where D is a m × m diagonal ma-

trix with dii =
∑m

j=1 si j. Following the idea of regularization



YANG et al.: KERNEL OPTIMIZATION BASED SEMI-SUPERVISED KBDA SCHEME FOR IMAGE RETRIEVAL
1903

in spectral graph theory [23], we can measure the smooth-
ness of the KBDA projection function f (·) on dataset {xi}mi=1
by

S ( f ) =
1
2

m∑
i, j=1

si j

∥∥∥∥∥∥∥
f (xi)√

dii

− f (x j)√
d j j

∥∥∥∥∥∥∥
2

= f T
m L fm (7)

where fm = ( f (x1) , · · · , f (xm))T . We can see that the value
of S ( f ) “penalizes” the large change of the KBDA embed-
dings between two points linked with a large weight. In
other words, minimizing S ( f ) is in accordance with the goal
of preserving the neighboring relationship. From (5) and
(7), we have

S ( f ) = βT (Kll Klu) L(Kll Klu)Tβ (8)

Adding S ( f ) into (4) as a regularizer, we got the semi-
supervised KBDA objective function.

max
β
βT

[
KllMnpKll − α (Kll Klu) L(Kll Klu)T

]
β

subject to βT KllMpKllβ = 1 (9)

where α is a suitable constant, and 0 ≤ α ≤ 1. In our exper-
iments, α is empirically set to be 0.5.

2.3 S-KBDA with Kernel Learning

Like other kernel methods, the performance of KBDA or
S-KBDA is impacted seriously by the kernel selection. To
handle the kernel selection, Zhou et al. [24] proposed to
use the kernel partial alignment, and Wang [10] proposed
to use the trace ratio between the scatter matrices to mea-
sure the goodness of a kernel. Both of them are supervised
approaches aiming to choose a good spread parameter δ for
the Gaussian kernel. However, just like the subspace learn-
ing, the kernel learning in the KBDA scheme is subject to a
small number of labeled samples, which still makes the ker-
nel learning suffer from the “small sample learning” prob-
lem. Besides, the Gaussian kernel does not change the rank
of similarities between retrieval images and the query im-
age, since all the data are mapped into the kernel space in a
uniform way. Therefore, the distribution of the data cannot
be optimized effectively, and the improved retrieval perfor-
mance using the optimal Gaussian kernel is very limited.

Instead of learning a kernel function, our S-KBDA
scheme learn the kernel matrix K. From (9) we see that
the S-KBDA learning is only influenced by the sub-kernel
matrix Kll and Klu. To accelerate the computation of our al-
gorithm, we only focus our optimization on Kll. Once Kll is
learned, Klu can be obtained efficiently by using a technique,
called Kernel Propagation (KP) [15]. KP aims to propagate
the learned small sub-kernel matrix into a large-sized full-
kernel matrix. This propagation is based on the consistency
assumption of the kernel map φ (·) (for more details, please
see [15]). According to the KP algorithm, Klu can be calcu-
lated from Kll as follows

Klu = −KllLluL−1
uu (10)

where Llu and Luu are the corresponding sub-matrices of the

graph Laplacian L =

(
Lll Llu

LT
lu Luu

)
.

From (10) and (9), keeping in mind that Kll also needs
to be optimized for kernel learning, we formulate our opti-
mization problem as:

max
Kll,β
βT Kll

(
Mnp − α

(
Lll − LluL−1

uu LT
lu

))
Kllβ

subject to βT KllMpKllβ = 1

Kll ≥ 0 (11)

2.4 The Optimization Algorithm

It is quite difficult to obtain the global optimum of the above
problem directly. Thus, we introduce the optimal value
function [25] M (Kll) for problem (11) by keeping Kll fixed.

M (Kll) := max
β
βT KllM̃npKllβ

subject to βT KllMpKllβ = 1 (12)

where M̃np = Mnp − α
(
Lll − LluL−1

uu LT
lu

)
is a constant l × l

matrix. The global (or local) maximum of M (Kll) can
be viewed as a global (or local) maximum of problem
(11). Therefore, instead of solve problem (11) directly, we
employ a gradient-based algorithm to maximize M (Kll).
To calculate the derivative of the optimal value function
M (Kll), let us first present the following theorem.

Theorem 1: The derivative of M (Kll) can be calcu-
lated as:

∂M (Kll)
∂ki j

= β̄T ∂KllM̃npKll

∂ki j
β̄ + λ̄β̄T ∂KllMpKll

∂ki j
β̄ (13)

where β̄ is the unique optimal solution of problem (12), λ̄
is the Lagrange multiplier associated with the equality con-
straint.

Proof: By using the Lagrange multiplier method, we
can change problem (12) to the following unconstrained op-
timization problem:

L (β, λ) = βT KllM̃npKllβ + λ
(
βT KllM̃pKllβ − 1

)
(14)

Therefore, we haveM (Kll) = max
β,λ
L (β, λ) = L

(
β̄, λ̄

)
.

At the maximum point of L (β, λ), the following equal-
ities hold:

∂L (β, λ)
∂β

= 2KllM̃npKllβ + 2λKllMpKllβ = 0 (15)

∂L (β, λ)
∂λ

= βT KllMpKllβ − 1 = 0 (16)

From (15), we know that β is an eigenvector of the ma-

trix
(
KllMpKll + μI

)−1
KllM̃npKll and −λ is the correspond-

ing eigenvalue. Left-multiplying Eq. (15) with βT and taking
(16) into it, we have −λ = βT KllM̃npKllβ. Considering that
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βT KllM̃npKllβ is the objective function in (12), we know the
optimal Lagrange multiplier λ̄ equals to the negative of the

largest eigenvalue of
(
KllMpKll

)−1
KllM̃npKll, and the opti-

mal solution β̄ should be the corresponding eigenvector mul-
tiplied by an appropriate scale factor such that Eq. (16) is
satisfied.

According to the Theorem 4.1 in [25], since both β̄
and λ̄ are unique,M (Kll) is continuously differentiable, its
derivative can be calculated as follows

∂L
(
β̄, λ̄

)
∂ki j

= β̄T ∂KllM̃npKll

∂ki j
β̄ + λ̄β̄T ∂KllMpKll

∂ki j
β̄

+ 2
∂β̄T

∂ki j

(
KllM̃npKllβ̄ + λ̄KllMpKllβ̄

)
(17)

where the last term equals to 0 because of (15). Hence, the
Eq. (13) is established. �

Let us denote the gradient matrix of M (Kll) by
∇M (Kll). If we maximize M (Kll) using the general gra-
dient ascent method

Kll(t) = Kll(t−1) + η∇M (Kll) (18)

where η > 0 is the learning rate, the positive semidefi-
nite property of Kll may be destroyed. Therefore, we
take another search direction δKll, along which the posi-
tive semidefinite property of Kll can be preserved, and at
the same time coincide mostly with the steepest ascent di-
rection. This direction can be obtained by solving the fol-
lowing problem

min
δKll

‖∇M (Kll) − δKll‖2F
subject to δKll ≥ 0 (19)

Moreover, according to the Wielandt-Hoffman theo-
rem [26], the solution of (19) can be expressed as
δKll = UΛ̃U, where Λ̃ = diag (max (0, λ1) , · · · ,max (0, λl)),
U = (u1, · · · , ul). λi and ui are the eigenvalues and eigenvec-
tors of the non positive semidefinite matrix ∇M (Kll). To en-
sure the convergence of the gradient algorithm, a gradually
decreasing learning rate is adopted.

η (t) = η0

(
1 − t

N

)
(20)

where η0 is the initial learning rate, N denotes the maximum
number of iterations, and t represents the current iteration
number.

Finally, we summarize the overall optimization pro-
cedures in Algorithm 1. The algorithm maximizes the
S-KBDA objective function iteratively, and in each itera-
tion the two variables β and Kll are optimized alternatively.
Specifically, in each iteration of the algorithm, the local op-
timal coefficient vector β is calculated directly by a general-
ized eigenvalue decomposition method, and the local opti-
mal sub-kernel matrix Kll is calculated by a gradient updat-
ing procedure shown in Algorithm 2.

Algorithm 1 The proposed optimization algorithm
Input:

The maximum number of iterations J (e.g., 10), and the preset toler-
ance value ε (e.g., 10−5).

1: Initialize: Kll(0) using the Gaussian kernel;
2: For i = 1, 2, · · · , J do

• Compute the projection vector βi and Lagrange multiplier λi by
solving the problem

(βi, λi) = argmax
β,λ

L (β, λ)

• Compute Kll(i) by solving the problem

Kll(i) = argmax
Kll

M (Kll)

• if i > 1 and |L (βi, λi) − L (βi−1, λi−1)| < ε and∣∣∣∣M (
Kll(i)

)
−M

(
Kll(i−1)

)∣∣∣∣ < ε, then break (converged);

3: Output: The final kernel matrix Kll(i) .

Algorithm 2 Compute Kll(i) in step 2 of the Algorithm 1
Input:

The starting matrix X0 = Kll(i−1);
The initial learning rate η0 (e.g., 0.01), and the maximum number of
iterations N (e.g., 10).

1: Initialize: the optimal projection vector β̄ and the Lagrange multiplier
λ̄ to be βi and λi;

2: For t = 1, 2, · · · ,N do

• Compute the gradient matrix ∇M (Kll) at Kll = Xt−1 by Theo-
rem 1
• Compute a positive semidefinite matrix δKll to approximate
∇M (Kll)
• Update the kernel matrix by

Xt = Xt−1 + η (t − 1) δKll

• Decrease the learning rate by η (t) = η0

(
1 − t

N

)
3: Output: Set Kll(i) = Xt .

3. CBIR Experimental Results

3.1 Experimental Setting for Comparison Study

The experimental database that we used consists of 50 cat-
egories, each containing exactly 100 images. These images
are selected from the COREL photo dataset according to
their semantic relevance, such as butterfly, dog, cat and rose,
etc. Figure 1 shows some image examples in this dataset.
Three types of visual features, that is color, edge and texture,
are used to represent the images. (1) Color feature extrac-
tion: For each image, color mean, color variance and color
skewness are extracted from the H, S and V channel, re-
spectively, to form a 9-dimensional color moment. (2) Edge
feature extraction: A total of 36-dimensional edge direc-
tion histogram features are calculated by using the Canny
edge detector, each direction covering 10 degrees. (3) Tex-
ture feature extraction: We apply the Daubechies wavelet
transform to each of the gray images to derive a 3-level
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Fig. 1 Some samples from the image retrieval dataset.

image decomposition, and then 18-dimensional texture fea-
tures are extracted by calculating the first two moments of
coefficients from the 9 high frequency sub-bands in all the
three levels [27]. Totally, we use a 63-dimensional feature
vector to represent each image.

For the fairness of comparison, an automatic feedback
scheme is used to simulate the real relevant feedback. In the
first round of retrieval, the system ranks the images accord-
ing to their Euclidean distance to the query image. Then,
the first five relevant images and five irrelevant images are
selected as the positive and negative feedbacks according to
their ground truth. With these feedbacks, the learning al-
gorithms are trained to re-rank the image database. In the
next round of retrieval, another 10 selections will be used
together with the previous ones for training. Note that the
selected feedback images in previous training are excluded
from present selections.

In the experiment, different algorithms are compared
with two procedures. In procedure A, we perform the rel-
evance feedback 4 times for each algorithm, which means
the same size of labeled training sets are used, and then the
retrieval results of different approaches are compared. Pro-
cedure B is designed aiming to evaluate the efficiency of
the retrieval systems, where the same target retrieval preci-
sion is set in advance, and the number of the labeled images
needed to achieve this target is compared. For both proce-
dures, five-fold cross validation is employed to evaluate the
average performances of different methods. Specifically, we
divide the whole image database into five subsets with equal
size. At each trial, one subset is used as the query set, and
the other 4 subsets are used as the database for retrieval.

The retrieval performance of the proposed algorithm
(S-KBDA) is compared with KBDA, KMMP [22] and SVM.
KBDA is what our S-KBDA algorithm is fundamentally
based on and one of the best supervised learning algorithms
applied in image retrieval [10], [11]. KMMP is a semi-
supervised manifold learning algorithm designed for max-
imizing the margin between positive and negative examples
at each local neighborhood. The KMMP algorithm has been
shown to get the best performance with two embedding di-
mensions in [22]. As for S-KBDA and KBDA, the best re-
trieval performance is obtained with 2 to 5 dimensions for
different image categories in our experiments. But their dif-
ferences in average retrieval precision of all categories are

negligible. Therefore, we just also set the embedding di-
mension to be 2 for its less computation cost. After be-
ing projected into the 2-dimensional subspace by S-KBDA,
KBDA or KMMP, the database are re-ranked by their Eu-
clidean distances to the query. SVM is a supervised learn-
ing algorithm, which learns the hyperplane to separate the
positive and negative samples with a maximal margin. The
signed distances to this hyperplane are used to re-rank the
database [12].

In the experiment, the Gaussian kernel is used to con-
struct the kernel matrix. For KBDA and S-KBDA, since
the kernel can be optimized automatically during the learn-
ing process, we just set the initial kernel parameter δ to be
1. The kernel parameter δ for KMMP, the kernel parame-
ter δ and the regularization parameter C for SVM are both
selected by using the Leave-One-Out cross validation. The
graph Laplacian matrix used in S-KBDA and KMMP is con-
structed from the 5-nearest neighbors, and the unsupervised
dataset is composed of the top 400 images ranked by the
Euclidean distance.

To get a fast retrieval response, the maximum number
of iterations in Algorithm 1 and Algorithm 2, J and N,
should be limited, and accordingly the initial learning rate η0

should be large enough to guarantee that the learned param-
eters are close to their optimal values. In the experiments,
we set them empirically to be 10, 10 and 0.01, respectively,
based on the following observations: About 75% of the op-
timizing procedures could be converged in less than 10 iter-
ations. Using large values of J and N, does not necessarily
lead to a remarkable performance improvement in retrieval
precision, but does lead to a more complicated computation,
which can make the retrieval system inefficient.

3.2 Results and Discussions in Procedure A

Figure 2 shows the precision-scope curves of different algo-
rithms after each round of feedbacks. The baseline curve
describes the initial retrieval result by using the Euclidean
distances in the original 63-dimensional space. Based on
the results shown in Fig. 2, we observe that both S-KBDA
and KMMP consistently outperform the supervised learn-
ing algorithms of KBDA and SVM, which indicates that the
unlabeled images are very helpful to improve the retrieval
performance. This improvement is especially obvious in the
first two rounds of feedbacks where the number of labeled
images is very small.

For the two semi-supervised learning methods, S-
KBDA and KMMP, we see that S-KBDA performs better
than KMMP in all the feedback iterations. This may be
caused by the following two reasons. One is that the biased
strategy in S-KBDA only pushes the positive samples close
together and does not do this to the negative ones, while
KMMP push all the samples with the same label close. The
biased strategy is especially helpful in the case when we lack
negative samples. The superiority of the biased strategy over
the balanced strategy can also be verified by comparing the
performances between SVM and KBDA. The other reason
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(a) 1st Feedback iteration

(b) 2nd Feedback iteration

(c) 3rd Feedback iteration

(4) 4th Feedback iteration

Fig. 2 The precision-scope curves for all the four feedback iterations.

lies in the fact that different kernels are used in S-KBDA and
KMMP to enhance the nonlinear capability. The Gaussian
kernel with an optimal parameter is used in KMMP, whereas
S-KBDA learns the kernel itself in a nonparametric manner.

(a) Input space

(b) Optimized kernel matrix induced space

(c) Optimal Gaussian kernel induced space

Fig. 3 2-dimensional semantic visualization.

Since the data is expected to have better linear separa-
bility in the kernel space, we conduct a visualization exper-
iment to compare these two kernels. The results are shown
in Fig. 3, where the star denotes the query image, the bigger
(smaller) points represent the labeled (unlabeled) relevant
and irrelevant images, respectively. Figure 3 (a) illustrates
the original data distribution, where all the data are projected
onto its first two PCA directions. Figure 3 (b) and Fig. 3 (c)
show the distribution of data in the kernel space by project-
ing all the data onto its first two KPCA directions. From
Fig. 3 (b), we can see that the order of distances between re-
trieval images and the query image is improved remarkably
by the optimized kernel matrix, and therefore, the distribu-
tion of samples in this space is more suited to the task of
retrieval. However, this improvement is very limited for the
Gaussian kernel, see Fig. 3 (c), since it maps the samples in
a uniform way.

The average computational time of different algorithms
for processing one user’s query is given in Table 1. All these
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Table 1 Average runtime for processing one query.

Time at different feedback
iterations (s)

1 2 3 4
SVM 0.185 0.231 0.267 0.296
KBDA 0.217 0.294 0.339 0.386
KMMP 0.288 0.360 0.402 0.454
S-KBDA 0.306 0.375 0.430 0.477

Fig. 4 Precision at the top 20 returns after the 1st feedback iteration.

four algorithms can respond to the query very fast, that is,
within 0.5 s. SVM is the fastest and KBDA is slightly slower
than SVM. Our S-KBDA is as fast as KMMP and is slower
than the supervised methods of SVM and KBDA. All of
the experiments were performed on a Pentium IV 3.20-GHz
Windows XP machine with a 2-Gbyte memory.

3.3 Results and Discussions in Procedure B

In a real image retrieval system, the returned images on the
first screen shot (for example, 20 images in our experiment)
are very important to the user. Figure 4 shows the top-20 re-
trieval precision for different categories after the first feed-
back iteration. Among all the 50 categories, our S-KBDA
approach performs best on 41 categories. For the remaining
9 categories, KMMP performs best on 7 of them, KBDA and
SVM each performs best on only one category. We can also
see the retrieval performances of these algorithms vary with
different categories. There are 14 relatively easy categories
on which the retrieval precisions of S-KBDA are higher than
80%. Therefore, for these categories, if the target retrieval
precision is set to be 80%, there is no need for the user to
teach the system further.

Since it is difficult to require the user go through many
rounds of feedbacks, the labor cost to get a satisfied retrieval
result is also a critical factor to evaluate a retrieval system.
We measure this cost by using the total number of feedback
images used in training the system to achieve a target re-
trieval precision. Figure 5 shows the average number of the
labeled images used by the four algorithms to achieve the re-
trieval precision of 50%, 60%, 70% and 80%, respectively,
on the first screen shot. We can see from Fig. 5 that S-KBDA
can always achieve the target precision with fewer feedback
images. This could save the user a lot of labor and at the
same time make the retrieval task finished as soon as possi-
ble.

Fig. 5 Average labor cost to achieve the target retrieval precision.

4. Conclusions

This paper presents a new semi-supervised subspace learn-
ing algorithm, called S-KBDA, in which the projection vec-
tor learning and the “kernel learning” are interweaved into
a constrained optimization framework. In the S-KBDA sub-
space, both the biased discriminant structure and the intrin-
sic geometric structure can be well preserved, which relieves
the over-fitting problem caused by lacking of labeled sam-
ples. Moreover, in the procedure of optimization, we use the
kernel matrix as the target to be optimized, which makes the
learned kernel more flexible and appropriate for the retrieval
task. In comparison with the other three state-of-the-art al-
gorithms, that is, KBDA, KMMP and SVM, the retrieval
experiments on Corel photo database demonstrate the effec-
tiveness of the proposed scheme.
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