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PAPER

On the Generative Power of Cancel Minimal Linear Grammars
with Single Nonterminal Symbol except the Start Symbol

Kaoru FUJIOKA†a) and Hirofumi KATSUNO††b), Members

SUMMARY This paper concerns cancel minimal linear grammars ([5])
that was introduced to generalize Geffert normal forms for phrase structure
grammars. We consider the generative power of restricted cancel minimal
linear grammars: the grammars have only one nonterminal symbol C ex-
cept the start symbol S , and their productions consist of context-free type
productions, the left-hand side of which is S and the right-hand side con-
tains at most one occurrence of S , and a unique cancellation production
Cm → ε that replaces the string Cm by the empty string ε. We show that,
for any given positive integer m, the class of languages generated by can-
cel minimal linear grammars with Cm → ε, is properly included in the
class of linear languages. Conversely, we show that for any linear language
L, there exists some positive integer m such that a cancel minimal linear
grammar with Cm → ε generates L. We also show how the generative
power of cancel minimal linear grammars with a unique cancellation pro-
duction Cm → ε vary according to changes of m and restrictions imposed
on occurrences of terminal symbols in the right-hand side of productions.
key words: minimal linear languages, linear languages, Geffert normal
forms, generative power

1. Introduction

Among the variety of normal forms for phrase structure (or
type-0) grammars ([1], [3], [7]), Geffert normal forms [1] are
unique in the sense that each of them has two different kinds
of productions: context-free type productions with only the
start symbol S on the left-hand side, and the one or two can-
cellation productions that replace a sequence of nonterminal
symbols except S with the empty string ε. The cancellation
productions in each Geffert normal form play a vital role
to generate any recursively enumerable languages. Further-
more, the cancellation productions are related to cutting op-
erations of DNA strands, and Geffert normal forms are used
to examine the generative power of DNA computing models
([6], [8]). Each Geffert normal form also provides an “inter-
mediate grammar” that can bridge a gap between context-
free and recursively enumerable languages ([2], [4], [9]).

Onodera [5] gives a framework in which each Geffert
normal form is uniformly described as a grammar referred to
as a cancel minimal linear grammar. A cancel minimal lin-
ear grammar has two kinds of productions: context-free type
productions, the left-hand side of which is the start symbol
S and the right-hand side contains at most one occurrence
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of S , and cancellation productions similarly defined as the
case of Geffert normal forms. Note that, if we regard each
nonterminal symbol except S as a terminal symbol, then
the context-free type productions above are considered to
be minimal linear, and hence we call the context-free type
productions minimal linear type productions in this paper.
Within the framework of cancel minimal linear grammars,
one of the Geffert’s results ([1]) means that the cancel mini-
mal linear grammar with only two cancellation productions
AB → ε and CC → ε has the power of generating any re-
cursively enumerable language.

Onodera [5] examines the generative power of the can-
cel minimal linear grammars with only one of the two
above cancellation productions, under the assumption of
dealing with only ε-free languages. She shows that the lan-
guage generated by any cancel minimal linear grammar with
AB→ ε is context-free, and that any linear language can be
generated by such a grammar. Furthermore, she shows that
the class of languages generated by the cancel minimal lin-
ear grammars with CC → ε is a proper subset of the class
of linear languages.

In this paper, we study the generative power of cancel
minimal linear grammars with Cm → ε for an arbitrarily
fixed m ≥ 1 without assuming that only ε-free languages
are allowed. We show that for any given m ≥ 1, cancel
minimal linear grammars with Cm → ε only generate lin-
ear languages. In contrast to this, for Cm → ε with m not
bounded, we show that the class of languages generated
by those grammars is equivalent to the class of linear lan-
guages. We also examine the difference in the generative
power of the cancel minimal linear grammars between with
Cm → ε and with Cn → ε for m � n.

We impose some restrictions on occurrences of termi-
nal symbols in the minimal linear type productions, and
show how the restrictions affect the generative power of the
cancel minimal linear grammars with Cm → ε.

These results may shed some new light on relations of
language classes between minimal linear languages and lin-
ear languages.

2. Preliminaries

We assume the reader to be familiar with the rudiments
of formal language theory (see, e.g., Rozenberg and
Salomaa [7]).

A phrase structure grammar (a grammar for short) is
a construct G = (N,T, P, S ), where N is a set of nonterminal
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symbols, T is a set of terminal symbols, P is a set of pro-
ductions, and S in N is the start symbol. A production in P
is of the form π1 → π2, where π1 ∈ (N ∪ T )∗N(N ∪ T )∗
and π2 ∈ (N ∪ T )∗. For any α1 and α2 in (N ∪ T )∗, if
α1 = α11π1α12, α2 = α11π2α12, and r : π1 → π2 ∈ P,
then we say that α2 is derivable from α1 by r, and write

α1
r
=⇒G α2. If G is understood, we write α1

r
=⇒ α2.

Similarly, for a sequence of productions γ, we simply write

α1
γ
=⇒ α2. Further, if there is no need to refer to produc-

tions, then we simply write α1 =⇒ α2, and we denote the
reflexive and transitive closure of =⇒ by =⇒∗. A string in
(N ∪ T )∗ derivable from the start symbol S is called a sen-
tential form.

We define the language L(G) generated by a grammar
G = (N,T, P, S ) as follows: L(G) = {z ∈ T ∗ | S =⇒∗ z}. It
is well known that the class of languages generated by the
phrase structure grammars is equal to the class of recursively
enumerable languages.

A language L is said to be ε-free, if it contains no empty
string ε. In this paper, we mainly deal with ε-free languages.

A grammar G= (N,T, P, S ) is linear if each production
in P is of the form Ni → α, where Ni ∈ N and α contains at
most one nonterminal symbol. A language generated by any
linear grammar is also called linear. It is obvious that any
linear language can be generated by a linear grammar each
of whose productions is of the form N1 → uN2, N1 → N2u,
or N1 → u, where N1,N2 ∈ N and u ∈ T ∗.

A grammar G = (N,T, P, S ) is right (resp. left) lin-
ear if it is linear and every production in P is of the form
N1 → uN2 or N1 → u (resp. N1 → N2u or N1 → u), where
N1,N2 ∈ N and u ∈ T ∗. Any language generated by such a
grammar is called right (resp. left) linear. It is well known
that the class of right linear languages is equivalent to that
of left linear languages, which is also called the class of reg-
ular languages.

A grammar G = (N,T, P, S ) is minimal linear if N =
{S } and every production in P is of the form S → uS v or
S → w, where u, v, w ∈ T ∗. Any language generated by
such a grammar is called minimal linear.

Geffert [1] shows the following theorem.

Theorem 1: Any recursively enumerable language can be
generated by a grammar G = ({S } ∪ NC ,T, P ∪ PC , S ) satis-
fying the following conditions:
• Every production in P is of the form S → α1Sα2 or
S → α, where α1, α2, α ∈ (T ∪ NC)∗,
• NC = {A, B,C} and PC = {AB→ ε, CC → ε}.
Note that Geffert examines the other four cases as variations
of Theorem 1:

(1) NC = {A, B,C,D}, PC = {AB→ ε, CD→ ε}.
(2) NC = {A, B}, PC = {AB→ ε, BBB→ ε}.
(3) NC = {A, B}, PC = {ABBBA→ ε}.
(4) NC = {A, B,C}, PC = {ABC → ε}.

He shows that in each case any recursively enumerable lan-
guage can be generated by a grammar G = ({S }∪NC ,T, P∪
PC , S ).

Generalizing these Geffert normal forms, Onodera [5]
introduces a new class of grammars as follows.

Definition 1: A grammar G = ({S } ∪ NC ,T, P, S ) is an Ω-
cancel minimal linear grammar (Ω-cml grammar for short)
if it satisfies the following:
(1) S is the start symbol.
(2) NC is a finite set of nonterminal symbols except S .
(3) T is a finite set of terminal symbols.
(4) Ω is a finite set of strings in N+C .
(5) P is a finite set of productions and is partitioned into two
parts PM and PC defined as follows:

(a) PM ⊆ { S → α1Sα2, S → α | α1, α2, α ∈ (T ∪NC)∗ },
(b) PC = { ω→ ε | ω ∈ Ω}.

We call a production in PM a minimal linear type pro-
duction (an ml-production for short) and call a production in
PC a cancellation production (a c-production for short).

A language L is an Ω-cancel minimal linear language
(Ω-cml language for short) if there is an Ω-cml grammar G
such that L = L(G).

For a string α, αR represents the reverse of α, and let
|α|T be the number of terminal symbols in α.

Definition 2: If an ml-production has the right side with no
terminal symbol, then the production is called a terminal-
free ml-production, otherwise it is called a terminal ml-
production. If a terminal ml-production is of one of the
forms S → α1Sα2, S → αS , S → Sα, S → α, where
|α1|T , |α2|T , |α|T > 0, then it is called strict terminal ml-
production (s-terminal ml-production for short).

An Ω-cml grammar G is called a terminal (resp. strict
terminal or s-terminal for short) Ω-cml grammar, if any ml-
production in P is a terminal (resp. an s-terminal) produc-
tion. A language L is called a terminal (resp. an s-terminal)
Ω-cml language if there is a terminal (resp. an s-terminal)
Ω-cml grammar that generates L.

When we deal with only ε-free languages, the classes
of linear, minimal linear, Ω-cancel minimal linear, and reg-
ular languages are denoted by LIN, ML, CMLΩ, and REG,
respectively. If we deal with Ω-cancel minimal linear lan-
guages containing the empty string, then we denote the lan-
guage class by CMLε

Ω
.

Note that terminal Ω-cancel minimal linear languages
and strict terminalΩ-cancel minimal linear languages do not
contain the empty string. Let rε be the terminal-free ml-
production S → ε.
Definition 3: An Ω-cml grammar which has no terminal-
free ml-production except rε is called an extended terminal
Ω-cml grammar and a language L is called an extended ter-
minal Ω-cml language if there is an extended terminal Ω-
cml grammar that generates L.

The classes of terminal Ω-cml, strict terminal Ω-cml,
and extended terminal Ω-cml languages are denoted by t-
CMLΩ, st-CMLΩ, and t-CMLε

Ω
, respectively.

Onodera [5] examines the generative power of some
classes of {AB}-cml grammars and {C2}-cml grammars.
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Concerning {C2}-cml grammars, she proves the following
theorem.

Theorem 2:

1. ML ⊂ t-CML{C2} ⊂ LIN
2. REG and t-CML{C2} are incomparable.

In this paper, for any positive integer m, we deal with
{Cm}-cml grammars.

3. {Cm}-cml Languages

In this section, we consider the generative power of termi-
nal {Cm}-cml grammars. In the case of m = 1, a {C}-cml
grammar is context-free, and we can remove the nontermi-
nal symbol C from the original grammar by the standard
technique for eliminating ε-rules from a context-free gram-
mar. Therefore, the following lemma is obvious.

Lemma 1: st-CML{C} =t-CML{C} =CML{C} =ML.

In the following, we consider the case m ≥ 2.

3.1 {Cm}-cml Languages and Terminal {Cm}-cml Lan-
guages

In this subsection, for any given integer m ≥ 2, we consider
the generative power of {Cm}-cml grammars and terminal
{Cm}-cml grammars. In particular, we examine influences
of terminal-free ml-productions on the generative power.

In every {Cm}-cml grammar G = ({S ,C},T, P, S ), we
may assume that any ml-production in P is of one of the six
forms

(1) S → CiuCkS ClvC j, (2) S → CiuCkS C j,
(3) S → CiS ClvC j, (4) S → CiuC j,
(5) S → CiS C j, (6) S → Ci,

where u, v ∈ T+, 0 ≤ i, j, k, l < m.
This is because any ml-production can be transformed

into one of the above forms by using the c-production rC :
Cm → ε, or the ml-production makes no contribution to pro-
ducing a string in T ∗. For example, an ml-production S →
Cm+iuCkS C2m+lvC j with u, v ∈ T+ and 0 ≤ i, j, k, l < m, is
equivalent to S → CiuCkS ClvC j, whereas an ml-production
S → uCivS with u, v ∈ T+ and 0 < i < m is useless to pro-
duce a string in T ∗.

Note that when we use a notation S → CiuCm−iS with
i = 0, the ml-production is not of the form (2) above, be-
cause Cm is not allowed in the form. Hence, in the follow-
ing, we regard Cm as ε in such cases.

According to the six forms above, we partition the set
of ml-productions PM into six sets P(1), P(2), . . . , P(6) such
that for each n (1 ≤ n ≤ 6), P(n) consists of ml-productions
in the n-th form above. For example,

P(1) = {r | r : S → CiuCkS ClvC j in P and u, v ∈ T+}.
Each terminal ml-production in P is in P(1)∪ P(2)∪ P(3)∪
P(4), while each terminal-free ml-production in P is in
P(5)∪ P(6). Hence, we denote P(1)∪ P(2)∪ P(3)∪ P(4) by

P(t), and P(5) ∪ P(6) ∪ {rC} by P(t f ). In the following, we
call a production in P(t f ) a terminal-free production.

If we use only productions in P(t f ), we cannot produce
strings of terminal symbols except for ε, hence there is a
possibility that t-CML{Cm} may be equal to CML{Cm}. To
prove the claim, we define a set of terminal ml-productions
derived from a terminal ml-production by using terminal-
free productions.

Definition 4: Let G = ({S ,C},T, P, S ) be a {Cm}-cml gram-
mar. For an ml-production r : S → CiuCkS ClvC j in P(1),
we define the closure of r under terminal-free productions,
denoted by cl(r), as cl(r) = cl1(r) ∪ cl2(r), where

• S → Ci′uCk′S Cl′vC j′ is in cl1(r)
iff there exists a derivation γ1 such that

(1) S
γ1
=⇒G Ci′uCk′S Cl′vC j′ ,

(2) r occurs only once in γ1, and the rest of γ1 are
productions in P(t f ),
(3) 0 ≤ i′, j′, k′, l′ < m,

• S → Ci′uvC j′ is in cl2(r)
iff there exists a derivation γ2 such that

(1) S
γ2
=⇒G Ci′uvC j′ ,

(2) r occurs only once in γ2, and the rest of γ2 are
productions in P(t f ),
(3) 0 ≤ i′, j′ < m.

Similarly, for r : S → CiuCkS C j in P(2) and r : S →
CiS ClvC j in P(3), we define cl(r) as cl(r) = cl1(r) ∪ cl2(r),
and for r : S → CiuC j in P(4), we define cl(r) as cl(r) =
cl2(r).

By using cl(r) with r in P(t), we define the closure of
P(t) under terminal-free productions as

cl(P(t)) = ∪r∈P(t)cl(r).

Lemma 2: cl(P(t)) is a finite set of terminal ml-
productions.

Proof : Since each definition of cl(r) with r in P(t) imposes
the condition 0 ≤ i′, j′, k′, l′ < m, the number of terminal
ml-productions in cl(r) is finite. Therefore, it follows from
the definition of cl(P(t)) that cl(P(t)) is a finite set of termi-
nal ml-productions. �

Next, by using the closure cl(P(t)), we construct a
terminal {Cm}-cml grammar G from a {Cm}-cml grammar
G = ({S ,C},T, P, S ) which satisfies that if L(G) is ε-free
then L(G) = L(G).

Definition 5: A terminal {Cm}-cml grammar G = ({S ,C},
T, P, S ) is the transformed terminal {Cm}-cml grammar of
G = ({S ,C},T, P, S ) if P = cl(P(t)) ∪ PC .

Theorem 3: CML{Cm} =t-CML{Cm}.

Proof : It is obvious that t-CML{Cm} ⊆CML{Cm} holds. We
will prove the converse by showing that for any {Cm}-cml
grammar G, if L(G) is ε-free then its transformed terminal
{Cm}-cml grammar G generates the same language as L(G).



1948
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.10 OCTOBER 2011

The inclusion L(G) ⊆ L(G) is obvious from the def-
inition of the closure of a terminal ml-production under
terminal-free productions. In order to prove the converse
inclusion, we will show that, for 0 ≤ i, j, i′, j′ < m and

w ∈ T+, if CiS C j
γ
=⇒G Ci′wC j′ then CiS C j =⇒∗

G
Ci′wC j′

by using the induction on the number n of terminal ml-
productions applied in the derivation γ. We note that when
i = j = i′ = j′ = 0, the claim implies L(G) ⊆ L(G).

Base step, n = 1: Consider a derivation γ such that

CiS C j
γ
=⇒G Ci′wC j′ , where a terminal ml-production r

in P(t) occurs only once in γ, and the rest of γ are pro-
ductions in P(t f ). Then, there exists a derivation γ′ such

that S
γ′
=⇒G CpwCq, where p = (m + i′ − i) mod m,

q = (m+ j′ − j) mod m, r occurs only once in γ, and the rest
of γ are productions in P(t f ). It follows from the definition
of cl(r) that S → CpwCq is a member of cl(r). Therefore,
CiS C j =⇒∗

G
Ci′wC j′ holds.

Induction step: Assume that CiS C j
γ
=⇒G Ci′wC j′ and

the total number of terminal ml-production occurrences in γ
is n + 1. Then, there exists one of the following derivations:

(1) CiS C j
γ1
=⇒G Ci′uCkS ClvC j′ γ2

=⇒G Ci′wC j′ ,

(2) CiS C j
γ1
=⇒G Ci′uCkS Cl

γ2
=⇒G Ci′wC j′ ,

(3) CiS C j
γ1
=⇒G CkS ClvC j′ γ2

=⇒G Ci′wC j′ ,
where 0 ≤ k, l < m, γ1 contains only one terminal ml-
production occurrence, and the total number of terminal ml-
production occurrences in γ2 is n.

We will show that, in the second case, CiS C j =⇒∗
G

Ci′wC j′ holds. Since γ1 is a sequence of productions in
P(t f ) except one occurrence of a terminal ml-production r,

there exists a derivation γ′1 such that S
γ′1
=⇒G CpuCkS Cq,

where p = (m + i′ − i) mod m, q = (m + l − j) mod m, r
occurs only once in γ′1, and the rest of γ′1 are productions in
P(t f ). From the definitions of cl(r) and G, S → CpuCkS Cq

is a member of both cl(r) and P. Therefore, CiS C j =⇒∗
G

Ci′uCkS Cl holds.
On the other hand, it follows from Ci′uCkS Cl

γ2
=⇒G

Ci′wC j′ that there exists a string w′ ∈ T+ such that w = uw′

and CkS Cl
γ2
=⇒G w

′C j′ . Then, by the induction hypothesis,
CkS Cl =⇒∗

G
w′C j′ holds. Therefore, there is a derivation

CiS C j =⇒∗
G

Ci′uCkS Cl =⇒∗
G

Ci′uw′C j′ = Ci′wC j′ .
The proof of the first and the third cases is analogous

to the proof of the second case. �

Corollary 1: CMLε{Cm} =t-CMLε{Cm}. Moreover, for any

{Cm}-cml grammar G, if ε ∈ L(G) then L(G) = L(G) ∪ {ε} =
L(G

′
), where G

′
= ({S ,C},T, P ∪ {rε}, S ).

3.2 Terminal {Cm}-cml Grammars and Nondeterministic
Finite Automata

For any terminal {Cm}-cml grammar G, we construct a non-
deterministic finite automaton MG such that a derivation step

in G corresponds to a transition in MG.
In the following, let S → CiuCkS ClvC j be an ml-

production in P(1) ∪ P(2) ∪ P(3) with u, v ∈ T ∗ and uv � ε.
Then, we assume that if u = ε then k = 0, and that if v = ε
then l = 0.

Definition 6: For a terminal {Cm}-cml grammar G =

({S ,C},T, P, S ), MG = (Q,ΣG, δ, q0,0, {q f }) is a nondeter-
ministic finite automaton derived from G, where

Q = {qi, j | 0 ≤ i, j < m} ∪ {q f },
ΣG = {[u|v] | S → CiuCkS ClvRC j ∈ P(1) ∪ P(2) ∪ P(3)}

∪ {[u] | S → CiuC j ∈ P(4)},
q0,0 is the start state, and q f is the final state. The transition
mapping δ is defined as follows:

If S → Ci′uCkS ClvRC j′ is in P(1), then δ(qi, j, [u|v]) 
 qk,l

with i = (m − i′) mod m and j = (m − j′) mod m.
If S → Ci′uCkS C j′ is in P(2), then for each j (0 ≤ j < m)
δ(qi, j, [u|ε]) 
 qk,l with i = (m − i′) mod m and
l = ( j + j′) mod m.

If S → Ci′S ClvRC j′ is in P(3), then for each i (0 ≤ i < m)
δ(qi, j, [ε|v]) 
 qk,l with k = (i + i′) mod m and
j = (m − j′) mod m.

If S → Ci′uC j′ is in P(4), then δ(qi, j, [u]) = {q f }
with i = (m − i′) mod m and j = (m − j′) mod m.

We extend δ by induction to a function δ∗ : Q× Σ+G → P(Q)
according to the rules:

δ∗(q, σ) = δ(q, σ),

δ∗(q, ασ) = ∪q′∈δ∗(q,α)δ(q
′, σ),

where σ ∈ ΣG and α ∈ Σ+G.
Moreover, if α = [u1|vR1 ] · · · [uk |vRk ], then we use the no-

tation δ∗(q, [u1 · · · uk |(v1 · · · vk)R]) to denote δ∗(q, α) for sim-
plicity. Note that [u1 · · · uk |(v1 · · · vk)R] cannot be in ΣG in
general.

We note the following points about MG in Definition 6.

1. Intuitively, the state qi, j (0 ≤ i, j < m) in MG

corresponds to the set consisting of sentential forms
τ1CiS C jτ2 in G such that τ1, τ2 ∈ {Cm}∗T ∗{Cm}∗.

2. An ml-production in P(1) ∪ P(4) produces a unique
transition, while an ml-production in P(2) ∪ P(3) pro-
duces m kinds of transitions.

The following lemmas are obvious from Definition 6.

Lemma 3: If MG has a transition such that either j � l and
δ(qi, j, [u|ε]) 
 qk,l or i � k and δ(qi, j, [ε|v]) 
 qk,l, then G is
not a strict terminal {Cm}-cml grammar.

Lemma 4: If a string α ∈ Σ∗G is in L(MG), then α is one of
the forms: [u] and [u1|v1] · · · [un|vn][u] (n ≥ 1).

In the following, for simplicity, we assume that if n = 0
then [u1|v1] · · · [un|vn][u] = [u].
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Theorem 4: For the nondeterministic finite automaton MG

derived from a terminal {Cm}-cml grammar G, if a string
[u1|v1] · · · [un|vn][u] is in L(MG), then u1 · · · unuvRn · · · vR1 is in
L(G).

Proof : Consider a terminal {Cm}-cml grammar G =

({S ,C},T, P, S ) and the nondeterministic finite automaton
MG = (Q,ΣG, δ, q0,0, {q f }) derived from G.

We will show that if δ(qi, j, [u1|v1] · · · [un|vn][u]) 
 q f

then there is a derivation CiS C j =⇒∗ u1 · · · unuvRn · · · vR1 by
using the induction on n. Note that for the case i = j = 0,
this implies Theorem 4.

Base step, n = 0: Assume that δ(qi, j, [u]) 
 q f . By the
construction of δ, there is a production r : S → Ci′uC j′ with
i = (m− i′) mod m and j = (m− j′) mod m. Therefore, there

is a derivation CiS C j r
=⇒ CiCi′uC j′C j =⇒∗ u.

Induction step: For n ≥ 1, assume that qf is an element
of δ(qi, j, [u1|v1] · · · [un|vn][u]). Then, there is a state qk,l such
that δ(qi, j, [u1|v1]) 
 qk,l and δ(qk,l, [u2|v2] · · · [un|vn][u]) 

q f . From the induction hypothesis, there is a derivation
CkS Cl =⇒∗ u2 · · · unuvRn · · · vR2 .

There are three cases for u1, v1: (1) u1, v1 � ε; (2) u1 =

ε, v1 � ε; (3) u1 � ε, v1 = ε. We prove only the first case,
since the proof of the other cases is quite similar to the proof
of the first case.

Assume that u1, v1 � ε. By the construction of δ, there
is a production r : S → Ci′u1CkS ClvR1C j′ in P with i =
(m − i′) mod m and j = (m − j′) mod m. Therefore, there is
a derivation

CiS C j r
=⇒ CiCi′u1CkS ClvR1C j′C j =⇒∗ u1CkS ClvR1
=⇒∗ u1u2 · · · unuvRn · · · vR2 vR1 .

�

Theorem 5: For a terminal {Cm}-cml grammar G =

({S ,C},T, P, S ), if a string w ∈ T+ is in L(G), then there
exists a string [u1|v1] · · · [un|vn][u] ∈ Σ+G with n ≥ 0 such that
w = u1 · · · unuvRn · · · vR1 and [u1|v1] · · · [un|vn][u] ∈ L(MG).

Proof : We will show that for 0 ≤ i, j < m and w ∈
T+, if there is a derivation CiS C j

γ
=⇒ w such that ter-

minal ml-productions occur n + 1 (n ≥ 0) times in γ,
then there exists a string [u1|v1] · · · [un|vn][u] such that
δ∗(qi, j, [u1|v1] · · · [un|vn][u]) 
 q f and w = u1 · · · unuvRn · · · vR1 .
We will prove this by induction on n. We note that for the
case i = j = 0, this implies Theorem 5.

Base step, n = 0: Assume that there is a derivation

CiS C j
γ
=⇒ w, where 0 ≤ i, j < m, w ∈ T+, and only one

terminal ml-production occurs in γ. Then, the terminal ml-
production is S → Ci′wC j′ with i = (m − i′) mod m and
j = (m − j′) mod m. By the construction of δ, there is a
transition δ(qi, j, [w]) 
 q f .

Induction step: Assume that there is a derivation

CiS C j
γ
=⇒ w such that terminal ml-productions occur n + 2

times in γ. Let r be the first used terminal ml-production in
γ. There are three cases: r ∈ P(1); r ∈ P(2); r ∈ P(3). We
prove only the case r ∈ P(1), since the proof of other cases

is similar to the proof of the first case.
Suppose that r is S → Ci′uCkS ClvRC j′ in P(1). Then,

there exists a derivation

CiS C j r
=⇒ Ci+i′uCkS ClvRC j′+ j γ1

=⇒ uCkS ClvR
γ2
=⇒ uw′vR,

such that uw′vR = w, only the c-production is applied in γ1,
and ml-productions occur n + 1 times in γ2.

Since only the c-production is applied in γ1, it follows
from the definition of δ that δ(qi, j, [u|v]) 
 qk,l. By the in-

duction hypothesis and CkS Cl
γ2
=⇒ w′, there exists a string

α ∈ Σ+G such that α = [u1|v1] · · · [un|vn][u′], δ∗(qk,l, α) 
 q f ,
and w′ = u1 · · · unu′vRn · · · vR1 . Hence, δ∗(qi, j, [u|v]α) 
 qf and
w = uu1 · · · unu′vRn · · · vR1 vR hold. �

3.3 Inclusion Relation of Terminal {Cm}-cml Language
Classes

For two distinct positive integers m and n, we examine in-
clusion relations between t-CML{Cm} and t-CML{Cn}. First,
we show that if n is a multiple of m then t-CML{Cn} includes
t-CML{Cm}.

Theorem 6: For given integers m, h ≥ 2, t-CML{Cm} ⊆ t-
CML{Chm}.

Proof : For a terminal {Cm}-cml language L(G) with G =
({S ,C},T, P, S ), we construct a terminal {Chm}-cml grammar
G′ = ({S ,C},T, P′, S ), where ml-productions in P′ are de-
fined as follows: For u, v ∈ T ∗, 0 ≤ i, j, k, l < m,

if S → CiuCkS ClvC j is in P(1) ∪ P(2) ∪ P(3)
then S → ChiuChkS ChlvCh j is in P′,

if S → CiuC j is in P(4) then S → ChiuCh j is in P′.
To prove the theorem, it is enough to show that for 0 ≤

x, y < m and w ∈ T+, there is a derivation CxS Cy
γ
=⇒G w

if and only if ChxS Chy
γ′
=⇒G′ w. Since the only if part is

obvious from the construction of G′, we will prove the if
part by induction on the number n of ml-productions occur
in the derivation γ′.

Base step, n = 1: Consider a derivation ChxS Chy
γ′
=⇒G′

w, where only one ml-production occurs in γ′. Then, the
ml-production is S → ChiwCh j in P′ such that

(hx + hi) mod hm = (hy + h j) mod hm = 0.

This implies (x+ i) mod m = (y+ j) mod m = 0. Therefore,
there exist a production S → CiwC j in P and a derivation
CxS Cy =⇒G CxCiwC jCy =⇒∗G w.

Induction step: Assume that ChxS Chy
γ′
=⇒G′ w and ml-

productions of P′ are applied n + 1 times in γ′. Then, there
are an ml-production r : S → ChiuChkS ChlvCh j and two
derivations, γ1 and γ2, such that

ChxS Chy r
=⇒G′ ChxChiuChkS ChlvCh jChy

γ1
=⇒G′ uChkS Chlv

γ2
=⇒G′ uw′v,

uw′v = w, only the c-production is applied in γ1, and ml-
productions occur n times in γ2. There are three cases for
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u, v: (1) u, v � ε; (2) u � ε, v = ε; (3) u = ε, v � ε. We
show only the first case, since the proof of the other cases is
similar to the proof of this case.

Assume that u, v � ε. Then, we have (hx + hi) mod
hm = (h j+ hy) mod hm = 0, which implies (x+ i) mod m =
( j + y) mod m = 0. From the induction hypothesis, there is
a derivation CkS Cl =⇒∗G w′. Therefore, there is a derivation
CxS Cy =⇒G CxCiuCkS ClvC jCy =⇒∗G uCkS Clv =⇒∗G w.

�

If n is greater than m then we can show that t-CML{Cn}
is not included in t-CML{Cm}.

Theorem 7: If n > m ≥ 2 then there exists a terminal {Cn}-
cml language that is not a terminal {Cm}-cml language.

Proof : For each k (0 ≤ k < n2), we define f (k) as a pair of
integers (i, j) such that k = i · n + j and 0 ≤ j < n. Consider
a terminal {Cn}-cml grammar G = ({S ,C},T, P, S ) such that

T = {a0, b0} ∪
⋃

1≤k<n2

{ak, bk, dk}

and
P = {S → Cn−iakCiS C jakCn− j |

0 ≤ k < n2 and f (k) = (i, j)}
∪ {S → Cn−ibkCn− j | 0 ≤ k < n2 and f (k) = (i, j)}
∪ {S → dkCiS C jdk | 1 ≤ k < n2 and f (k) = (i, j)}
∪ {Cn → ε}.

Let L0 = {al
0b0al

0 | l ≥ 0} and Lk = {dkal
kbkal

kdk | l ≥ 0} for k
(1 ≤ k < n2). Then, L(G) = ∪0≤k<n2 Lk.

Assume that there is a terminal {Cm}-cml grammar G′
such that L(G′) = L(G). Let MG′ be the nondeterministic fi-
nite automaton (Q′,Σ′, δ′, q′0,0, {q′f }) derived from G′, where

Q′ = {q′i, j | 0 ≤ i, j < m} ∪ {q′f },
Σ′ = {[u|v] | S → CiuCkS ClvRC j ∈ P′}

∪ {[u] | S → CiuC j ∈ P′}.
For each k (0 ≤ k < n2), if ak occurs in w ∈ L(G),

then w ∈ Lk. Hence, by Theorem 5, there is a state q̂k ∈
Q′ such that (δ′)∗(q̂k, [a

pk

k |apk

k ]) 
 q̂k. The set Q′ consists
of m2 + 1 states, and there is no transition from the final
state q′f . Hence, it follows from m < n that there are two

distinct integers s and t such that 0 ≤ s, t < n2 and q̂s =

q̂t. Therefore, (δ′)∗(q̂s, [a
ps
s |aps

s ][apt
t |apt

t ]) 
 q̂s holds. By
Theorem 4, this implies that there is a string w in L(G) such
that both as and at occur in w. This contradicts L(G) =
∪0≤k<n2 Lk.

Corollary 2: For given integers m, h ≥ 2, CML{Cm} ⊂
CML{Chm}.

3.4 Terminal {Cm}-cml Languages and Strict Terminal
{Cm}-cml Languages

We show that the class of terminal {Cm}-cml languages prop-
erly includes the class of s-terminal {Cm}-cml languages.

Theorem 8: For a given integer m ≥ 2, st-CML{Cm} ⊂t-
CML{Cm}.

Proof : Since st-CML{Cm}⊆t-CML{Cm} immediately follows
from the definitions of the language classes, we show the
proper inclusion.

We prove only the case m = 2. We show the outline of
the proof of the case m > 2 in Appendix.

Let m = 2. Consider a terminal {C2}-cml grammar G =
({S ,C},T, P, S ) such that T = {a0, a1, a2, a3, d0, d1, d2, d3, b0,
b1, b2, b3, e0, e1, g, h}, and

P = { S → a0S d0, S → a1S Cd1C, S → Ca2CS d2,
S → Ca3CS Cd3C, S → e0S , S → Ce1CS ,
S → b0, S → b1C, S → Cb2,
S → Cb3C, S → hS C, S → gCS ,
C2 → ε }.

We will show that L(G) is not in st-CML{C2}.
Let MG = (Q,ΣG, δ, q0,0, {q f }) be the nondeterministic

finite automaton derived from G. Figure 1 shows the tran-
sition diagram of MG. By using the transition diagram and
Theorem 4, we can easily show that the following eight sets
are subsets of L(G).

L0 = {an
0b0dn

0 | n ≥ 0}, L1 = {han
1b1dn

1 | n ≥ 0},
L2 = {gan

2b2dn
2 | n ≥ 0}, L3 = {hgan

3b3dn
3 | n ≥ 0},

L4 = {en
0b0 | n ≥ 0}, L5 = {hen

0b1 | n ≥ 0},
L6 = {gen

1b2 | n ≥ 0}, L7 = {hgen
1b3 | n ≥ 0}.

It is also easy to show that L(G) has the nine properties:

(P1) if w ∈ L(G), then one and only one of b0, b1, b2 and b3

occurs in w only one time.
(P2) an

0b0dk
0 ∈ L(G) if and only if n = k ≥ 0.

(P3) han
1b1dk

1 ∈ L(G) if and only if n = k ≥ 0.
(P4) gan

2b2dk
2 ∈ L(G) if and only if n = k ≥ 0.

(P5) hgan
3b3dk

3 ∈ L(G) if and only if n = k ≥ 0.
(P6) if b0 occurs in w ∈ L(G) then w has an even number

(including zero) of h occurrences, and g does not occur
in w.

(P7) if b1 occurs in w ∈ L(G) then w has an odd number of
h occurrences, and g does not occur in w.

Fig. 1 The transition diagram of MG .
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(P8) if b2 occurs in w ∈ L(G) then w has only one occur-
rence of g and an even number (including zero) of h
occurrences.

(P9) if b3 occurs in w ∈ L(G) then w has only one occur-
rence of g and an odd number of h occurrences.

We prove by contradiction that L(G) is not in st-
CML{C2}. Suppose that there is an s-terminal {C2}-cml gram-
mar G′ = ({S ,C},T, P′, S ) such that L(G) = L(G′). Let
MG′ = (Q′,Σ′, δ′, q′0,0, {q′f }) be the nondeterministic finite
automaton derived from G′, where

Q′ = {q′i, j | 0 ≤ i, j < 2} ∪ {q′f },
Σ′ = {[u|v] | S → CiuCkS ClvRC j ∈ P′}

∪ {[u] | S → CiuC j ∈ P′}.
For any n ≥ 0, each Li (0 ≤ i ≤ 7) contains a string w

with |w| > n. Furthermore, Theorems 4 and 5 show that there
is a correspondence between strings in L(G′) and strings in
L(MG′ ). Hence, by a similar argument used in the proof
of the pumping lemma for regular languages ([7]), we can
prove that, for each i (0 ≤ i ≤ 7), there are states q̂i, q∗i ∈ Q′,
and strings xi, yi, zi, αi, βi, ti, ui ∈ T ∗ such that the following
seven conditions hold:
(1) if xiαi � ε then (δ′)∗(q′0,0, [xi|αR

i ]) 
 q̂i else q̂i = q′0,0,
(2) (δ′)∗(q̂i, [yi|βR

i ]) 
 q̂i,
(3) if ziti � ε then (δ′)∗(q̂i, [zi|tR

i ]) 
 q∗i else q̂i = q∗i ,
(4) δ′(q∗i , [ui]) = {q′f },
(5) the string xiyiziuitiβiαi is in Li,
(6) for each k ≥ 0, the string xiy

k
i ziuitiβk

i αi is in L(G),
(7) yiβi � ε and ui � ε.

We show the following seven claims.

Claim 1: For each i (0 ≤ i ≤ 3), the following hold.

(a) For each k ≥ 0, the string xiy
k
i ziuitiβk

i αi is in Li.
(b) There exists a positive integer pi such that yi = api

i and
βi = dpi

i .
(c) The string ziuiti has only one occurrence of bi,
(d) x1 has only one occurrence of h, x2 has only one occur-

rence of g, and x3 has only one occurrence of both h
and g.

Proof : We prove only the case i = 1, since the proof of
other cases is similar to the proof of this case.

By Condition (5), there exists p ≥ 0 such that
x1y1z1u1t1β1α1 = hap

1b1dp
1 . Hence, it follows from Condi-

tions (6), (7) and Property (P1) that b1 occurs once in z1u1t1.
Similarly, from Conditions (6), (7) and Property (P7), it
holds that h occurs once in x1. Therefore, it follows from
Condition (6) and Property (P3) that, for each k ≥ 0, the
string x1y

k
1z1u1t1βk

1α1 is in L1, and that there exists a posi-
tive integer p1 such that y1 = ap1

1 and β1 = dp1

1 .

Claim 2: For each i (1 ≤ i ≤ 3), q̂i is different from q′0,0.

Proof : First, we note that, since the string b0 is in L(G) =
L(G′), P′ must include the production S → b0, which im-
plies δ′(q′0,0, [b0]) = {q′f }.

Next, assume that q̂i = q′0,0. Then, (δ′)∗(q′0,0, [yi|βR
i ]) 


q′0,0 holds. Hence, it follows from δ′(q′0,0, [b0]) = {q′f } that

for each k ≥ 0, akpi

i b0dkpi

i is in L(G′) = L(G). However,

akpi

i b0dkpi

i is not in L(G), which is a contradiction. There-
fore, Claim 2 holds.

Claim 3: The states q̂0, q̂1, q̂2 and q̂3 are all distinct.

Proof : We show that q̂0 and q̂1 are distinct. If the two
states are the same, then it follows from (δ′)∗(q′0,0, [x1|αR

1 ]) 

q̂1, (δ′)∗(q̂1, [y1|βR

1 ]) 
 q̂1, (δ′)∗(q̂1, [z0|tR
0 ]) 
 q∗0 and

δ′(q∗0, [u0]) = {q′f } that for each k ≥ 0, x1y
k
1z0u0t0βk

1α1 is
in L(G). On the other hand, it follows from Claim 1 that
x1y

k
1z0u0t0βk

1α1 has only one occurrence of both h and b0.
This contradicts Property (P6).

We can prove the other cases by using Properties (P6)–
(P9) and Claim 1 in similar ways.

Claim 4: The state q̂0 is q′0,0.

Proof : MG′ has four states except for the final state q′f .
Therefore, Claim 4 follows from Claims 2 and 3.

Claim 5: For each i (4 ≤ i ≤ 7), let j = i − 4. Then, bj is a
suffix of ui, and tiβiαi = ε.

Proof : We prove only the cases i = 4 and 5, because we
can similarly prove the cases i = 6 and 7. By a similar
argument used in the proof of Claim 1, we can show that
there exists a positive integer pi such that yiβi = epi

0 . Hence,
it follows from Condition (7) that bj is a suffix of αi, ti or ui.

Assume that b j is a suffix of αi or ti. Then, Conditions
(5), (6) and (7) imply that ui = eki

0 for some ki ≥ 1. Since it
follows from Claim 3 that q∗i is one of q̂0, q̂1, q̂2 and q̂3, let
q∗i = q̂k (0 ≤ k ≤ 3). Then, the string xiyizizkuktktiβiαi is in
L(G′). On the other hand, from the assumption that b j is a
suffix of αi or ti, tiβiαi has an occurrence of b j. Furthermore,
it follows from Claim 1 that zkuktk has an occurrence of bk,
which contradicts Property (P1). Therefore, bj is a suffix of
ui.

The equation tiβiαi = ε follows from Condition (5) and
the fact that b j is a suffix of ui.

Claim 6: For each i (5 ≤ i ≤ 7), xi � ε. In particular, x5

has only one occurrence of h, x6 has only one occurrence of
g, and x7 has only one occurrence of both h and g.

Proof : As shown in the proof of Claim 5, if i = 5 then
yiβi = epi

0 for some pi ≥ 1 holds, and if i = 6 or 7 then
yiβi = epi

1 for some pi ≥ 1 holds. On the other hand, if
w ∈ Li (5 ≤ i ≤ 7) then neither e0 nor e1 is a prefix of
w. Therefore, xi � ε, and h (resp. g, hg) is a prefix of x5

(resp. x6, x7). Then, Claim 6 holds.

Claim 7: The states q̂5, q̂6 and q̂7 are all distinct, and none
of them is q′0,0.

Proof : The proof of the fact that q̂5, q̂6 and q̂7 are all dis-
tinct is similar to the proof of Claim 3.

We will prove that q̂5 is not equal to q′0,0. Suppose that
the two states are the same. Then, x5b0 is in L(G′) = L(G).
On the other hand, it follows from Claim 6 that x5b0 has
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only one occurrence of h. This contradicts Property (P6).
Similarly, we can prove that neither q̂6 nor q̂7 is equal to
q′0,0.

We will conclude the proof of Theorem 8. It follows
from Claim 7 that one of q̂5, q̂6 and q̂7 is equal to q′0,1. Sup-
pose that q̂p (5 ≤ p ≤ 7) is equal to q′0,1. Then, since αp = ε
follows from Claim 5, (δ′)∗(q′0,0, [xp|ε]) 
 q′0,1 holds. This
contradicts Lemma 3 and the assumption that G′ is an s-
terminal {C2}-cml grammar. �

3.5 Linear Languages and Regular Languages

We show that the class of ε-free linear languages properly
includes the class of terminal {Cm}-cml languages.

Theorem 9: For a given integer m ≥ 2, every terminal
{Cm}-cml language is linear.

Proof : For a terminal {Cm}-cml grammar G, consider a
nondeterministic finite automaton MG = (Q,Σ, δ, q0,0, {q f })
derived from G. Based on MG, construct a linear grammar
Gl = (N,T, Pl,N0,0), where

N = {Ni, j | qi, j ∈ Q},
Pl = {Ni, j → uNk,lv

R | δ(qi, j, [u|v]) 
 qk,l} ∪
{Ni, j → u | δ(qi, j, [u]) 
 q f }.

From Theorems 4 and 5, it is obvious that L(G) = L(Gl). �

We will show that the class of languages generated
by terminal {Cm}-cml (resp. s-terminal {Cm}-cml) grammars
and the class of ε-free regular languages are incomparable.

Theorem 10: For a given integer m ≥ 2, t-CML{Cm}
(resp. st-CML{Cm}) and REG are incomparable.

Proof : Since ML and REG are incomparable ([3]) and ML
is included in st-CML{Cm}, it suffices to show that there exists
a regular language that is not a terminal {Cm}-cml language.

Consider a regular language

Lr = {(a0)k0 (a1)k1 · · · (a2m2 )k2m2 | k0, k1, · · · , k2m2 ≥ 0}.
Assume that there is a terminal {Cm}-cml grammar G =

({S ,C},T, P, S ) such that T = {a0, a1, . . . , a2m2 } and Lr =

L(G). Let MG = (Q,ΣG, δ, q0,0, {q f }) be the nondeterminis-
tic finite automaton derived from G.

For each l (0 ≤ l ≤ 2m2), since {(al)k | k ≥ 0} is a
subset of Lr, it follows from Theorem 5 and Lr = L(G) that
there exist a state q̂l ∈ Q, and integers il, jl ≥ 0 such that
δ∗(q̂l, [a

il
l |a jl

l ]) 
 q̂l, and at least one of il and jl is greater
than 0. Similarly, if there exist strings u, v ∈ T ∗ such that
δ∗(q̂l, [u|vR]) 
 q̂l, then ail

l uail
l and a jl

l va
jl
l are substrings of

some w ∈ Lr. Hence, if il > 0 (resp. jl > 0) then u (resp. v)
is a sequence of al. Therefore, if q̂l1 = q̂l2 and l1 < l2,
then both jl1 = 0 and il2 = 0 hold. This implies that there
exist no three mutually distinct integers l1, l2, l3 such that
0 ≤ l1, l2, l3 ≤ 2m2 and q̂l1 = q̂l2 = q̂l3 . That is, MG must
have at least �(2m2 + 1)/2� = m2 + 1 states except for the

final state, whereas Q consists of m2 states except for the
final state. This is a contradiction. Therefore, Lr is not a
terminal {Cm}-cml language. �

Since REG is included in LIN, the following proper
inclusion follows from Theorems 9 and 10.

Theorem 11: For a given integer m ≥ 2, CML{Cm} ⊂ LIN.

Note that Theorem 11 can be derived also from Theorems 7
and 9.

4. {C∗}-cml Languages

We consider the union of CML{Cm} over all m ≥ 1 in this
section.

Definition 7: A language L is a {C∗}-cml language (resp.
terminal {C∗}-cml language) if there is some integer m ≥ 1
such that L is a {Cm}-cml language (resp. terminal {Cm}-cml
language). Let CML{C∗} (resp. t-CML{C∗}) be the class of
{C∗}-cml languages (resp. terminal {C∗}-cml languages).

From Definition 7 and Theorems 3 and 9, the following
are obvious.

∪m≥1t-CML{Cm} = t-CML{C∗} = CML{C∗} ⊆ LIN.

Lemma 5: An ε-free linear language is a terminal {C∗}-
cml language.

Proof : Consider an ε-free linear language L = L(G),
where G = (N,T, P,N0) and N = {N0, · · · ,Nn−1}. With-
out loss of generality, we may assume that any production
in P is of one of the forms Np → τNq, Np → Nqτ, Np → τ,
where τ ∈ T+ and Np,Nq ∈ N.

We construct a terminal {Cn}-cml grammar G′ =
({S ,C},T, P′, S ) as follows: P′ = P′l ∪ P′r ∪ P′f ∪ PC , where

P′l = {S → Cn−pτCqS Cy |
Np → τNq ∈ P, y = (n + q − p) mod n}

P′r = {S → CxS CqτCn−p |
Np → Nqτ ∈ P, x = (n + q − p) mod n}

P′f = {S → Cn−pτCn−p | Np → τ ∈ P}
PC = {Cn → ε}.

We will show that for any z ∈ T+ and any Np ∈ N, there is a

derivation φ : Np
φ
=⇒G z if and only if there is a derivation

γ : CpS Cp
γ
=⇒G′ z. Note that for the case p = 0, this

implies that a string z is in L(G) if and only if z is in L(G′).
[Only-if part]: We use induction on the length k of φ.

Base step, k = 1: Assume that there is a derivation
δ : Np =⇒G z, where Np ∈ N and z ∈ T+. For a produc-
tion Np → z in P, from the construction of P′f , there is a
production r : S → Cn−pzCn−p in P′. Therefore, there is a

derivation CpS Cp r
=⇒G′ CpCn−pzCn−pCp =⇒∗G′ z.

Induction step: Consider a derivation φ : Np
r
=⇒G

α =⇒∗G z, where the length of φ is k+1, Np ∈ N, z ∈ T+, and
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r ∈ P. There are two cases for r: (1) r is Np → τNq, and (2)
r is Np → Nqτ. We prove only the first case, since the proof
of the second case is similar to the proof of the first case.

Then, the derivation φ becomes φ : Np
r
=⇒G τNq =⇒∗G

τz′ = z. For the production r, from the construction of P′l , a
production r′ : S → Cn−pτCqS Cy is in P′, where y = (n+q−
p) mod n. For a derivation Nq =⇒∗G z′, from the induction
hypothesis, there is a derivation CqS Cq =⇒∗G′ z′. Therefore,

there is a derivation CpS Cp r′
=⇒G′ CpCn−pτCqS CyCp σc

=⇒G′

τCqS Cq =⇒∗G′ τz′, where σc is a sequence of the c-
production.

[If part]: We use induction on the number k of ml-
productions that occur in γ.

Base step, k = 1: Assume that there is a derivation
γ : CpS Cp =⇒∗G′ z, where 0 ≤ p < n, z ∈ T+, and only
one ml-production occurs in γ. Then, the ml-production is
r : S → Cn−pzCn−p. Since r is in P′f , it follows from the
construction of P′ that Np → z is in P. Therefore, there is a
derivation Np =⇒G z.

Induction step: Consider a derivation γ : CpS Cp r
=⇒G′

α
γ1
=⇒G′ z, where r is an ml-production, ml-productions oc-

cur k times in γ1, 0 ≤ p < n, and z ∈ T+. There are two cases
for r: (1) r ∈ P′l ; (2) r ∈ P′r. We prove only the first case,
since the proof of the second case is similar to the proof of
the first case.

Let r ∈ P′l . Then, it follows from the definition of P′l
that r is S → Cn−pτCqS Cy, y = (n + q − p) mod n, and

Np → τNq ∈ P. Hence, the derivation γ is CpS Cp r
=⇒G′

CpCn−pτCqS CyCp
γ1
=⇒G′ τz′ = z. Therefore, there is a

derivation γ2 : CqS Cq
γ2
=⇒G′ z′ such that ml-productions

occur k times in γ2. From the induction hypothesis, there
is a derivation Nq =⇒∗G z′. Therefore, there is a derivation
Np =⇒G τNq =⇒∗G τz′ = z. �

From Lemma 5, we have the following theorem.

Theorem 12: CML{C∗}=t-CML{C∗}=LIN.

5. Concluding Remarks

We examined the generative power of {Cm}-cml grammars.
Figure 2 illustrates major results proved in this paper. We
also showed the following:

1. if n is a multiple of m and n > m then t-CML{Cn} prop-
erly includes t-CML{Cm},

2. if n > m ≥ 2 then t-CML{Cn} is not included in t-
CML{Cm}.

The question of whether t-CML{Cm} and t-CML{Cn} are in-
comparable for n > m ≥ 2 is open except for the case where
n is a multiple of m.

In this paper, we only considered the generative power
of cancel minimal linear grammars with a unique nontermi-
nal symbol except S . As noted in Sect. 2, Geffert [1] shows
other types of cml grammars, for example,

Fig. 2 Language hierarchy.

(1) PC = {AB→ ε, BBB→ ε}, NC = {A, B},
(2) PC = {ABBBA→ ε}, NC = {A, B}.

The question of deciding the generative power of cml
grammars with two nonterminal symbols except S is open
and of great interest to be studied.
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Appendix: Proof Outline of Theorem 8: General Case

We show that for m ≥ 2, there exists a terminal {Cm}-cml
grammar G such that no strict terminal {Cm}-cml grammar
G′ generates L(G).

The outline of the proof is similar to the proof of
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the case m = 2. Consider a terminal {Cm}-cml grammar
G = ({S ,C},T, P, S ) such that

T = {ai, j | 0 ≤ i, j < m} ∪ {bi, j | 0 ≤ i, j < m}
∪ {di, j | 0 ≤ i, j < m} ∪ {ei | 0 ≤ i < m}
∪ {g1, g2, . . . , gm−1, h}, and

P = {S → Cm−iai,kCiS Ckdi,kCm−k | 0 ≤ i, k < m}
∪ {S → Cm−ibi,kCm−k | 0 ≤ i, k < m}
∪ {S → Cm−ieiCiS | 0 ≤ i < m}
∪ {S → Cm−i+1giCiS | 1 ≤ i < m}
∪ {S → hS C, Cm → ε}.

We can construct from G the nondeterministic finite automa-
ton MG = (Q,Σ, δ, q0,0, {q f }). The transition mapping δ is
defined as, for 0 ≤ i, j < m and 1 ≤ k < m,

δ(qi, j, [ai, j | dR
i, j]) = {qi, j}, δ(qi, j, [bi, j]) = {q f },

δ(qi, j, [ei | ε]) = {qi, j}, δ(qk−1, j, [gk | ε]) = {qk, j},
δ(q0, j, [h | ε]) = {q0, j+1},

where we assume q0,m is equal to q0,0.
In the following, for i = 0, we assume that h0 =

g1 · · · gi = ε. Then, it is easy to show that, for 0 ≤ i, j < m,
the following sets are subsets of L(G):

Li, j = {h jg1 · · · gian
i, jbi, jdn

i, j | n ≥ 0}
Lm+i,m+ j = {h jg1 · · · gien

i bi, j | n ≥ 0}
The language L(G) has the properties:

1. if w ∈ L(G), then w has only one occurrence of bi, j

(0 ≤ i, j < m), and none of them occur in w at the same
time.

2. for 0 ≤ i, j < m, h jg1 · · · gia
p
i, jbi, jd

q
i, j ∈ L(G) if and only

if p = q ≥ 0.
3. if bi, j occurs in w ∈ L(G) then the number of h oc-

currences in w is congruent to j modulo m, and gk

(1 ≤ k ≤ i) occurs in w only once.

Assume that there exists an s-terminal {Cm}-cml gram-
mar G′ = ({S ,C},T, P′, S ) such that L(G) = L(G′). Let
MG′ = (Q′,Σ′, δ′, q′0,0, {q′f }) be the nondeterministic finite
automaton derived from G′.

We can show several claims similar to the claims
showed in the proof of the case m = 2. Therefore, we can
derive a contradiction. �
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