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PAPER

Probabilistic Concatenation Modeling for Corpus-Based Speech
Synthesis

Shinsuke SAKAI†a), Tatsuya KAWAHARA†, and Hisashi KAWAI††, Members

SUMMARY The measure of the goodness, or inversely the cost, of con-
catenating synthesis units plays an important role in concatenative speech
synthesis. In this paper, we present a probabilistic approach to concatena-
tion modeling in which the goodness of concatenation is measured by the
conditional probability of observing the spectral shape of the current can-
didate unit given the previous unit and the current phonetic context. This
conditional probability is modeled by a conditional Gaussian density whose
mean vector has a form of linear transform of the past spectral shape. De-
cision tree-based parameter tying is performed to achieve robust training
that balances between model complexity and the amount of training data
available. The concatenation models are implemented for a corpus-based
speech synthesizer, and the effectiveness of the proposed method was con-
firmed by an objective evaluation as well as a subjective listening test. We
also demonstrate that the proposed method generalizes some popular con-
ventional methods in that those methods can be derived as the special cases
of the proposed method.
key words: speech synthesis, unit selection, concatenation cost, join cost

1. Introduction

The corpus-based unit concatenation approach to speech
synthesis has been widely explored in the research commu-
nity in recent years [1]–[6]. In this approach, an optimal
sequence of subphone, phone, or non-uniform (e.g. [1], [2])
synthesis units are chosen from a large inventory of units to
synthesize speech from the input text through the minimiza-
tion of the overall cost. The overall cost is often modeled as
the weighted sum of target costs and concatenation (or join)
costs defined over various features of synthesis units such as
spectral shape, intonation contour, and segmental duration.
In order to achieve as smooth concatenation of successive
units as possible, various approaches to concatenation costs
have been explored based on distance or distortion of acous-
tic parameters such as F0, power, and cepstrum [2], [3], of-
ten combined with empirical table-driven costs looked up by
phonetic or prosodic features [4], [5], [7]. There is also an
approach to use normalized cross-correlation at the wave-
form level to represent the concatenation cost [6]. Since es-
tablishing a good model of concatenation cost is one of the
most important issues that influence the quality of concate-
native speech synthesis, there has also been a number of re-
search efforts focused on the issue of concatenation cost [8]–
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[12], in which various spectral feature parameters and dis-
tance measures are investigated and compared.

In our approach to concatenation modeling proposed
in this paper, we depart from the traditional view of con-
catenation cost based on “distance” or “distortion” and take
a probabilistic view of concatenation cost where concate-
nation modeling is done with a probabilistic model that cap-
tures how likely it is to observe the spectral shape of the cur-
rent unit given the spectral shape of the previous unit within
the current linguistic context. For the modeling of this con-
ditional probability, we make use of conditional Gaussian
models. The mean vector of a conditional Gaussian density
has a form of linear transform of some other vector, which is
useful for representing the correlation between two random
variables. An example of the use of conditional Gaussian
in speech processing is found in autoregressive HMMs [13],
where the observation vector from a state is conditioned not
only on the identity of the current state but also on the ob-
servation from the previous state.

In order to perform as fine modeling as possible with a
limited amount of training data, the parameters in the con-
ditional Gaussian models for various different contexts are
tied using tree-based context clustering. We show that this
clustering can be done efficiently using the sufficient statis-
tics appearing in the maximum likelihood estimate that we
derive from the definition of conditional Gaussian density.

The effectiveness of the proposed approach to concate-
nation modeling is demonstrated through comparative ob-
jective and subjective evaluation experiments using a unit
selection-based concatenative speech synthesis system [14].
In this speech synthesis system, spectral target costs are
given by multivariate Gaussian densities and F0 target costs
are computed using statistical additive F0 models [15], [16].
The duration target costs are given by scalar Gaussian mod-
els identified by phonetic features and positional features re-
lated to syllable, word, and phrase units as well as features
related to prosodic events such as lexical stress and pitch
accent [14]. The proposed concatenation modeling method
as well as a conventional method of concatenation cost are
employed in this system and compared in the experiment.

The rest of the paper is organized as follows. Section 2
gives an overview of the probabilistic concatenation models
with a mathematical definition and the derivation of maxi-
mum likelihood estimate from the model definition. A ro-
bust and efficient training method for the models based on
phonetic decision tree-based context tying is described in
Sect. 3. In Sect. 4, we discuss the mathematical relationships
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of the proposed method with other conventional approaches.
Experimental results are presented in Sect. 5 where we ex-
amine how linear transforms for conditional means of the
models are trained from the corpus. Objective and subjec-
tive evaluation results are also presented. The last section
presents our conclusion.

2. Probabilistic Concatenation Models

We model the goodness of concatenation of the spectral
characteristics of the adjacent synthesis units in terms of the
conditional probability P(h(uk)|t(uk−1), ck) of observing the
feature vector h(uk) that represents the spectral characteris-
tics of the initial part (or head) of the current unit uk given
the feature vector t(uk−1) that represents the spectral charac-
teristics of the ending part (or tail) of the previous unit uk−1

and the context ck for the current unit. These feature vectors
h(u) for the head and t(u) for the tail of the unit u can be
implemented as the average of spectral features over a few
frames at the beginning and the end of the unit, respectively,
for example. This concatenation probability is modeled by
a conditional Gaussian density,

P(h(uk)|t(uk−1), ck)

= N(h(uk)|Bck · t(uk−1) + bck , Σck ), (1)

where h(uk) and t(uk−1) are d-dimensional vectors, Bck is a
d × d regression matrix with the j-th row representing re-
gression coefficients for the j-th component of h(uk), bck is
a d-dimensional vector of intercepts, and Σck is a d × d co-
variance matrix. The context ck may consist of information
such as the identities of the current and preceding phones
and the position of the current unit in the current phone if
the granularity of the unit is smaller than a phone. We drop
the suffix ck for simplicity of notation hereafter. A graphical
model representation of this conditional Gaussian model is
depicted in Fig. 1.

The use of conditional Gaussian is motivated by the
observation that the spectral shapes, i.e. the energy distri-
bution patterns in the frequency domain, across segment
boundaries are not always similar between both sides of the
boundary when we examine them after labeling the natural

Fig. 1 A graphical model representation of the conditional Gaussian
concatenation model.

speech to segment it into small units such as phone, half
phone, or HMM states. When we see a boundary between
some two vowels, for example, we observe that the spec-
tral shapes are almost same across the boundary, whereas
an abrupt spectral change is observed at the boundary and
the spectral shapes are totally different across the boundary
between some obstruent consonant and a vowel. In some
boundaries such as those between a voiced consonant and a
vowel, we see not only an abrupt change but also a conti-
nuity or a some kind of dependency between both sides of
the boundary. Figure 2 presents conceptual graphs that de-
pict the relationships between the tail and the head of two
consecutive units in two extreme cases, using i-th compo-
nents of hypothetical spectral feature vectors. Figure 2 (a)
corresponds to a case where the i-th feature vector compo-
nents are very similar across the unit boundary, e.g. a case
where a vowel is followed by the same vowel. In this kind
of situation, the i-th row of the matrix B that contributes
to the transform of the i-th component is considered to be
dominated by the (i, i)-component and the i-th component
of the constant vector b is close to zero. On the other hand,
if there is a case like Fig. 2 (b), where hi(uk), the i-th com-
ponent of the head feature vector of the current unit, almost
has the constant value, the i-th row of the regression matrix
B is considered to be close to zero vector and the i-th ele-
ment of the vector b will be the significant contributor to the
i-th component of the conditional mean vector. In general,
the i-th row of B should have some meaningful values in
multiple columns, if hi(uk) has dependencies to i-th and/or
some other components of t(uk). With the characteristics of
the conditional Gaussian models described above, we can
expect a properly high score if adjacent units have a typi-
cal continuity and/or discontinuity patterns in their tail and
head feature vectors, irrespective of the similarity of these
two vectors.

In general, the proposed method is considered to be ap-
plicable to the approaches with uniform sized units such as
phone, half-phone, and HMM state, where all the competing
hypotheses have the same number of concatenation points.
In the current paper, we specifically demonstrate the effec-
tiveness of the proposed method through the implementation

Fig. 2 Schematic diagram representing the relationship between hi(uk)
and ti(uk−1), which are the i-th components of the vectors h(uk) and t(uk−1),
in two extreme cases. (a) hi(uk) is very similar to ti(uk−1). (b) hi(uk) is
almost independent of ti(uk−1).
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of speech synthesis system with phone sized units.

2.1 ML Estimation of Conditional Gaussian Model Pa-
rameters

The maximum likelihood (ML) estimate of the model pa-
rameters B and b from the training data is derived as a solu-
tion to a simple convex optimization problem, like ML es-
timation of a multivariate Gaussian. The training data D =
{(t1, h1), . . . , (tN , hN)} for a conditional Gaussian model for
a given context consists of all the pairs (ti, hi) of tail and
head spectral feature vectors from the N unit boundaries
available from the corpus for that context.

In order to facilitate the calculation, we define a d×(d+
1) augmented matrix A and a (d + 1)-dimensional vector si,
where d is the dimensionality of ti and hi, such that,

A =
[

b B
]
, and si =

[
1
ti

]
, (2)

with which we have the relationship Asi = B ti + b. Thus,
we obtain the estimates of B and b from the estimate of
A. Then the conditional Gaussian density function can be
written as

N(h|B t + b, Σ) = N(h|A s, Σ)

=
1

(2π)d/2|Σ|1/2 exp{−1
2

(h − As)TΣ−1(h − As)}. (3)

The log likelihood L with the training dataD is, therefore,

L(A,Σ;D) � log
N∏

i=1

N(hi|Asi,Σ)

= −dN
2

log 2π − N
2

log |Σ|

−1
2

N∑
i=1

(hi − Asi)
TΣ−1(hi − Asi). (4)

Taking the partial derivative of L with regard to A, and uti-
lizing the formula (see, e.g., [17]),

∂{(Xa + b)T C(Xa + b)}
∂X

= (C + CT )(Xa + b)aT ,

we have

∂L
∂A
= −1

2

N∑
i=1

{−(Σ−1 + Σ−1T
)(hi − Asi)sT

i }

= Σ−1
N∑

i=1

(hi − Asi)sT
i . (5)

Setting the partial derivative to zero, we obtain the ML esti-
mate of A as

Â =
(∑

hisT
i

) (∑
sisT

i

)−1
. (6)

The covariance matrix Σ can be estimated as the sample co-
variance around the conditional mean Â si, and it reduces

to

Σ̂ =
1
N

N∑
i=1

hihi
T − Â

1
N

N∑
i=1

sihi
T . (7)

3. Robust Training with Decision-Tree Clustering

The number of the types of contexts that determines the spe-
cific conditional Gaussian (CG) model for measuring the
goodness of concatenation can be very large and we often
have very few training data points (or, even worse, no data
points at all) available from the corpus for some types of
contexts. For example, even if we assume that the context
is simply determined by the phone identities of the current
unit and the preceding unit, the number of possible combi-
nation is already close to 3000. In order to achieve robust
training of the conditional Gaussian concatenation models,
we tie the model parameters using decision tree-based con-
text clustering. The process of parameter tying is performed
by the following steps.

1. Initial CG model parameters are trained for all the dis-
tinct contexts existing in the training data.

2. CG models that have the same phone labels associated
with the head spectral feature vector hi in the bound-
ary data pair (ti, hi) are grouped and clustered using a
decision tree:

a. Parameters of all the CG models in the group are
tied and associated with the root node of the deci-
sion tree.

b. Each terminal node of the tree is examined and
recursively split into two child nodes based on
the context question that yields the maximum in-
crease of the likelihood.
The node is not split if the likelihood gain is be-
low the pre-specified threshold or the number of
training data points after split is smaller than the
pre-specified minimum number of elements in the
node.

Suppose we have a subset of the augmented training
data S = {(s1, h1), . . . , (sn, hn)} associated with a node,
where si is a (d + 1)-dimensional augmented tail vector de-
fined in the Eq. (2). LetLS be the log likelihood, with regard
to the data S, of the model trained with S itself. Noting the
relationship

n∑
i=1

(hi − ASsi)
TΣ−1

S (hi − ASsi)

= trace(Σ−1
S · n ΣS) = n · d,

where AS and ΣS are the augmented regression matrix and
the covariance matrix trained with S, we can reduceLS into

LS = log
n∏

i=1

N(hi|AS · si,ΣS)

= −n
2

(d log(2π) + log |ΣS| + d). (8)
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Fig. 3 A decision tree for clustering the context for the group of bound-
ary data with phone [aa] associated with the head feature vector. Open
circles represent non-terminal nodes and filled circles represent terminal
nodes. Nodes are split by phonetic questions on the preceding unit.

Therefore, we see that the log likelihood with S depends
only on the covariance matrix ΣS and the number of data
points n. When S is divided into the subsets A with a data
points and B with b (= n − a) data points by a context ques-
tion, the increase in the log likelihood G becomes

G = LA +LB − LS
=

1
2
{(a + b) log |ΣS| − a log |ΣA| − b log |ΣB|}. (9)

Using the Eqs. (6) and (7), the increase G can be computed
efficiently utilizing the sufficient statistics

∑
i hisT

i ,
∑

i sisT
i ,∑

i hihT
i , and

∑
i sihT

i . We compute these sufficient statistics
for all the un-tied models in the step 1 of the decision tree-
based clustering process described earlier. The likelihood at
any node can be computed by reusing these sufficient statis-
tics without direct reference to the training data points.

Figure 3 depicts part of the decision tree grown for
clustering the context for the group of boundary data in
which the head feature vectors have phone label [aa], ob-
tained through the training of CG models in the experiment
presented in Sect. 5.

4. Relationships with Other Approaches

The proposed measure for the cost of concatenation between
the tail feature vector t from the preceding unit and the head
feature vector h from the current unit is the negative of the
log probability given by the conditional Gaussian model ex-
pressed as

logN(h|B t + b, Σ)

= −d
2

log 2π − 1
2

log |Σ|

−1
2

(h − (B t + b))TΣ−1(h − (B t + b)), (10)

where the model parameters B, b, and Σ depend on the con-
text (in the current experiment, phone identity of the current
unit and the preceding phone context). The integer d is the
dimensionality of the vectors h and t. By comparing this
equation with the formulas of other distance measures, we

show that the proposed method has interesting relationships
with other approaches.

4.1 Squared Euclidean Distance

Euclidean distance is a widely used distance measure and its
square is sometimes preferred over the standard Euclidean
distance when faster computation is required. If we set the
transformation matrix B to the identity matrix (I), the con-
stant b to zero vector, the covariance matrix Σ also to the
identity matrix and neglect the constant terms, we note that
the negative of the score given by Eq. (10) reduces to the
square of the Euclidean distance between h and t that can
be expressed as

D2
euc = (h − t)T (h − t). (11)

4.2 Donovan’s Approach

In [11], Donovan proposed a distance measure between the
vector e at the end (i.e. tail) of one segment and the vector s
at the start (i.e. head) of the next segment. For this purpose,
he clustered the pairs of frames across the boundaries us-
ing a decision tree by asking broad class questions about the
preceding and following phonetic identity and the location
of the boundary within the phone, and calculated the mean
and the covariance matrix within each leaf of the tree. He
describes it “a decision-tree-based context-dependent Ma-
halanobis distance”, which is expressed as

D2 =

d∑
i=1

[ei − si − μl
i

σl
i

]2
, (12)

where d is the dimensionality of the data, μl
i is the i-th el-

ement of the mean vector in leaf l, σl
i is the i-th diagonal

element of the covariance matrix for leaf l.
Looking at the Eqs. (10) and (12), we note that (10)

becomes equivalent to (12) if we set B to the identity ma-
trix and neglect the second term with the determinant of
the covariance matrix, also assuming that the elements of
the feature vectors are independent to each other. In other
words, Donovan’s distance measure is similar to the condi-
tional Gaussian-based concatenation model with the condi-
tional mean formed by just the addition of the constant b
and no transform by the matrix B.

To wrap up, we see that the proposed method is a gener-
alization of the approaches described above, endowed with
a stronger descriptive power from the equations in Sects. 4.1
and 4.2. We will also look at the effectiveness of the pro-
posed method quantitatively in the next section.

5. Experiments

We trained the conditional Gaussian concatenation models
using the speaker SLT database of the CMU Arctic speech
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(a) s→ ah (b) axr,r→ ax (c) en,n,ng→ ow
Fig. 4 Graphical representations of the 8 × (1 + 8) augmented regression matrices A = [b|B] trained
using the Arctic SLT corpus for concatenation boundaries of (a) from [s] to [ah], (b) from [axr]/[r]
to [ax], and (c) from [en]/[ng]/[n] to [ow]. Small squares represent matrix elements and the color
bar on the right shows the mapping from the element’s value to its color. Darker squares have larger
absolute values. Red means positive and blue means negative.

databases [18]. It is spoken by a female speaker of American
English and consists of 1,132 utterances. The total duration
is roughly 50 minutes. The phone inventory we used is a
detailed phone set consisting of 53 phones that includes the
phone set used in the CMU pronouncing dictionary [19]. All
the units to be selected and concatenated are phone-sized in
this experiment. The decision tree-based clustering of the
context for tying model parameters was performed for each
of the groups of boundary data that has the same phone label
associated with the head feature vector and the phone iden-
tity of the previous unit was used as the context to be clus-
tered. The head and the tail feature vectors were the spectral
features averaged over a 10 ms interval (two 5-ms frames)
at the both ends of the unit. As a spectral feature vector, we
used 14 MFCC coefficients with dimensionality reduced to
8 by principal component analysis. For the stopping criteria
of node divisions in the decision tree-based clustering, the
likelihood gain threshold was set to 1.0 empirically through
experiments and the minimum number of data points was set
to 17, which is 2 × d + 1 with d (= 8) being the dimension-
ality of the head and tail feature vectors described above, to
avoid rank deficiency of the covariance matrix. As a result,
the whole 2,809 (= 532) combinations of the tail and head
phone labels were clustered into 677 clusters. Consequently,
677 conditional Gaussian models were trained.

Figure 4 depicts three examples of the augmented
regression matrices of the conditional Gaussian models
trained. In the left matrix (Fig. 4 (a)), which comes from the
phonetic context [s] for [ah], a typical context involving
abrupt change in the spectral shape, we see that the constant
vector part b is dominant in the linear transform Bt + b,
whereas we also note a slight diagonal pattern in the regres-
sion matrix. On the other hand, the diagonal components of
the regression matrix B are dominant in the transition from
[axr] or [r] to [ax] (Fig. 4 (b)), suggesting that the spec-
tral shape is very similar on the both sides of the boundary.
In Fig. 4 (c), we notice significant contributions from both
of the constant vector b and the regression matrix B for the

boundary of a nasal consonant ([en], [n], or [ng]) and the
vowel [ow]. These results are in concordance with our dis-
cussion in Sect. 2 and we can expect that a reasonable mea-
sure for scoring the goodness of concatenation is achieved
which gives high scores to candidate units with head feature
vectors close to the conditional mean predicted by the model
rather than always preferring those units with the head fea-
ture vector similar to the tail feature vector of the preceding
unit.

In order to investigate the effectiveness of the proposed
approach to concatenation modeling, we performed several
kinds of evaluation experiments using Euclidean distance as
the baseline for comparison, which has been reported to be
a good predictor of perceived discontinuity when measured
on Mel-cepstral feature parameters [10]. For synthesizing
the utterances, we made use of the speech synthesizer re-
ported in [14] trained also with the Arctic SLT database. In
this synthesizer, the total cost C is the sum of three kinds of
target costs (ct

d for duration, ct
f for F0, and ct

s for spectrum)
and the spectral concatenation costs cc

s,

C =
N∑

k=1

{ct
d(uk) + ct

f (uk) + ct
s(uk)} +

N∑
k=2

cc
s(uk−1, uk),

(13)

where the concatenation cost cc
s with the proposed method

is defined as

cc
s(uk−1, uk) = −w · log P(h(uk)|t(uk−1), ck), (14)

and when the Euclidean distance is used, it is defined to be

cc
s(uk−1, uk) = w · ‖h(uk) − t(uk−1)‖, (15)

where w is a weighting coefficient.

5.1 Objective Evaluation Experiments

We first investigated the effectiveness of the proposed
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Fig. 5 MFCC distances between synthetic and natural speech for the
baseline (euc) and the proposed approach (cg) for 60 open sentences. The
vertical axis represents the distance calculated using the Eq. (16) with dy-
namic time warping. 60 points along the horizontal axis represent the 60
utterances. When the distance to natural speech is larger with euc, the up-
per part of the bar is in red and the lower part is in gray. In this case, the
whole bar (red + gray) represents the distance with euc and the just the
gray part represents the distance with cg. Therefore, the red part means the
difference (euc − cg). When the distance is larger with cg, the upper part
of the bar is in blue and the same applies for the interpretation of the bar.
In this case, the blue part means the difference (cg − euc).

method through an objective evaluation in which we com-
pared the closeness of the synthetic speech to natural speech
as measured by the distance between the MFCC parame-
ter sequences extracted from them. Fourteen MFCC coef-
ficients excluding the 0-th coefficient were extracted from
each speech waveform with the frame rate of 5 ms. The
frame-wise distance d(x, y) of the two frame vectors x and y
was calculated as the Euclidean distance between these two
14-dimensional vectors:

d(x, y) =

⎛⎜⎜⎜⎜⎜⎜⎝
14∑
j=1

(x j − y j)
2

⎞⎟⎟⎟⎟⎟⎟⎠
1/2

, (16)

where x j and y j are the j-th components of x and y, respec-
tively. The differences of the lengths of the parameter se-
quences were absorbed using dynamic time warping [20]. In
the objective evaluation, we compared the effectiveness of
the proposed method with the related approaches presented
in the last section as well as with the baseline. The weight
on the concatenation cost has been optimized with regard
to MFCC distance for each method independently using 40
separate open sentences. Then, 60 open sentences were syn-
thesized for the objective evaluation which consisted of 30
conversational sentences and 30 sentences extracted from
novels, that were used in the Blizzard Challenge 2005 [21].
Figure 5 plots the utterance-wise average MFCC distances
between the synthetic and natural speech for the baseline
and the proposed approach with the 60 open sentences, high-
lighting the difference of distances in red (when the distance
is larger with the baseline) and blue (when the distance is
larger with the proposed method). Table 1 shows the means
and the standard deviations (s.d.) of the MFCC distances for

Table 1 Objective evaluation results using 60 open sentences. Mean and
standard deviation (s.d.) of the utterance-wise MFCC distances between
natural and synthesized speech are presented with various methods. cg
stands for the proposed method using conditional Gaussians, whereas cg
(diag) is the same method but the matrix B is restricted to be diagonal.
donovan represents Donovan’s approach. sq euc stands for the square of
the Euclidean distance, and euc stands for the Euclidean distance.

mean s.d.
cg 21.00 1.32

cg(diag) 21.11 1.23
donovan 21.16 1.17
sq euc 21.19 1.17
euc 21.24 1.18

the proposed and various related approaches introduced in
the last section as well as the baseline. As we see from Fig. 5
and Table 1, the proposed method (cg) achieves a smaller
distance to natural speech than the baseline (euc) and it was
statistically significant (p-value = 0.014). We also see that
the proposed approach achieves synthesized speech closer
to natural speech compared to the related methods that can
be interpreted as special degenerate cases of the proposed
method. We also note that the non-diagonal elements of the
matrix B in (10) representing the dependencies among fea-
ture dimensions is effective when we compare the entries
cg and cg(diag). The differences between the proposed
method (cg) and other methods (i.e. donovan, sq euc, and
euc) were all statistically significant at the 5% level.

5.2 Listening Tests

In order to evaluate the perceptual performance of the pro-
posed method, we performed a listening test. For the pro-
posed method, the weight for the concatenation cost w was
set to be 1.0 based on rough informal listening. To be fair
with the baseline, we optimized the weight w for the base-
line by a more elaborate experiment. Specifically, we pre-
liminarily synthesized ten utterances with varying values of
the weight w and picked the one that yielded the best sound-
ing synthetic speech by informal listening. We first tested
a few values of w preliminarily and noted that the speech
quality is quite insensitive to the changes on the linear scale.
Therefore, we first varied the weights different from each
other on an exponential scale, namely, 0.1, 1.0, 10.0, 100.0,
and found out that 1.0 was the best among them. Then we
tested several values around 1.0, which were 0.4, 0.7, 1.0,
2.0, 3.0, 4.0. It turned out that 1.0 was the best among
them, which was subtly better than 0.7 and 2.0. A set of
twenty open sentences (10 conversational sentences and 10
sentences from novels) extracted from the Blizzard Chal-
lenge 2005 test set [21] were used in the listening test. The
eight listeners were students and researchers at a university
in the United States who use English in their daily life. They
consist of both native and non-native speakers of American
English. These eight subjects listened to the speech synthe-
sis output from two synthesizers, one of which adopting the
baseline and the other with the proposed models for concate-
nation cost. They were asked to judge how good the speech
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Table 2 5-level mean opinion scores with standard deviations (s.d.)
for the two concatenation modeling approaches, (1) the baseline with
Euclidean distance (euc), and (2) the proposed method with conditional
Gaussian-based concatenation models (cg).

mean s.d.
euc 2.44 0.837
cg 2.97 0.893

(a) nat

(b) euc (c) cg

Fig. 6 Spectrogram fragments corresponding to the first syllable ([b ae
ng]) of the word “Bangkok” from the natural utterance ((a) nat), synthe-
sized speech by baseline ((b) euc), and the proposed method ((c) cg). The
whole sentence was ‘‘I’d like to fly to Bangkok.’’.

sounded and assigned a score of 1 to 5 to each utterance.
Linguistic expressions such as “good” and “very good” were
not associated with the scores in the directions given to the
listeners. The results of the listening test is summarized in
Table 2. The mean opinion score with the proposed method
turned out to be significantly higher than the baseline at the
1% level by the paired t-test, with a p-value of 5.18× 10−11.

Compared with the objective evaluation results pre-
sented in Sect. 5.1, the proposed method is conspicuously
better than the baseline in the listening test. Therefore, we
closely examined some of the utterances with which the
speech synthesized with the proposed method has a sig-
nificantly better mean opinion score in the listening test
whereas the objective measure is not as good. An exam-
ple of this is depicted in Fig. 6. In this example, MOS is
3.25 with the baseline ((b) euc) and 3.75 with the proposed
method ((c) cg) and we notice a more natural formant tran-
sition from [b] to [ae] with the proposed method which ap-
pears more similar to the natural speech when we compare
the regions surrounded by round-cornered rectangles in the
figure. In the MFCC distance, however, this local advantage
seems to be absorbed in the accumulation of local distances

Table 3 Objective evaluation results using 60 open sentences with mean
and standard deviation (s.d.) of the utterance-wise MFCC distances for the
open test set with speaker BDL. ’euc’ represents the baseline with Eu-
clidean distance and ’cg’ represents the proposed method that employs
conditional Gaussian-based concatenation models.

mean s.d.
euc 22.85 1.55
cg 22.27 1.29

over the utterance and the average distance is slightly better
(21.29) for the baseline compared to the proposed method
(22.13) with this example.

5.3 Effectiveness Across Speakers

In order to confirm the effectiveness of the proposed method
across speakers, we developed another voice and trained the
conditional Gaussian concatenation models using speaker
BDL of the CMU Arctic speech databases [18]. It is spoken
by a male speaker of American English and consists of the
same sentences as the SLT database. The models are trained
in the same way as SLT and the objective evaluation was
conducted in the same way as described in Sect. 5.1. Table 3
presents the results of the objective evaluation with 60 open
sentences. As seen in the table, proposed method achieved a
smaller distance to natural speech with this speaker as well
and it was statistically significant (p-value = 2.09 × 10−5).

6. Discussion

In recent years, hybrid approaches of unit selection and
HMM-based speech synthesis have been emerging and
shown to be effective [22]–[24]. They appear to share the
background motivation with the current paper in the use
of acoustic models for target and concatenation modeling
rather than relying on heuristic knowledge. The original
contributions of the current paper that differentiate it from
other works include the explicit use of the dependencies
among feature dimensions in the matrix B which is used to
obtain the conditional mean, and the clustering method for
context tying that directly uses the objective of maximum
likelihood of the concatenation model alone.

7. Conclusion

In this paper, we presented a novel probabilistic approach
to concatenation modeling using conditional Gaussian mod-
els. We presented a maximum likelihood estimation formula
for the models and a robust and efficient training scheme
using decision-tree based context clustering. We imple-
mented the proposed method with the CMU Arctic speech
databases and confirmed the effectiveness of the proposed
method through an objective evaluation in which the close-
ness of the synthetic speech to natural speech was measured
as well as a subjective listening test. We also presented the
relationships of the proposed method with other approaches
and showed that the proposed method has a flexible mod-
eling power and comprises various other concatenation cost
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approaches as special cases of it. In the current paper, the
effectiveness of the proposed method is confirmed using the
framework of Blizzard Challenge 2005, in which the cor-
pus size is around one hour. Examination of the effective-
ness of the proposed approach with larger corpora, such as a
ten-hour speech corpus, will be one of the important future
directions to take.
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