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SUMMARY In cloud computing, a cloud user pays proportionally to
the amount of the consumed resources (bandwidth, memory, and CPU cy-
cles etc.). We posit that such a cloud computing system is vulnerable to
DDoS (Distributed Denial-of-Service) attacks against quota. Attackers can
force a cloud user to pay more and more money by exhausting its quota
without crippling its execution system or congesting links. In this paper,
we address this issue and claim that cloud should enable users to pay only
for their admitted traffic. We design and prototype such a charging model
in a CoreLab testbed infrastructure and show an example application.
key words: cloud computing, denial-of-quota attacks, pay-as-you-admit

1. Introduction

Cloud Computing [1]–[3] has the potential to bring major
changes in the networking and IT ecosystem. In conven-
tional IT industry, application service providers are required
to define the hardware infrastructure and setup application
execution platform. Cloud computing provides on-demand
scalability of computing resources, thereby application ser-
vice providers can focus on innovative service design with-
out defining hardware infrastructure and setting up applica-
tion execution platform. A cloud user can pay proportion-
ally to the amount of the consumed computing resources on
a short-term basis as needed.

In making the decision about whether hosting a ser-
vice in a cloud, we must examine the availability of our
application service. Besides the accidental outrages of the
outrage, we should check whether our service can survive
under attacks. Distributed Denial of Service (DDoS) [5] at-
tacks aimed at hosted services have some new features. As
opposed to the traditional servers that can use additional
firewalls to filter unwanted traffic, a hosted service on a
cloud cannot refuse unwanted packets before their arrival.
Those unwanted packets will consume the hosted service’s
resources (at least incoming bandwidth). Often, a hosted
service pays proportionally to the amount of the time and re-
sources (bandwidth, memory, and CPU cycles etc.) it uses.
Attackers can launch DDoS attacks to a hosted service by
exhausting its quota without crippling its execution system
or congesting links. Those attacks could be UDP and ICMP
flooding to consume the incoming bandwidth or TCP SYN
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flooding and HTTP GET flooding to consume memory and
CPU cycles. If attackers can force a hosted service to pay
more and more money, that might be a better attack than
disrupting his availability.

In this paper, we posit that the current cloud comput-
ing system charging model is vulnerable to DDoS attacks
against quota and improper charge for unwanted traffic. To
address these problems, we propose a new charging model,
called pay-as-you-admit, to enable a hosted service to pay
only for its admitted usage [6], where a hosted service uses
sessions for admission control. Our insight into this pro-
posal is based on the observation that a hosted service may
not be able to refuse unwanted packets but has ability to re-
ject unwanted sessions before session establishment. Here,
the term “session” refers to a duration of continuous usage
of a service from an end-client [7].

Furthermore, if a cloud is immune to Denial-of-Quota
attacks, we can rent its service and use the cloud infrastruc-
ture as a shield between the clients and traditional servers
so that we can shift the DDoS problem from the end-hosts
to the more powerful cloud infrastructure. As an example,
we design and implement such a cloud-based attack defense
system, which is running on cloud infrastructures as a hosted
service to protect Web servers.

The main contribution of this paper is that we imple-
ment a prototype pay-as-you-admit system and show that
cannot only liberate hosted services from DDoS against
quota and improper charge of unwanted traffic but also mo-
tivate the cloud provider to filter unwanted traffic.

The rest of the paper is organized as follows. Sections 2
points out the security challenges of cloud computing. Sec-
tion 3 models the cloud computing system and propose pay-
as-you-admit. Section 4 prototypes such a charging system.
Section 5 analyzes this charging model. Section 6 gives an
example application. Finally, Section 7 concludes this pa-
per.

2. About Cloud Computing

2.1 What Cloud Computing Changes

Before Cloud Computing, application-level Software-as-a-
Service (Saas) (Hotmail, Gmail, Google Docs etc.) has
made a great success. They provide users with online per-
sonal storage and application service. The developing tech-
nologies of virtualization and the growth of the Internet had
low-level of computing resources as a utility fulfilled. These
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low-level packages of computing resources can be a whole
virtual machine instance or a programmable execution en-
vironment. They are known as Infrastructure-as-a-Service
(Iaas) and Platform-as-a-Service (Paas).

Amazon.com has been at the forefront of the cloud
computing trends and its Amazon Elastic Compute Cloud
(EC2) [1] presents a completely controlled virtual comput-
ing environment. Google App Engine (GAE) [2] lets clients
run their own Web applications on Google’s cloud infras-
tructure. Different from EC2, GAE applications run in a
secure sandbox environment that only allows Web traffic
to enter and leave each application. Microsoft’s Azure [3]
is based on its .NET libraries and providing a language-
independent execution environment, which is an interme-
diate solution between application frameworks (GAE) and
hardware virtual machines (EC2). IBM is also reported to
provide their cloud services — SmartCloud [4].

2.2 What Benefits from Cloud Computing

(1) Elasticity

With Cloud Computing, cloud users can assume that there
are infinite computing resources available on demand with-
out knowing the details behind the provision of the com-
puting resources. Cloud Computing enables the users to
pay only for their usage on a short-term basis without pay-
ing far ahead for provisioning the equipments of large-sale
networks. The risks of underutilization and saturation have
been shifted to cloud computing. Developers with innova-
tive ideas for new Internet services no longer require the
large capital outlays in hardware and the human expense to
operate it.

(2) Cost-Efficiency

All these cloud computing systems provide elastic—the
more resources a hosted service uses, the more it gets
charged—platforms to run hosted services. Such an elas-
tic charging model, named pay-as-you-go, is appreciated for
enabling a hosted service to pay for the use of computing re-
sources on a short-term basis as needed.

2.3 What are Security Challenges

A cloud infrastructure (such as Google), which consists of
a large number of geographically-distributed machines, has
an aggregate capacity exceeding the firepower of most of
botnets. From this aspect, a cloud infrastructure is much
more robust than a traditional server. With the exception
of rare outages†, you can pretty much trust that whatever
computing resources you need will be there when you need
it.

Due to the open feature of the current IP infrastructure,
where anyone can send anything to anyone at anytime with-
out permission in advance, a hosted service on a cloud can-
not refuse unwanted packets before their arrival. Those un-
wanted packets will consume the hosted service’s resources

(at least incoming bandwidth). Actually, the security of a
hosted service is not about availability, but about money.
We posit that a cloud vendor with pay-as-you-go charging
model has the following two vulnerabilities.

First, a hosted service is vulnerable to DDoS attacks
against quota that limits the usage of network resources
(bandwidth, memory, and CPU cycles etc.). To provide pro-
tection against sudden large charge caused by unwanted ac-
cess to the service, a cloud provider usually allows a hosted
service to set quota to the maximum consumption of re-
sources for a unit of time. As a result, attackers can launch
DDoS attacks by exhausting its quota without crippling its
execution system or congesting links. After its quota has
been exhausted, the hosted service is frozen until the refresh
of quota, which is usually as long as one day.

Second, even a hosted service can survive DDoS at-
tacks; it is required to pay for the attack traffic. As opposed
to the traditional servers that can use additional firewalls to
filter unwanted traffic, the hosted service can only rely on
the cloud provider to do this. Because the attack traffic can
be paid by the hosted service, the cloud provider may have
few economic incentives to filter it.

We are aware that most of commercial cloud vendors
have already been equipped with anti-DDoS products. How-
ever, at the time of writing, many commercial cloud services
are still vulnerable to denial-of-quota attacks. Due to le-
gal concern, we couldn’t introduce our experiments on them
in the paper. Some cloud vendors have noticed this prob-
lem. For example, Google encourages customers to set a
big quota and promises to provide a mechanism for the re-
imbursement of the proven attack traffic. However, a hosted
service may risk of charging of undetected attack traffic such
as that from botnets. Also, it is laborious and just hard to
prove it is really an attack. Charging model for hosting
services is not often discussed but poses significant oper-
ational problems regarding security and customer satisfac-
tion, which sometimes leads to a court case [9].

3. Pay-as-You-Admit

To address these security challenges, we propose a new
charging model for cloud computing, named pay-as-you-
admit—the more usage a hosted service admits, the more
it gets charged.

3.1 Modeling Cloud Computing

Before we introduce our proposal, we first analyze the inter-
actions in a cloud computing system (IaaS or PaaS), which
consists of a cloud provider, a hosted service (also cloud
user), and end-clients.

†Who is responsible for loss of revenue/profits from a signifi-
cant cloud computing outage is another open issue. For example,
Web-based code hosting service Bitbucket experienced more than
19 hours of downtime over the weekend after an apparent DDoS
attack on the sky-high compute infrastructure it rents from Ama-
zon.com on 4 Oct 2009.
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Fig. 2 Design of pay-as-you-admit charging system.

Fig. 1 Interactions in cloud computing system, where (1) the hosted ser-
vice pays the cloud provider for the network resources consumed by the
end-clients; (2) the hosted service gains income by delivering contents to
the end clients; and (3) the content is delivered from the hosted service to
the end-clients through the network resources.

Figure 1 illustrates the relationship among the entities
involved in the cloud computing. Unlike the traditional
two-party market in telecommunications and networking,
the cloud computing is featured with three-party interac-
tions. First, the end-clients are not aware of the charging
model since they are not charged directly, but only indirectly
through content from the hosted service. Second, the cloud
provider recovers its cost of consumed network resources
and makes profit by charging each hosted service for the
usage of resources. Third, the hosted service recovers cost
from the content provision. Hosted service takes both its
expenditure and revenue into account.

The strategy of charging hosted services is an impact-
ing factor in cloud computing, since the hosted services ad-
justs its behavior according to the charging strategy and the
adjustment affects both the cloud provider and the group
of end-clients. Since charging model for cloud services is
a novel area that hasn’t been well explored, it is instruc-
tive to gain insights into developing one based on the ex-
isting efforts on the charging in traditional telecommunica-
tions and networking. Among these efforts, Expected Ca-
pacity Charging [10] model is popularly applied in mobile
markets, where each user pays for the expected capacity pro-
file based on her general usage. Paris-Metro Charging [11],
[12] allows ISPs to auction their service when the Internet
is in congestion. Edge Pricing [13] proposes to charge Inter-

net at the access point. In [14], K. Hosanagar et al. suggests
that providing volume discounts to content providers may
motivate the usage of Content Delivery Networks (CDN). A
more detailed introduction about Internet pricing could be
found in survey paper [15].

If we directly apply these pricing and charging mod-
els to cloud computing, they are not sufficient because they
do not address the problem of DDoS attacks against quota.
They all follow the strategy of pay-as-you-go, which im-
properly charges unwanted traffic towards hosted services
and discourages the cloud provider from filtering unwanted
traffic.

It is difficult for cloud providers to completely distin-
guish legitimate traffic from malicious traffic. Also, cloud
providers and cloud users (hosted services) could have dif-
ferent understanding about the legitimacy of the received
traffic. This observation leads to our motivation for the idea
of pay-as-you-admit. In our proposed pay-as-you-admit
charging model, cloud providers don’t need to categorize
traffic into legitimate and malicious. Instead, it is hosted
service that categorizes traffic into admitted and unwanted
traffic.

Considering that a hosted service cannot rule out un-
wanted packets before their arrival but has an ability to re-
ject session requests before session establishment, we use
session as the unit of admitted usage. Each hosted service is
provided with authentication and admission control schemes
to distinguish and reject unwanted session requests. After
the hosted service admits a session, the pay-as-you-admit
charging scheme may come into play. In this paper, the
term “session” refers to a duration of continuous usage of
a service from an end-client.

3.2 Design

In order to enable the pay-as-you-admit charging model,
components for session-based pricing, admission control
and authentication need to be added into the cloud comput-
ing environment. A design of the system is demonstrated in
Fig. 2.

Session-based pricing: Pay-as-you-go charges all the traf-
fics involving a hosted service, including the traffics from at-
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tackers. For example, although GAE applications can drop
unwanted HTTP requests, these requests are still accounted
as incoming traffic volume that is included in the hosted
services’ charge. The severer the attacks are, the more the
hosted service pays to the cloud provider. Pay-as-you-admit
addresses this unfairness and argues that the unwanted traf-
fic should be filtered by the provider rather than being paid
by hosted services. For the hosted services, they need to
pay only for their admitted usage. The admission of traf-
fic is controlled by the hosted service in the granularity of
session. The hosted service pays only for admitted sessions
while the other dropped packets (shown in Fig. 2) are not
included in the charge.

After a session is admitted, the pay-as-you-admit
mechanism can charge it by the metered usage of network
resources or at flat rate.

Admission control: The admission control is to prevent
unadmitted clients from accessing the hosted service. It
is realized through issuing active session keys, which are
maintained in a session table. In real implementation, the
session table could be combined with the existing forward-
ing tables or ruling tables at the gateway so that it will not
increase the operational cost obviously. A valid session key
allows a client to access the hosted service for a specific pe-
riod. For example, a client can access a hosted Web service
with a session key storing it in her cookie. The session key
can be generated with a private Hash function of the client
IP address and the expiration time.

To prevent the quota from being exhausted due to
overly aggressive admitted clients, the amount of resources
allocated to each client should also be limited. For a public
Web service, we can rate limit the http requests from each
client.

Authentication: The authentication is to distinguish admit-
ted clients from unadmitted ones. The hosted service could
choose its own authentication approach (e.g., strong cryp-
tographic verification [16] or graphical Turing tests [17])
based on its provided service or even waive authentication
test (See following Optional design). A client who has failed
authentication tests after a few trials will be blocked and
their requests will be dropped. We can also add overly ag-
gressive clients to a blacklist. On the other hand, a client
who has passed authentication tests will be assigned an au-
thenticated session key.

Optional design: Requiring all clients to pass authenti-
cation tests may discourage normal clients from accessing
and introduces extra latency to the service. For example,
you cannot ask every casual visitor to a newspaper Website
to pass an authentication test. To address this issue, an op-
tional design is to waive the authentication when the hosted
service is lightly loaded. The maximum number of allowed
unauthenticated clients can adapt the workload of the hosted
service. When the number of the concurrent sessions is less
than a threshold, a new request can access the hosted service
without doing authentication tests. Otherwise, a new client

must pass authentication tests before accessing the hosted
service.

Our proposed pay-as-you-admit is not to substitute the
existing anti-DDoS products. Instead, it should be com-
bined with them. The pay-as-you-admit provides the hosted
service with control schemes to distinguish admitted traffic
from unwanted traffic. How to block the unwanted traffic
relies on the traditional anti-DDoS products on the cloud
provider.

4. Prototype

In this section, we show a prototype implementation of
the components of pay-as-you-admit in CoreLab [19], [20],
[22]. As shown in Fig. 3, CoreLab is a testbed that hosts
multiple virtual machines (VM) on a physical infrastructure,
the VMs are connected through virtual openflow switch
(vOFS) [21], [23]. Through vOFS, the CoreLab supports
generic flow-space isolation. We design a virtual service
gateway (vSGW) for each VM, each flow to/from a VM is
filtered by the vSGW. The VM can add/remove forwarding
rule through a NOX [24]. Since each flow in the vSGW is a
duration of continuous usage of a service from an end-client,
which can be regarded as a session. In the following, we just
denote the “flow” of vSGW as “session”.

Through NOX, we can measure the usage of each ses-
sion through openflow switch. Figure 4 shows such a ses-
sion counting process. In Step 1, the vSGW forwards the re-

Fig. 3 Prototype of pay-as-you-admit charging model.

Fig. 4 Session counting process.
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Fig. 5 Examples of command from VM to NOX.

quest packets to the VM; other packets are denied by vSGW
by default. VM does authentication. If the authentication
successes, VM sends a command to the NOX to setting up
a flow rule. After the forwarding rule has been set up, the
client can communicate with VM and the usage of each ses-
sion is recorded in built-in database (DB) of vSGW.

Figure 5 shows an example of forwarding rule, which
denotes the forwarding rule that enabling a session for
virtual machine cl 1. In lines 2-3, if both idle timeout
and hard timeout are set, the session will timeout after
idle timeout seconds with no traffic, or hard timeout sec-
onds, whichever comes first. Lines 6-10 indicate flow space.
Line 5 indicates the command for the flow space. When the
client passes the authentication, the command field is filled
with Accept; otherwise it is filled with Reject.

5. Analyses

In this section, we analyze how the cloud provider, the
hosted service and end-clients behave under different charg-
ing models.

5.1 Assumptions

Our analysis focuses on a monopoly cloud provider with-
out price war with other counterparts and its resource is
enough to support infinite demand on resource. For sim-
plicity, we use the traffic volume to represent the amount of
usage-based network resource consumption. We have the
following assumptions.

A1. For the cloud provider, we assume the average cost
for transferring the traffic is proportional to the traffic vol-
ume.

A2. For a hosted service, we assume the maximum
quota for traffic volume in a unit of time T0 is w. let yi

denote the consumed (incoming and outgoing) traffic vol-
ume of client i with an identical average rate γ, which rep-
resents average usage of resource paid by the hosted service
for each client’s access; therefore it represents the quality
that a client obtained from the hosted service.

A3. We assume a client’s arrival process {x(t)} is with a
rate λ. Since the client’s behavior is affected by the service
quality, we assume λ is a function of γ.

A4. We assume unwanted packets arrive with average
rate λa and average length la; the cumulative unwanted traf-
fic volume is A(t) in [0, t].

5.2 Charging in Cloud Provider

In pay-as-you-go, each hosted service pays for the total con-
sumed traffic volume of their clients, we define zt(t) as the
expenditure in time [0, t]; thus zt(t) = ψ

∑x(t)
i=1 yi + ψA(t),

where ψ is the price per unit of traffic volume †.
If zt(T )=w (T < T0), the hosted service’s quota will be

exhausted at time T and its service will be suspended until
the next T0 period. Otherwise, the hosted service can pro-
vide continuous service but may be charged for unwanted
traffic. Let Ezt denote the ensemble average of expenditure
of the hosted service for the time unit T0; it can be calculated
as

Ezt = E[zt(T0)] = ψE[
x(T0)∑

i=1

yi + A(T0)]

= ψE[x(T0)]E[yi] + ψE[A(T0)]

= ψλγT0 + ψλalaT0. (1)

Similarly to Eq. (1), we can calculate the average
cost of the cloud provider for transferring the traffic vol-
ume for the hosted service for the time unit T0 by
Ece=χ(λγT0+λalaT0), where χ is the cost per unit of traffic
volume for the cloud provider (Assumption A1). The aver-
age net profit Ect of the cloud provider for the time unit T0

is denoted as

Ect = Ezt − Ece = (ψ − χ)(λγT0 + λalaT0). (2)

Eq. (2) shows that the cloud provider can make profit
through unwanted traffic under pay-as-you-go charging
model so that the cloud provider has no economic incen-
tive to filter unwanted traffic. However, under current pay-
as-you-go charging model, the hosted services are vulner-
able to denial-of-quota attacks. And eventually, the cloud
providers will loss the customers in cloud market. In Eq. (2),

†If there exists free quota such as in GAE, the new expenditure
z′t (t)=zt(t)−ψY0 when zt(t) > ψY0 else z′t (t)=0, where Y0 is the free
quota.
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Fig. 6 Comparisons of pay-as-you-go and pay-as-you-admit charging
models under (a) heavy and (b) light DDoS attacks, where heavy attacks
refer to those that can exhaust the hosted service’s quota and light attacks
refer to those that cannot.

when λ decreases, the net profit of cloud provider will de-
crease. And finally, they have the economic incentives to in-
troduce the pay-as-you-admit charging model to attract cus-
tomers.

In our analyses of pay-as-you-admit charging system,
we assume each hosted service is provided with some ex-
isting authentication and admission control schemes [16]–
[18], [25], [26], which are out of the scope of this paper. We
assume these schemes can detect and reject all unwanted
session requests. Since whether accepting an access or not
is controlled by the hosted service, the cloud provider is lib-
erated from the responsibility of rejecting valid accesses.

Let z∗t (t) denote the host service’s expenditure in time
[0, t]; thus z∗t (t) = ψ

∑x(t)
i=1 yi, its ensemble average E∗zt for the

time unit T0 can be calculated as E∗zt = E[z∗t (T0)] = ψλγT0.
Finally, the average net profit E∗ct in time unit T0 under

the metered pricing scheme can be calculated as

E∗ct = E∗zt − Ece = ψλγT0 − χ(λγT0 + λalaT0). (3)

In contrast with pay-as-you-go in Eq. (2), Eq. (3) shows that
the cloud provider has economic incentives to filter un-
wanted traffic since unwanted traffic will reduce its profit
under pay-as-you-admit charging model.

In summary, we have a conclusion: compared with
pay-as-you-go, pay-as-you-admit can liberate the hosted
service from unwanted traffic and force the cloud provider
to filter unwanted traffic.

Numerical Analyses: we give some numerical results for
our proposed pay-as-you-admit charging model.

Suppose the content revenue is φ= 0.01 (dollars) per
end-client. In pay-as-you-go, the cloud provider charges
the hosted service ψ=0.1 (dollars) per gigabyte traffic vol-
ume. The cost per gigabyte of the cloud provider is χ=0.01
(dollars). In the assumption A2, we have assumed that γ
represents the average usage of resource paid by the hosted
service for each client’s access; therefore it represents the
quality that a client obtained from the hosted service. A
hosted service with higher quality can attract more clients
until it becomes saturated gradually. As an instance for nu-
merical analysis, we suppose the client average arrival rate
λ=10(1 − e−0.02γ) sessions per second, where γ (Mbytes) is
the average consumed traffic volume per client.

Figure 6 compares pay-as-you-go and pay-as-you-
admit perform under DDoS attacks. Here, we set

γ=40 (Mbytes). The attack packets arrive in Poisson dis-
tribution with identical length of 40 bytes. The quota for
traffic volume is set to 2000 (dollars) per day. In Fig. 6 (a),
a heavy attack with a rate of 2×107 packets/sec can freeze
the hosted service by exhausting its quota in pay-as-you-go
charging system while the attack is inefficient under pay-as-
you-admit charging models. The result in Fig. 6 (b) shows
that the low-rate attacks in pay-as-you-go can increase the
charge even though they may not cripple the hosted ser-
vice. As a comparison, the charge in both pay-as-you-admit
charging models are flat since the amount of admitted traf-
fic volume stays the same. In summary, the results in Fig. 6
show that a pay-as-you-admit charging system can defend
DDoS attacks against quota and avoid improper charging of
unwanted traffic.

5.3 Charging in Service Provider

In this subsection, we assume there is no attack or the ser-
vice provider is immune to the attack; thus Ezt = E∗zt. We
assume the service provider charges the end-client at a flat
fee φ. Usually, a service provider can charge end-clients
more for better quality of service. So, φ is a function of γ.
Let r(t) denote the revenue of a hosted service in [0, t]; thus
r(t)=φx(t), where φ is the average revenue that the hosted
service can gain from each arrival. Then the ensemble aver-
age of revenue Er for the time unit T0 can be denoted as

Er = E[r(T0)] = φE[x(T0)] = φλT0. (4)

We denote Ept as its net profit for the time unit T0; thus
Ept=Er − E∗zt.

Ept = (φ − ψγ)λT0. (5)

The first result is φ − ψγ > 0; otherwise the cloud
provider will opt out of the market. According to the
assumption A3, the hosted service can adjust its service
through adjusting the average usage γ of each client. The
first-order differentiation of Ept with respect to γ can be cal-
culated by

dEpt

dγ
= (φT0 − ψγT0)

dλ
dγ
+ (φ′ − ψ)λT0. (6)

From Eq. (6), we can see that a hosted service has economic
incentives to improve its service through adjusting γ only
when dEpt

dγ >0, thus

dλ
dγ

>
(ψ − φ′)λ
φ − ψγ . (7)

Otherwise, it is discouraged from improving its ser-
vice. Intuitively, a hosted service will lose incentives to
improve its service when dλ

dγ ∼ 0, which means the improve-
ment cannot attract much more clients.

When φ is a constant, the service provider may be dis-
couraged from providing better quality of service when it
reaches an optimal value. Currently, most online service
with light traffic volume such as a newspaper web site makes
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profit from advertisement delivery can be looked as this
kind.

When ψ < φ′, we always have dλ
dγ > 0. In this case,

the service provider always has the incentive to improve its
service. This is one reason why the market of online video is
discussing to charge content instead of recovering cost from
the income of advertisement delivery.

6. Example Application: CLAD

If a cloud is immune to Denial-of-Quota attacks, we can
rent its service and use the cloud infrastructure as a shield
between the clients and traditional servers.

Distributed Denial of Service (DDoS) attacks have be-
come one of the most serious threats to the Internet, but
widely-deployable solution is still absent [28]. Most of cur-
rent DDoS defense approaches [5], [18], [28], [29] require
changing the intermediate routers and suggest to be imple-
mented by end-hosts or ISPs, which result in high develop-
ment costs that are beyond the affordability of small compa-
nies and individuals.

With cloud computing, we can shift the DDoS prob-
lem from the end-hosts to the more powerful cloud infras-
tructure, who is likely to have already DDoS protection as a
core competency to absorb most DDoS attacks. As an exam-
ple, we design and implement such a CLoud-based Attack
Defense system, named CLAD [27], which is running on
the cloud infrastructure as a hosted service to protect tra-
ditional Web servers from both network-layer attacks (such
as UDP flooding, ICMP flooding, TCP SYN flooding) and
application-layer attacks (HTTP flooding).

Comparing with most of current DDoS defense ap-
proaches, CLAD is more cost-efficient since the users can
pay only for their usage on a short-term basis without pay-
ing far ahead for provisioning the equipments of large-sale
networks and also save the human expense to operate it.

For cloud providers, CLAD could be a new kind of ser-
vice. They can charge it at a suitable price. Obviously,
CLAD will be deployed on a cloud only when the cloud
provider’s profit is than the cost. We think it is possible. Due
to the effect of economies of scale, the cloud provider can
offer a more competitive price (less than 1/5 [8]) than what
individuals or even medium-scale companies would have to
pay for the same hardware and network bandwidth. More-
over, the defense system could be shared among multiple of
services to increase the system utilization.

6.1 Architecture

Figure 7 depicts the gist of CLAD, which is a network ser-
vice running on cloud infrastructures. Each CLAD node can
be viewed as a virtual machine or an application running
Web proxy and control mechanisms. The protected server,
which can be a single server or a server farm, is hidden from
Internet and only accepts requests from the CLAD system.
Usually, a client must consult DNS server for the IP address
of the protected server before accessing especially when the

Fig. 7 Architecture of CLAD, which is a network service running on
cloud infrastructures. A CLAD node can be viewed as a virtual machine or
an application running Web proxy and control mechanisms. The protected
server is hidden from Internet and only accepts requests from the CLAD
system.

Fig. 8 Basic protocol of CLAD, where the solid lines represent the con-
nection setup processes and the dashed lines represent the data transfer pro-
cesses.

DNS mapping changes frequently. For public Internet, name
resolution for the protected server will resolve into IP ad-
dresses of the CLAD. And only the CLAD knows the exact
concurrent IP address of the protected server. All traffic to
the protected server is forwarded through at least one CLAD
node, which verifies the clients and relays the requests.

6.2 Protocol

Figure 8 shows the basic protocol of a CLAD system. It
works as follows.

Steps 1-2: When a client wants to connect the pro-
tected server a.com, she first sends a request to the local
DNS server to query the server’s IP address. The DNS
server returns the IP address (e.g., 1.2.3.4) of a CLAD node
that is selected based on each CLAD node’s load or healthy
status. The name resolution queries from different stub net-
works can be resolved into the IP addresses of different
CLAD nodes.

Steps 3-6: When the client requests a.com to the
CLAD node 1.2.3.4, the CLAD node responds her with a
graphical Turing tests page to ask for authentication. If the
client can pass the tests, the CLAD node will assign her a
session key.

Steps 7-10: The client can access a.com with the ses-
sion key through 1.2.3.4. After the CLAD node has val-
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Fig. 10 Comparisons of (a) dropping probabilities, (b) response time, and (c) average end-to-end
throughput for legitimate request as a function of attack rate, where “NWF” represents network-layer
filtering.

Fig. 9 Flow chart of CLAD.

idated the session key, it relays the request to a.com, and
then relays the responded data from a.com to the client.

6.3 DDoS Defense with CLAD

In this section, we will present the flow chart of CLAD in
detail, which is shown in Fig. 9. Each CLAD node can be a
virtual machine or an application. We describe the network-
layer defense in CLAD first.

6.3.1 Network-Layer Defense

How to defend against network-layer attacks depends on the
execution environment of the cloud infrastructure. One case
is that each CLAD node running on a completely controlled
virtual machine such as Amazon EC2 [1] instance. Here,
all packets (including SYN flooding, UDP flooding) will
reach a CLAD node. The CLAD node should distinguish
unwanted packets and configure the firewall to ask the cloud
infrastructure to filter unwanted packets.

It is desirable to run CLAD on another more trans-
parent execution environment such as Google’s GAE [2],
where each CLAD node running on a secure sandbox with
only application-layer access allowed. When a new connec-
tion request arrives, the cloud infrastructure will first check
whether it is an HTTP request. Since the cloud infrastruc-
ture only allows Web traffic to pass it, only HTTP requests
can reach the CLAD system and other non-HTTP traffic
such as network-layer attack (SYN flooding, UDP flood-
ing, ICMP flooding) packets will be dropped by the cloud
infrastructure. The network-layer attack defense process is

transparent to both the protected Web servers and the CLAD
system.

6.3.2 Application-Layer Defense

(1) Admission Control

When a client wants to access the protected server, she
should attempt to obtain a session key k from CLAD first.
After that, the client can access the protected Web server
with the key embedded in the URL. A HTTP request with
an invalid session key in its URL will be dropped by CLAD
or redirected to an authentication page.

(2) Authentication

To distinguish human clients from robots, we adopt re-
CAPTCHA (Completely Automated Public Turing test to
tell Computers and Humans Apart) [17], which is reported
to be more secure than conventional CAPTCHAs. Each
client that has passed reCAPTCHA test will be granted an
authenticated session with a period. A client who has failed
graphical tests after a few trials will be blocked and their IP
addresses will be added to the blacklist.

(3) Network-Layer Filtering

In pay-as-you-admit charging model, CLAD is liberated
from improper charge of unwanted traffic while the cloud
provider is motivated to provide a desirable function—
network-layer filtering—to filter attack packets at network-
layer. Network-layer filtering can enable CLAD to filter un-
wanted requests at the ingress of cloud computing. As a re-
sult, these unwanted requests can not reach the CLAD node
so that they will not be included in the costs.

We implement CLAD with Google App Engine (GAE)
and run it on Google’s cloud infrastructure, which report-
edly consists of more than one-million servers distributed
around the world. Each CLAD node works as a GAE ap-
plication running in a secure sandbox environment that only
allows other computers to communicate with it through Web
requests. All network-layer DDoS attacks such as TCP SYN
flooding and UDP flooding to the protected Web servers are
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filtered by Google. To evaluate CLAD under attacks, we
have also implemented CLAD on CoreLab [19] and mea-
sured the performance with attacks launched from one hun-
dred nodes on PlanetLab [30]. The detailed implementation
and evaluation can be found in [27].

Figure 10 (a) compares the probability of dropping re-
quests under attacks. The first result we have obtained is
that our proposed CLAD with network-layer filtering can
tolerate an attack rate of 5000 requests/sec while directly
accessed base server (“Base server” in the figure) is com-
pletely denied of service at a request dropping rate of 99.5%.
The second result is that a CLAD system with network-layer
filtering is better than the one without it. This is because
when CLAD is configured with network-layer filtering, all
HTTP requests from banned clients will be rejected without
arriving the CLAD system. Otherwise, although the HTTP
requests from attackers may be dropped, they have already
established TCP connections and consumed the resources
such as CPU. Therefore, we conclude that network-layer
filtering is a desirable function to CLAD design.

Figure 10 (b) compares the average response time of
each successful HTTP request. We notice that even a CLAD
system without network-layer filtering has a better perfor-
mance of average response time than that of directly ac-
cessed base server. This is because the bad request will
not reach the protected server. However, the response time
will also increase with the increase of attack rate since those
bad HTTP requests also consume the processing capacity of
CLAD nodes. When the bad requests are filtered at network-
layer, the average response time will decrease dramatically.

Figure 10 (c) compares the average end-to-end through-
put of a legitimate client who sends one request per second
to download a file of 100 Kbytes. We can see that a legit-
imate client of CLAD system with network-layer filtering
achieves the best performance, followed by CLAD without
network-filtering, then by the base server because the client
of directly accessed base server will suffer from high request
dropping probability and large response time.

7. Conclusion and Future Work

We propose pay-as-you-admit charging model that serves
as an alternative charging scheme for cloud computing to
defend DDoS attacks against quota and to avoid improper
charge of unwanted traffic. This paper addresses the tus-
sle between the cloud provider, the hosted service and the
end-clients. How to maximize a cloud provider’s revenue in
a saturated cloud computing market in a price war among
cloud providers is our future work.

We have also designed DDoS defense as a network ser-
vice of cloud computing system called CLAD. Most of cur-
rent DDoS defenses suggest to be implemented by end-hosts
or ISPs, which are not so cost-efficient especially for small
companies. We hope our design to be offered as a new net-
work service by cloud computing so that even small com-
panies can enjoy this service at a reasonable prize. And the
competitiveness of this market will grant the clients more

choices.
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