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SUMMARY With the rapid development and proliferation of the Inter-
net, cyber attacks are increasingly and continually emerging and evolving
nowadays. Malware – a generic term for computer viruses, worms, tro-
jan horses, spywares, adwares, and bots – is a particularly lethal security
threat. To cope with this security threat appropriately, we need to identify
the malwares’ tendency/characteristic and analyze the malwares’ behaviors
including their classification. In the previous works of classification tech-
nologies, the malwares have been classified by using data from dynamic
analysis or code analysis. However, the works have not been succeeded to
obtain efficient classification with high accuracy. In this paper, we propose
a new classification method to cluster malware more effectively and more
accurately. We firstly perform dynamic analysis to automatically obtain the
execution traces of malwares. Then, we classify malwares into some clus-
ters using their characteristics of the behavior that are derived from Win-
dows API calls in parallel threads. We evaluated our classification method
using 2, 312 malware samples with different hash values. The samples clas-
sified into 1, 221 groups by the result of three types of antivirus softwares
were classified into 93 clusters. 90% of the samples used in the experiment
were classified into 20 clusters at most. Moreover, it ensured that 39 mal-
ware samples had characteristics different from other samples, suggesting
that these may be new types of malware. The kinds of Windows API calls
confirmed the samples classified into the same cluster had the same char-
acteristics. We made clear that antivirus softwares named different name to
malwares that have same behavior.
key words: malware analysis, behavior of malware, clustering

1. Introduction

With the rapid development and proliferation of the Inter-
net, increasing numbers of cyber attacks threaten critical
computer networks and systems and continue to emerge and
evolve. Malware – a generic term for computer viruses,
worms, trojan horses, spywares, adwares, and bots – is one
of the most typical and lethal security threats. Since mal-
wares are usually operated through cooperation with others
in an automated manner, they frequently lead to serious se-
curity incidents that can cause significant damages not only
to end users, but also to the Internet’s infrastructure itself.

To cope with the security threats caused by malwares,
research has previously focused on two main areas: macro-
scopic and microscopic. The macroscopic approach moni-
tors networks in real time and focuses on more effectively
understanding the latest trends in malicious activity over a
wide range of networks. Numerous projects are underway
around the world and several monitoring systems make their
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monitoring reports publicly available [1]–[11]. The micro-
scopic approach, on the other hand, focuses on analyzing
executable malware codes captured by honeypots, etc., in
order to obtain a deep understanding of their characteristics
and behaviors [12]–[18].

Though these approaches have been studied and de-
ployed in various analysis systems, there has been no effec-
tive correlation analysis between the two. However, consid-
ering the close relationships between global phenomena ob-
served from the macroscopic approach and their root causes
analyzed in the microscopic approach, a hybrid approach
for such analysis is essential. To this end we have been de-
veloping the Network Incident analysis Center for Tactical
Emergency Response (nicter) [19]–[21], which incorporates
both approaches. The nicter integrates results obtained from
both macroscopic and microscopic analysis to obtain useful
and practical insight on malware activity.

During the correlation analysis, since identifying the
characteristics and behaviors of each malware is time-
consuming, one of the most important challenges is mini-
mizing the time needed to analyze malwares so that results
can be obtained in real time. To further complicate matters,
a great deal of unknown malwares, or variants of known
malwares, emerge dynamically each day. In order to mit-
igate the workload for malware analysis, previous research
has focused on clustering of malwares varieties according to
their similarities. Anubis [13], for instance, applies a clus-
tering method to group malwares wherein members in the
same group are similar from the standpoint of their overall
behavior. If the number of function calls, their order, and
their types that were executed by malwares are similar, they
are assigned as members of the same group.

In many cases, however, malware simultaneously per-
forms multiple processes and threads during its execution
period; thus the order, number, and type of function calls
it executes depends heavily on the execution environment
and timing. Therefore, there is a possibility of misclassify-
ing such types of malware into different groups in Anubis
even if they contain the same function calls. Situations in
which attackers try to confuse malware analyzers by craft-
ing malwares with embedded unrelated (or noisy) functions
also make Anubis less effective.

This paper presents a new classification method to
overcome the limitations of Anubis, to enable more effec-
tive clustering of malwares. Our classification method con-
sists of two main techniques – N-gram and TF-IDF. The
frequency of an API sequence consisting of Windows API
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calls is calculated by using the N-gram technique. The char-
acteristics of malware samples are deduced by using the
TF-IDF technique. We evaluated our classification method
using 2,312 malware samples, and were able to classify
them into 93 groups. More than 90% of all samples were
classified into at most 20 clusters, and 39 samples (about
1.7%) were dissimilar to the others. We compared the re-
sults with the results of name-based clustering by three types
of antivirus softwares, and confirmed that our classification
method could correctly classify the samples by their charac-
teristics.

The rest of the paper is organized as follows. Section 2
provides a brief description of the Micro Analysis System
(MicS) that is a part of nicter. Section 3 details our classi-
fication method, and Sect. 4 gives experimental results and
analysis before the paper concludes.

2. Related Work

2.1 Malware Classification

In general, there are two types of malware analysis meth-
ods; one is static analysis and another is dynamic analysis.
While the static analysis tries to analyze program code em-
bedded in malware, the dynamic analysis focuses on analyz-
ing behavior of malware by executing it on an analysis en-
vironment. Since most recent malwares are packed for the
analysis avoidance and analysts need to manually unpack
malwares to obtain their behaviors, it is not easy to analyze
malware with high accuracy in the static analysis. On the
other hand, the dynamic analysis can provide a capability of
automatic analysis, and obtain internal and external behav-
iors of malwares such as Windows API sequences, network
activities. Since there are a number of emerging malware
samples nowadays, it is important to automatically classify
them based on their behavior.

Bailey et al. proposed a new malware classification
scheme that calculates distance between malware samples
based on profiles of malware samples derived by “Normal-
ized Compression Distance (NCD)” [30]. Then it used pair-
wise single-linkage clustering, which defines the distane be-
tween two clusters as the minimum distance between any
two members of the clusters. Finally, they showed the trade-
off between the number of clusters and the average of cluster
size by depth of tree-cutting.

Rieck et al. proposed malware classification scheme
based on character string of Windows API call [31]. In order
to classify a malware into “known” or “unknown”, it learned
the Windows API call of each family name by using SVM.
Actually, they classified about 10,000 malware samples into
14 families. As a result of classification, the total average
of accuracy was 88% and the accuracy of three families be-
came almost 100%.

Although these methods are able to recognize unknown
behaviors of malware samples, there are some problems in
the practical use of them. For instance, in [31], it always
requires pre-learning of a new malware family when it is

Fig. 1 Structure of micro analysis system.

emerged at the first time. This means that the calculation
cost is high and it is inefficient when using it for the long
period. In [30], it is also inefficient, because it needs calcu-
lation of the distance between all malware samples and an
additional malware sample. Then, we propose the malware
classification method with a low additional cost.

2.2 MicS: Micro Analysis System

The MicS [22]–[24] is for conducting fully automated in-
depth examination of malware in order to grasp its charac-
teristics and activity, and to accumulate analysis results on a
variety of malware. Figure 1 shows three main parts of the
MicS: Victim Host, Internet Emulator, and Data Analyzer.
The Victim Host executes a given malware and gathers an
array of external information caused by its activity. It is
capable of hooking and monitoring Windows API function
calls used by malware. Meanwhile, files and registries ac-
cessed by the malwares are also observed. The Victim Host
then outputs to the Data Analyzer logs including Windows
APIs, files, and registries associated with the malware.

The Internet Emulator provides virtual Internet access
for the Victim Host since most recent malwares variety at-
tempt to communicate with external systems in order to
propagate their infections. The Internet Emulator emulates
various kinds of servers, such as DNS, FTP, TFTP, HTTP,
SMTP, and IRC. All queries of the target malware in the
Victim Host are sent to the Internet Emulator. The Internet
Emulator then sends back apparent replies to the malware.
It outputs all the logs of its own dummy servers to the Data
Analyzer. It also records all packets transmitted between the
Internet Emulator and the Victim Host as a pcap [25] file,
which includes scan activity of the malware as well as all
queries and replies with the dummy servers.

The Data Analyzer analyzes all logs sent from the In-
ternet Emulator and the Victim Host. It can translate tedious
low-level logs into high-level behavior patterns, taking ad-
vantage of the behavior pattern database, which stores many
such malware patterns. New patterns can easily be added
to the database. The analysis result is eventually created in
XML format.
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Fig. 2 Example of API log obtained from MicS.

In this paper, we utilize API logs obtained from the
Victim Host to calculate the similarity between threads that
malware executes. Figure 2 shows an example of API
logs in which each row shows “[Analyzed date] Process
name:Thread ID, API name, API function name, Argument
values, return value.” In the first row, for example, Ana-
lyzed date is “2010/02/09 16:07:37.593,” Process name is
“ovdkhjv.exe,” Thread ID is “1640,” API name is “File,”
API function name is “ReadFile” (the prefix “Call::” means
called timing). Of particular note, our classification method
uses “API name” and “API function name” to classify mal-
ware samples.

3. Proposed Classification Method

We classify malwares using their behavior characteristics.
Malware’s function is composed of Windows API calls such
as CreateFile, WriteFile, Write_Data and so on. This
means that malwares with different behavior contain a dif-
ferent API sequence. In our classification method, therefore,
we use these API sequence as a criterion to classify a set of
malwares into subsets.

The following subsections detail our classification
method. We first calculate the frequency of each API se-
quence in malwares. Second, we give a TF-IDF score to
each API sequence, which is used for representing the char-
acteristic of malwares. Finally, we classify malwares ac-
cording to the TF-IDF scores among them.

3.1 Overall Procedure

The MicS records a history of Windows APIs called by mal-
wares into the API log. In general, malwares execute mul-

tiple processes and threads at the same time, it is impor-
tant to extract API sequences within each thread in order
to identify more exact behavior of malwares. We define
three algorithms to classify malwares: (a) Calculating Fre-
quency (Calculation), (b) Extracting Characteristic (Extrac-
tion), and (c) Classifying Malware (Classification).

(a) Calculation: calculates the frequency of the API se-
quence, which includes N Windows API calls. These
frequencies and API sequence are inputted into
database (in Fig. 3 (a)).

(b) Extraction: extracts the characteristics of a malware
sample using the frequency of the API sequence. It ob-
tains the frequency of the API sequence from database
(in Fig. 3 (b)).

(c) Classification: classifies malware samples into groups
with the same API sequence characteristic. It makes
use of the characteristics and the API sequence from
the result of Extraction and database respectively (in
Fig. 3 (c)).

In the first step, the API sequence that includes N Win-
dows API calls is extracted from API log to calculate the fre-
quency of the API sequence by the Calculation algorithm.
In the second step, we extract the characteristics of mal-
wares based on the frequency of the API sequence by the
Extraction algorithm. We consider a method that malwares
characteristics depends not only on frequency but also a spe-
cific API sequence. Finally, the Classification algorithm
compares characteristics among each type of malware, and
classifies those with the same characteristic.

The dynamic analysis (the MicS) consists of the Vic-
tim Host, the Internet Emulator, and the Data Analyzer. We
implemented the experimental environment on MacPro for
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Fig. 3 Flowchart of proposed method.

Table 1 Simulation environments.

Victim Host CPU Pentium D 3.0 GHz
OS Windows XP (SP2)

Internet Emulator CPU –†
OS CentOS 4.3 (2.6.9-34)

Data Analyzer CPU Pentium D 3.0 GHz
OS Windows XP (SP2)

Experiment CPU Xeon 2.26 GHz (Dual)
environment OS MacOS 10.6.7

†The Internet Emulator is offered in the virtual environment of
Victim Host using virtualbox.

the experiment of the proposed classification method. These
simulation environments are shown in Table 1.

3.2 Calculating Frequency of API Sequence

A malware function can be shown by a sequence of Win-
dows API calls. Therefore, we define a sequence of N Win-
dows API calls as an API sequence, and calculate its fre-
quency (tf i) using the N-gram method. The N-gram calcu-
lates the frequency of N successive characters (or words).
In general, two successive characters are called bi-gram,
and three successive characters are called tri-gram. In our
method, the API sequence is created from N successive
Windows API calls. Therefore N-gram can be calculated
from frequency of API sequence.

An API log is composed of threads in that each thread
consists of numerous API sequences. Each thread (T =

{t1, . . . , tm}) includes API sequences (S = {s1, . . . , sk}) such
that ti ⊆ S . The Calculation algorithm calculates the fre-
quency of each API sequence by counting the number of
occurrences of the API sequence si in API log. Note that if
there are two identical threads (e.g. ti = t j where i � j), one
is not included in the frequency calculation. In other words,
threads that have mutually different API sequences are used
to calculate frequency.

Figure 4 (a) shows an example of calculating the fre-
quency of an API sequence. There are two threads t1
and t2 with four and five Windows API calls, respec-
tively. The thread t1 consists of Windows API sequences
such as “File, Call::ReadFile”, “File, Call::WriteFile”,
“Reg, Call::RegOpenKeyExA” and “Net, Call::connect”,
and the thread t2 consists of Windows API sequences such
as “File, Call::ReadFile”, “File, Call::WriteFile”, “Reg,
Call::RegOpenKeyExA”, “Net, Call::connect” and “Net,
Call::connect”. These make three (t1 = {s1, s2, s3}) and four
API sequences (t2 = {s1, s2, s3, s4}), respectively (N = 2).
Note that the API sequence s1 consists of Windows API
such as “File, Call::ReadFile” and “File, Call::WriteFile”.
The frequency of each API sequence calculates as s1: tf 1 =

2/7, s2: tf 2 = 2/7, s3: tf 3 = 2/7, and s4: tf 4 = 1/7.

3.3 Extracting Malware Characteristics

The Extraction algorithm extracts malware characteristics
using the Term Frequency–Inverse Document Frequency
(TF-IDF) method. TF-IDF is one method for comparing
characteristics of many terms over many documents [32].
TF calculates the term’s occurrence frequency. If the term
appears in many documents, it is a general term even if the
occurrence frequency was high. IDF is a measure of gen-
eral importance that the term with high frequency appears
only to a specific document. Therefore, the TF-IDF value of
term that is appear a lot in a specific document is high, and
this term shows characteristics of documents. We define the
malware characteristic in the API sequence with a high TF-
IDF score. Consequently we extract the API sequence using
these compositions.

Figure 4 (b) shows an example that extracts the mal-
ware characteristics. There are two threads (t1 and t2) which
contains three and four API sequences. Here, three API se-
quences (s1, s2, and s3) are common in two threads, so there
are four kinds of API sequences (s1, s2, s3, and s4) in this
malware. Therefore three API sequences (s1, s2, and s3) can
be regarded as a general sequence. The inverse document
frequency (IDF) is calculated as

idf i = log
|T |

|{t j : t j � si}|
where |T | is the number of all threads, and |{t j : t j � si}| is
the number of threads where the API sequence si appears.
Then, the IDFs of three API sequences (s1, s2, and s3) are
idf {1,2,3} = log 2

2 = 0, and s4 is idf 4 = log 2
1 � 3/10.

The TF-IDF score is calculated as the product of TF
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Fig. 4 Overall procedure.

and IDF. The TF-IDF scores of s1, s2, s3, and s4 are cal-
culated to 0, 0, 0, and 3/70, respectively. In this case, the
frequency of the API sequence s4 is the lowest, but this mal-
ware was characterized by the API sequence s4 whose TF-
IDF score is high because it had appeared only for thread
t2. On the other hand, even though the frequency is high, a
general API sequence (s1, s2, s3) does not appear to a char-
acteristic because they appear to both threads.

3.4 Classifying Malwares

The Classifying algorithm compares the characteristics of
each malware sample. When both malwares contain each
n API sequences that appears the characteristics, they are
classified into the same group. If malwares classified into
the same cluster, they include all API sequences that appear
in the characteristics of each malware.

In Fig. 4 (c) shows an example that classifies two mal-
ware samples (M1,M2) into the same group. There are four
API sequences (s1, s2, s3, and s4) and six API sequences
(s1, s4, s5, s6, s7, and s8) in the malware samples M1 and
M2, respectively. The same cluster is composed by compar-
ing the n API sequences that appear to the characteristics of
each malware sample. Therefore M1 and M2 are classified
into the same group, because M1 includes API sequence s1

that has the characteristics of M2 and M2 includes the API
sequence s4 that has the characteristics of M1 (n = 1).

4. Experimental Results

This section shows the experimental results of our classifica-
tion method using 2,317 malware samples with unique hash
values. We compare the relation between result of antivirus

Fig. 5 Size of each group using result of name-based clustering.

softwares and our scheme by using a precision and a recall.
If both the precision and the recall are 1.0, it means that re-
sult of antivirus and our method are equivalent. Following
subsection, we present classification result of antivirus soft-
wares in Sect. 4.1, and our classification result is shown in
Sect. 4.2. The accuracy of our scheme is shown in Sect. 4.3.

4.1 Description of Experimental Data

We collected 2,317 malware samples whose hash values
are unique in our honeypot. Symantec [27], McAfee [29],
and Trend Micro [28] respectively determined them as 67,
166, and 331 kinds of groups. Also, malware samples were
classified into 1,221 groups according to the combination
of three antivirus softwares. We define these classification
results as name-based clustering. Figure 5 shows the size
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Table 2 The top 10 classification results using antivirus software: Norton AntiVirus (v. 14; Symantec
Corp.), VirusScan (v. 13.15; McAfee Inc.), and Virus Buster (v. 2009; Trend Micro Inc.).

Malware # Norton AntiVirus VirusScan Virus Buster
44 W32.Korgo.V W32/Virut.gen Mal Korgo
42 W32.Korgo.V W32/Virut.gen PE VIRUT.D-1
33 W32.Korgo.V W32/Virut.gen.a PE VIRUT.AV
27 W32.Korgo.V W32/Korgo.worm.v Mal Korgo
22 W32.Korgo.V W32/Virut.gen.a Mal Korgo
22 W32.Korgo.V Unknown Malware.36DB2E5C
21 W32.Korgo.V W32/Pate.b PE PARITE.A
21 W32.Korgo.V W32/Virut.gen PE VIRUT.D-4
20 W32.Korgo.V W32/Pate.a PE PARITE.A
19 W32.Spybot.Worm W32/Sdbot.worm Mal Korgo

Fig. 6 Size of each cluster using the proposed classification method:
graph shows the malware total included in each cluster.

(i.e., number of members) of each group, and the top 10
classification results are shown in Table 2. There are the
variety of malware names in each antivirus software. Es-
pecially, the malwares were named different name such as
W32/Virut.gen and W32/Pate.a and so on by VirusScan,
even if Norton AntiVirus named the same name such as
W32.Korgo.V. Therefore, there is contradiction in classi-
fication of malwares.

From Fig. 5, we can see that the largest group contained
44 malware samples, and about 40% (929) belonged to the
independent group: they were dissimilar to the others.

4.2 Clustering Results of Proposed Scheme

We composed the API sequence of 10 Windows API calls
(N = 10), and the malware characteristic is composed of
five API sequences (n = 5). N and n determined the value
from the experience. Malware samples were classified into
93 groups, with the largest cluster containing 456 samples.

Figure 6 shows the number of samples in each clus-
ter. More than 90% of all malware samples were classified
into at most 20 clusters, and 39 samples (about 1.7%) were
dissimilar to the others.

4.3 Evaluation of Proposed Scheme

In order to verify superiority of the proposed method, it is
important to compare it with other methods fairly. To this
end, we need to prepare the existing dynamic analysis envi-
ronments used in other methods and obtain the analysis re-
sults using the same malware samples. Since there are many
different types of dynamic analysis environments [30], [31],
it is extremely difficult to construct all of them, and conse-
quently it is unable to carry out the direct comparison among
the malware classification methods. Because of this, in pre-
vious research, the performance comparison was performed
by the name-based clustering described in Sect. 4.1. There-
fore, in this paper, we also evaluate the proposed method
based on the name-based clustering.

For evaluation, we first inspected the precision and re-
call of our methods using the name-based clustering results.
Precision shows the accuracy of our result by calculating an
equation as follows:

precision =
number of common malware samples (R)

number of malware samples in our cluster (C)
,

in which R is number of common malware samples in our
clustering and in name-based clustering, and C is the num-
ber of malware samples in our clustering. Recall shows how
much our clustering covers name-based clustering by a cal-
culating equation as follows:

recall =
number of common malware samples (R)

number of malware samples in name-based (G)
,

in which G is the number of malware samples in name-based
clustering (show Fig. 7). If the precision is high and the re-
call is low, it means that the malware samples with the same
name have different behavior. The other hands, if the preci-
sion is low and the recall is high, it means that the malware
samples with the same behavior have different name.

Figure 8 shows the precision and recall of each clus-
ter. Precisions were lower because the cluster contained
many of name-based groups. However, most of clusters ex-
cluding 16 clusters (ID: 1, 2, 4, 5, etc) showed recalls of
100%. Therefore, most clusters contain complete groups of
the name-based cluster. The precision and the recall are re-
versed on the right side of Fig. 8 (cluster ID is over 55). The
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Fig. 7 Example of precision and recall: Note that R = C ∩G.

Fig. 8 Precision and recall of each cluster.

precision of these clusters became 100% because the cluster
size was one, but the recall was lowered because this mal-
ware sample was part of a name-based cluster. The average
of precision and the recall are about 55% and about 90%.
It means that most of the name-based cluster are classified
into the cluster of our scheme without dividing. However,
the antivirus softwares give different name to the malwares
which have the same behavior.

To confirm the accuracy of our clustering method, we
investigated functions of malware samples in cluster ID 5.
Here, we pulled up some malware samples randomly to
compare their features. These were chosen as follows:

a) From C̄ ∩G
Three malware samples classified into the same group
by name-based clustering and into different clusters
with our clustering.

b) From R
Three malware samples classified into the same group
by name-based clustering and into the same cluster
with our clustering.

c) From C ∩ Ḡ
Four malware samples classified into a different group
by name-based clustering and the same cluster with our
clustering.

The characteristics of these malware samples were com-
pared by the type of Windows API calls. Table 3 shows

Table 3 Comparative result of function of each malware sample.

Rule
HTTP Transaction of Creation of Modification of
access network error backdoor hosts file

G1 � � � �
a) G2 – – – �

G3 � – � �
R1 – – – –

b) R2 – – – –
R3 – – – –
C1 – – – –

c)
C2 – – – –
C3 – – – –
C4 – – – –

�: means the malware sample has it’s function.
– : means the malware sample does not have it’s function.

the characteristics of each malware sample’s function. Note
that there are many kinds of Windows API calls besides
the functions to show in Table 3. The kinds of Win-
dows API calls that are not shown in the Table 3 were the
same. Three samples (G1,G2,G3) had different character-
istics. These samples were classified into different clusters
by our method even if they were classified into the same
group by name-based clustering. Our clustering technique
proved capable of appropriately classifying by obtaining dif-
ferent characteristics. On the other hand, seven samples
(R1,R2,R3,C1,C2,C3,C4) that were classified into the same
cluster had the same characteristics, though three samples
(R1,R2,R3) were classified into the above name-based clus-
tering group. Notably, four samples classified into different
groups by name-based clustering could be classified into the
same cluster. Therefore, our clustering scheme was able to
classify by using the malware characteristics.

5. Conclusion

We proposed a new classification method that focuses on the
behavior of individual threads invoked by the original pro-
cess. We classified malware samples into clusters according
to the characteristics of individual malware samples. We de-
termined these characteristics from a sequence of Windows
API calls. We achieved classification of 2,312 different mal-
ware types into 93 groups.

The classification let us resultantly obtain the trends of
different types of the malware. In fact, 90% of the mal-
ware samples used in the experiment were classified into 20
groups at most. Moreover, it ensured that 39 malware sam-
ples had characteristics different from other samples, sug-
gesting that these may be new types of malware. To con-
firm the accuracy of our clustering method, it compared with
name-based clustering by using the precision and the recall.
The average of precision and the recall were about 55% and
90%. In other words it means that antivirus softwares named
different name to the same malwares.

The accuracy of the clustering result of [30] is influ-
enced by the parameter of the tree-cutting algorithm, and
[31] is influenced by the kind of the family set used to learn.
However, our classification method can decide the number
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of clusters automatically without pre-learning process of a
malware familly.

Our method doesn’t need calculating for the compari-
son, because only the characteristics of malware sample is
compared with. Therefor, it efficiently obtains useful infor-
mation from an enormous amount of results. This offeres
particular benefits in applying countermeasures against mal-
ware since it enables easy identification of different malware
types.
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