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SUMMARY Many scientific applications require efficient variable-
precision floating-point arithmetic. This paper presents a special-purpose
Very Large Instruction Word (VLIW) architecture for variable precision
floating-point arithmetic (VV-Processor) on FPGA. The proposed pro-
cessor uses a unified hardware structure, equipped with multiple custom
variable-precision arithmetic units, to implement various variable-precision
algebraic and transcendental functions. The performance is improved
through the explicitly parallel technology of VLIW instruction and by dy-
namically varying the precision of intermediate computation. We take
division and exponential function as examples to illustrate the design of
variable-precision elementary algorithms in VV-Processor. Finally, we cre-
ate a prototype of VV-Processor unit on a Xilinx XC6VLX760-2FF1760
FPGA chip. The experimental results show that one VV-Processor unit,
running at 253 MHz, outperforms the approach of a software-based library
running on an Intel Core i3 530 CPU at 2.93 GHz by a factor of 5X-37X for
basic variable-precision arithmetic operations and elementary functions.
key words: variable-precision floating-point (VP) arithmetic, Very Long
Instruction Word (VLIW), elementary function, Newton’s method, polyno-
mial approximation, FPGA

1. Introduction

Many scientific and engineering applications require effi-
cient variable-precision floating-point (VP) arithmetic [1].
These applications range from mathematical computations
to large-scale physical simulations, such as computational
geometry, climate modeling and supernova simulation. It is
extremely important to provide accurate results for the nu-
merical sensitive calculations in these applications.

However, almost all recent high performance general-
purpose processors do not provide hardware units for VP
arithmetic operations. Most are accomplished using soft-
ware approaches, such as GNU Multiple-Precision library
(GMP) [2], Multiple Precision Floating-Point Reliable li-
brary (MPFR)[3], NTL [4], and so on. The main disad-
vantage of software approaches is their speed. Compared
with 64-bit floating-point arithmetic, software approaches
are at least one order of magnitude slower for quadruple
precision arithmetic and 40X slower for octuple precision
arithmetic [5]. For the higher precision arithmetic, the com-
putational cost increases roughly quadratically with the pre-
cision.

Many hardware designs attempted to overcome the
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speed limit of software solutions, such as CADAC[6],
DRAFT [7], CASCADE [8], and VPIAP [9]. E. El-Araby
proposed the use of High Performance Reconfigurable
Computers (HPRCs) as a promising candidate for arbitrary
precision arithmetic [10]. F.T. Alexandre[11] presented
the approach Host+Rconfigurable Arithmetic Coprocessor
(HRAC) to implement variable long-precision computation.
The above processors were designed to perform basic VP
arithmetic operations.

Some studies focused on the hardware structure for
variable-precision elementary functions. J. Hormigo [12]
and E. Saez[13] proposed a CORDIC processor for VP el-
ementary functions, which are evaluated by simple fixed-
point adding and shifting. However, CORDIC algorithm
cannot guarantee low relative error [14]. It needs higher
computation bandwidth, more storage to store the elemen-
tary rotation angles, and more iterations to obtain a desired
result, when the result is close to zero. At the same time, the
hardware algorithms for VP division, square root, logarithm,
and triangle function are proposed separately, according to
the properties of these functions [15]-[17].

Field-programmable gate array (FPGA) chips, which
operate at the bit level and serve as custom hardware for the
different computation precisions, could potentially imple-
ment high precision scientific computing applications and
provide significantly higher performance than a general-
purpose CPU[10],[18],[19]. The computational capabil-
ity of FPGAs is increasing rapidly. A top-level FPGA chip
from Xilinx Virtex- 6 series contains 474,240 Slice LUTs,
25,920 Kbits storage and 864 DSP48El Slices (25x18
MAC). Many DSP48E1 and logic resources help to build
more custom arithmetic units for VP arithmetic.

However, several problems still exist in using FPGA
to accelerate VP scientific applications. First, there are a
variety of elementary functions in scientific applications.
The computation complexity of these functions usually are
O(n'?M(n)) [20], where M(n) refers to the complexity of
multiplication operation and n refers to the precision of
result. The consumption of hardware resources increases
quadratically relative to the computation width with pipeline
technology. Therefore, it is intractable to implement all of
these elementary function units on the same chip, so ad-
ditional communication overheads between chips are re-
quired. That will reduce performance and utilization of
chips. Second, we need to redesign the function units and
the entire system when they are no longer sufficiently accu-
rate for some applications, due to the poor flexibility of cus-
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tom function units. Moreover, the latency of VP elementary
function is long because the higher internal working preci-
sion is required to obtain an accurate result.

In this paper, we present a special-purpose very large
instruction word (VLIW) processor for variable-precision
floating-point arithmetic (VV-Processor) equipped with
multiple custom VP arithmetic units. This processor uses
the unified hardware structure to implement various com-
plex VP algebraic and transcendental functions. Perfor-
mance is improved by using explicitly parallel technology
of VLIW instruction and by dynamically varying the pre-
cision of the intermediate computation. Finally, we cre-
ate a prototype of VV-Processor unit on a Xilinx Virtex-6
XC6VLX760-2FF1760 FPGA chip.

2. Background
2.1 Range Reduction

The first step for the computation of elementary function f
at x is to reduce the argument range, called range reduction,
to improve computational efficiency. It is usually divided
into three steps.

e Range reduction: transform x into x’ based on proper-
ties of f like additivity, symmetry, and periodicity.

e Fuvaluation: evaluate f at x’.

e Reconstruction: compute f(x) from f(x’) using a func-
tional identity, and normalize it to the specific format.

2.2 Methods for Elementary Function

The main methods used to evaluate high-precision elemen-
tary functions in hardware are digit-recurrence, Newton-
Raphson algorithm, and polynomial approximation. Digit-
recurrence methods, such as the SRT algorithm [21] and
CORDIC algorithm [12], [13],[17], are linearly converge,
which means fixed number bits of the result are obtained in
each iteration. So the latency is very long to obtain a high-
precision result. This is a serious shortcoming for high-
precision computations.

Both Newton-Raphson algorithm and polynomial ap-
proximation are multiplicative approaches. Newton-
Raphson algorithm [22] can be used to compute functional
inverse functions, such as reciprocal, division, reciprocal
square root, and square root. A table lookup, which stores
the approximate value, is always followed to reduce the
number of Newton-Raphson iteration. This method typi-
cally has quadratic convergence, resulting in low latency for
high-precision computations. Thus, the Newton-Raphson
method is a powerful tool for VP arithmetic.

Polynomial approximation is another alternative to ap-
proximate elementary functions (exponentials, logarithms,
trigonometric functions, etc.) [22]. The degree of the poly-
nomial to be used is proportional to the precision of the re-
sult. Therefore, many multiplications and additions must
be performed for high-precision calculation. The Horner
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scheme is used to evaluate polynomials efficiently in mono-
mial form. However, the addition and the multiplication in
each iteration of Horner scheme must be executed serially.

Recently, computing-oriented FPGAs include many
embedded multipliers and RAM blocks. Multiplicative ap-
proaches allow one to make the best use of these available
resources. However, there are some compromises between
the size of the lookup table and the number of Newton-
Raphson iteration or the degree of the polynomial approx-
imation. Choosing a good compromise may require to take
into account the resources of the target FPGAs.

2.3  Custom VLIW Architecture

Figure 1 illustrates polynomial approximation algorithm
and Newton-Raphson algorithm. The degree of the poly-
nomial approximations (N;) satisfies N;=prec,/(c*exp;),
where prec, denotes the precision of result, exp; denotes
negative exponent of x, and c is the speed of convergence,
which is 1 for exponential and 2 for sine/cosine. Thus,
with the aid of range reduction technology or lookup tables,
the degree of polynomial is reduced quickly. The Newton-
Raphson method is implemented using iteration method and
the number of iteration (IV,) satisfies N, = logz(%)
where prec; and prec, denote the precision of initial value
and result respectively. Both of polynomial approximation
and Newton-Raphson method are combined with addition
and multiplication operations and the elementary functions
are constructed by composing basic arithmetic operations.
However, the data dependences between these basic opera-
tions are varied between different elementary functions.

Very long instruction word (VLIW) [23]-[25] is an ef-
fective approach to achieve high levels of instruction level
parallelism (ILP) by executing long instruction words com-
posed of multiple heterogeneous operations. This is a type
of multiple instruction multiple data (MIMD) processor. We
propose a custom VLIW architecture for VP arithmetic,
which has the following advantages:

)

e The unified hardware, which composed of multiple
custom VP arithmetic units, is used to to evaluate a
variety of VP elementary functions and the data depen-
dence between basic operations is maintained under the
control of VLIW instruction.

(B) Division based on Newton's method:
z;11=z,(1+¢), where 27y, &=1-ziz. Then

(A) Polynomial approximations:
f(x):a0+a|xl+~~-+a,,x"A

S1: Initialization. The range 2=y, z=x*x,=x/y.

reduction is used to reduce the S1: Initialization. Lookup table to obtain
argument x and the degree of f{x)  |zo and fix the number of iterations (N,)
(Ny) is fixed according to the according to the precision of z, and result|
precision of result. Set 7=x, F=0;  |S2: Evaulation:

S2: Evaulation: for(i=0..N,)
for(i=1..N;) begin
begin Tv=z*y, PMultiplication (1)
S=a;*T, »Multiplication (1) S1=2+T; » Addition (2)

F=F+S§; pAddition (2) zisy=2z;*S1;  » Multiplication (3)
T=T*y, pMultiplication (3) end
end Result=x* x,;
S3: Normalization. S3: Normalization.

» Multiplication (4)

Fig.1  Polynomial approximation and Newton-Raphson.
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e The performance is improved through the explicitly
parallel technology of VLIW structure and more avail-
able ILP can be exploited using the loop unrolling tech-
nology, as shown in Fig. 7 (B).

This custom VLIW processor achieves high scalabil-
ity of elementary functions. Under the control of spe-
cific VLIW instructions, the VP arithmetic units are
combined to a special-purpose hardware for elemen-
tary function.

To the best of our knowledge, this paper is the
first report advancing a special-purpose VLIW architecture
for variable-precision floating-point arithmetic on FPGA,
which can evaluate basic VP arithmetic operations and VP
elementary functions.

3. Implementation of VV-Processor

This section first defines the format for VP numbers. Then,
we present the organization of the special-purpose VLIW
architecture on FPGA (VV-Processor), equipped with mul-
tiple custom VP arithmetic units. The performance of VV-
Processor is improved by the explicitly parallel technology
of the VLIW structure.

3.1 Variable-Precision Number Format

The format of variable-precision numbers is similar to the
one presented in [26]. An VP number x consists of a 16-bit
exponent field represented with a bias of 32,767 (BE,, the
real value of exponent is E,=BE,-32,767), a sign bit (S ,),
a 7-bit mantissa length field (P,), and a variable-precision
mantissa field (M) that consists of P, 64-bit words (M,[0]
to M,[P,-1], and M,[0] is the highest word). The value of
the normalized mantissa is between 0.5 and 1, i.e., 0.5 <

M, < 1. The precision of x is 64*P, and the value of x is:
x = (—1)5-* . Mx . zBEX—32767 - (_1)5; . Mx . 2EX‘

3.2 Hardware Organization

As shown in Fig. 2, VV-Processor is mainly composed of a
parallel computation module, a control state machine mod-
ule, a VLIW instruction RAM, and a decode module. The
evaluation of all arithmetic functions are accomplished by
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the parallel computation module through explicitly parallel
technology. This module consists of multiple custom VP
arithmetic units, three on-chip memory modules, and con-
trol logic.

The basic arithmetic units include n,, VP multiplication
(VP_Mult) units, n, VP addition/subtraction (VP_Add/Sub)
units, and a VP separator (VP_Sep) unit. The VP_Sep
module performs mod one operation, which separates an
VP number A into an integer / and a fraction F, satisfied
A=I+F,and |F| < 1.

Figure 3 shows the execution cycle of different approx-
imation algorithms illustrated in Fig. 1 with various number
of VP_Mult units in VV-Processor. The polynomial approxi-
mations are implemented through the classical approach and
Horner scheme. With the help of loop unrolling technol-
ogy, Operation (2) in the i”* iteration, Operation (3) in the
(i+1)" iteration, and Operation (1) in the (i+2)" iteration
in Fig. 1 (A) can be executed in parallel. Thus, the execu-
tion cycle of the classical polynomial approach is smaller
than that of Horner scheme when n,, > 2. The value of
n,=2 achieves the lowest latency for different algorithms.
Therefore, we are equipped with two VP_Mult units and
two VP_Add/Sub units in the parallel computation module
to gain high performance.

Three on-chip memory modules are Lookup-Table,
ROM-C, and RAM-M. The Lookup-Table, a 1024x9 ROM
with a single port, stores the initial approximation for some
functions based on the table lookup method. For example,

—4— Polynomial (Classical)
—v— Polynomial (Horner)
—*— Newton Method

S5 2 N
3 > S

Execution Cycle (n)

v

2 25 3 3.5
(A) The number of VP_Mult

v v

60

1 1‘5 4

Fig.3  The execution cycle of approximation algorithms. Given N;=20,
N,=10 and the execution cycle for addition and multiplication operation
are n and 3n, respectively.

Start Over / Data Bus \
Func Mprec + + % + +
VP_Add| [VP_Add|[ ve_ | . | VP .
/Sub[1] |+++| /Sub[n,] | | Mult[1] Mult[r,,] =5y
Indata
Instruc- —
tion =
RAM ) = | xS
VLIW | = =
Decode % a
Parallel Computation / v v v \ v
Module /

Data Bus

Fig.2

Block diagram of the hardware design of VV-Processor.
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it stores the initial value of reciprocal for the division opera-
tion and the approximation of reciprocal square root for the
square root operation. ROM-C, a 8192x64 ROM with two
read ports, is used to store constants. RAM-M, a 512x64
RAM with two ports, is used to buffer middle and final re-
sults. The port width of these memory modules is 64 bits and
the maximum mantissa length is 63 64-bit words (4032 bits).
A variable-precision number is stored in 64 consecutive 64-
bit words and the lowest word contains the exponent field,
sign bit, and mantissa length field.

VLIW instruction RAM is a 2048%x120 RAM. Each
word is a VLIW instruction, as shown in Fig. 4, which con-
sists of several fields including the data selecting field (sel_a,
sel_b) and precision set field (m, n, r) for each basic arith-
metic unit, write enable field (en_a, en_b), address field
(Addr_a, Addr_b) for each on-chip memory module, con-
trol field (control), iteration number (num), and so on. The
decode module forms these fields from the VLIW instruc-
tions.

The control state machine module controls the run of
VV-Processor. This module changes the value of program
counter (PC) to access different VLIW instructions from
VLIW instruction RAM to implement the corresponding VP
elementary functions.

Both Newton’s algorithm and polynomial approach al-
gorithm are implemented with iterative method, which is
controlled by the control field of VILW instruction, as
shown in Table 1. First, we use the barrier instruction to
synchronize all basic VP units. When a barrier instruction
is reached, the unit will wait until all other units have fin-
ished their works. Then, a branch instruction, which modi-
fies the PC value depending on the outcome of the condition,
is followed to judge the completion of iterative computation.
This way has to stall the execution of some units. However,
it exerts little influence on the total performance, since the
performance of VV-processor is depended on key operations
in the critical path, as illustrated in Sect. 4. This means that
the most time-consuming unit, such as VP multiplier, will
be the bottleneck.

VP_Add/subl¥a] [ m [ n [ r [Sela]Selb] As5 ]
r

VP_Multl] [m [ n] r [ Sel_a[Selb]

rovic

RAM-M ‘ Addr_a ‘ sel_a ‘ en_a ‘ Addr_b ‘ sel_b ‘ en_b ‘

Fig.4  The field of custom VLIW instruction.

uononnsuy MITA

Table 1  Partial definition of control field.

control Description
0000 | Normal instruction: Execution in order, i.e. PC=PC+1
Barrier instruction: Execution the same instructions until all
0001 . .
basic VP units are done
Branch instruction: Select the VLIW instruction according to
condition, i.e. if(cond) PC=Addr_Yes, else PC=Addr_No
1111 | Termination instruction: Generate over signal and set PC=0

0010
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VV-Processor works through the following stages:

Stage 1, Start-up: After receiving the S rart signal, the
initial address to access VLIW instruction RAM is fixed ac-
cording to the type of function (Func). At the same time,
the initial data (/ndata) is written into RAM-M.

Stage 2, Calculation: The VLIW instruction is read,
the execution of computation module is controlled, and the
value of PC is changed according to the control field of
VLIW instruction.

Stage 3, Normalization: The Over signal is generated
after the calculation of given function is done.

3.3 VP_Mult Module

The VP_Mult module performs VP multiplication operation,
in which the mantissa of the two operands are multiplied
and the exponents are added, i.e., C=(S4®S p)*(Ms*Mp)*
2Ea+Es where the mantissa lengths of A, B, C are m, n, r,
respectively. Figure 5 (A) shows the VP multiplication al-
gorithm and Fig. 5 (B) depicts the structure of the VP_Mult
module.

The VP_Mult module is comprised of 2p+1 on-
chip memories (RA[1]~RA[p], RB[1]~RB[p] and RC), p
fixed-point multipliers (64x64), p fixed-point accumula-
tors (134-bit), a normalization module, and control logic.
RA[1]~RA[p] and RB[1]~RB[p], which are 64x64 RAMs
with one read port and one write port, are used to store the
copy of the mantissa of A and B, respectively. RC, a 128x64
RAM, is used to store the result of My*Mp.

To multiply m words (64-bit) number and n words
number, m * n partial products are generated and accu-
mulated, which is the most time-consuming part in high-
precision multiplication operation. Since m * n partial prod-
ucts can be calculated in parallel, we can use multiple 64x64
fixed-point multipliers to reduce the latency. Thus, p 64-bit
fixed-point multipliers are integrated into VP_Mult module,
equipped with p 134-bit fixed-point accumulator and 2*p
on-chip memories (RA[1]~RA[p] and RB[1]~RB[p]), as
shown in Fig. 5 (B). Each multiplier reads the mantissa of A
and B from corresponding RAMs (RA and RB). The group
of fixed-point multipliers are running [(m + n)/p] sweeps.

Figure 5(C) shows an example of the multiplication
operation. In the first sweep, A9 X By in multiplier [1],
A1 X By, Ap X By in multiplier [2] and A, X By, A; X By,
Ap X By in multiplier [3] are calculated simultaneously.
The mantissa words of C are calculated from the least to
the most significant. The least significant word is the low
64-bit result of accumulator [1] in the first sweep, i.e.,
RC[0]=PSy[63:0]. The following significant word RC[1],
overlapped by Ay X By, A| X By, and Ag X By, is the sum-
mation of the high 64-bit result of the accumulator [1] and
the low 64-bit result of the accumulator [2]. The high 64-bit
result of accumulator[3] in the first sweep will be propa-
gated to the next sweep and added into RC[4], as line 8 in
Fig.5 (A).

The execution time (7,,.) of the mantissa product is
about ([%-‘ + p +4). As the spacetime diagram shown
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(A) VP multiplication algorithm

(B) Structure of VP_Mult unit
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Stepl: Store p copies of the mantissa of A and B into h&* ]\g‘ h@* Ms A: Multiplicand
RA[1]~RA[p] and RB[1]~RB[p], respectively. o [A]Aa [A A
e N . = =% = = B: Multiplier ' t t
Step2: Execute the multiplication of M,*Mp in parallel. E § g S § ; @ ? ) X ‘ B.B. 1B, 1B B
I: Set RC[0]=0; PS=0, i=0--(m+n-1); zero_low=1; ||'= =l == <2 o= C: Product 4| B3| B | Bi | By
2: For(n=0; n<(m+n)/p; n++) s > S w T > = & D64b1t Mult[1] A, X By | AgX By
. * -
3: PS,pt=Yisj-nsp(RA[] RB*[/ p mult ] v Dﬁ%‘t Mult[2] ‘As By| A XB, }
4: PS, k,,+|+ Zw 2+ 1(RA[IT*RB[j]); lpller§ Multiplier[1] Multlpller[p] |
work in|| (64X 64) (64><64) [ 64bit Mult[3] [A,XB,[AXB,| |
5 PS, */J+/»I+’Zt+/:u 7p1(RA[]*RB[/]); parallel ‘ A3 XB; [A XB; i i
6: For(i=0; i<p; i++) Accumulator[1] Accumulator[p [
7: Set r=n*p+i; ‘ ‘ ‘ ‘ ArKE) | [
8: {RC[r+1], RC[#]}= PS,+RC[1]; 70bits(high) A3XB, | A XB; i i
N ’ ’ its(hig
?é) 1f((t<m+n-rl-1)&(§RC[t]!=O)) SMUX BN By | ‘
: zero_low=0; roo
11: End for !As B; | A1 XBs ‘ AR
12:  End for A XBi|AcXBs| | | |
Step3: Normalizati Ex Lo
ep3: Norma '1zat10nA ) Sg + | A;XBy | A KBy | |
Rounding M to the nearest even according to the
value of RC[m+tn-r-1:m+n-1] and zero_low; Cs|Cr|Cs|Cs|Cy|Cs|Cy|C|Cy
Sc=S8a%Sg;
if(M, M p<1/2) sweep3 sweep2 sweepl
Ec=E,+Ep-1;
else EZ=E1+EI; (C) Example of variable-precision

floating-point multiplication,
Given m=4, n=5, =9, and p=3.

i A 100 ottt bttt b rtese

Unit <7$tartup—>~<7Evalua[10n4>:%ﬁnalw‘ 4 % -
! | | © <
Mul31 20102 [CDI eI | | % fa /
Mult[2][(1.0)[(0.1) [@D]@2) [(T3)]0:4) | ! 2 Sl |
Mult[11[(0.0) (G0N @D .03 | | 3%,/
R R = UL A NECEE. SE
Sum P G [C[G [ [A[A A > ovel 05 10 15 20 25 30 35 40 45 30 55 60 65
1121345617 8 9011121314 > ¢

(D) Spacetime diagram of multiplication example. (i,/) means the partial product A; X B;

Fig.5

in Fig. 5 (D), the m * n partial products are generated by p
64-bit pipeline multipliers in parallel without any stalls, and
the load of each multiplier is balanced. Thus, ’”*”] cycles
can finish the generation of partial products. In addition,
4 cycles are required to fill the pipeline of multipliers at the
start and p cycles are required to accumulate the final partial
products into RC. As shown in Fig. 5 (E), the utilization of
the multipliers are increasing with the mantissa length. Due
to the pipeline fill time, the utilization is low for small man-
tissa length. However, it can reach 90% when the mantissa
length is bigger than 9.

The final product C will be rounded correctly in the
rounding to nearest mode, extending the IEEE standard to
VP arithmetic. We build one flag, called zero_low. The
zero_low, which is 1 if all bits in the RC[0]~RC[m+n-r-2]
are 0, is used to indicate a special case that C is the middle of
two consecutive floating-point numbers. Since the product
of the mantissa is between 1/4 and 1, it may be necessary to
shift M4*Mp left one position and decrement the exponent
to normalize the product C.

The execution time of VP multiplication composed of
three parts. The first part (T;,;,) is the initial time required to
store M4 and Mp to RA and RB, and T;,;;=max{m,n}. The
second part (7,,.) is the execution time. The last part (7},,,)
is the normalization time and T,,,=r. Thus, the total execu-
tion time (cycle) of VP_Mult module is (m>n):

Typ_ Mult—" -‘+p+m+r+4

(E) The mantissa lengths of multiplicand (m=n and
r=2n). The pipeline stage of 64-bit multiplier is 4.

Variable-precision multiplication algorithm and block diagram of hardware design.

3.4 VP_Add/Sub Module

The VP_Add/Sub module performs VP addition or subtrac-
tion operation (C=A+B), where the mantissa lengths of A,
B, C are m, n, r, respectively. If it is assumed that A>B, then

C=2Fx (SAFMp+S B*MB*ZEB_EA ).

Figure 6 depicts the VP addition and substraction al-
gorithm and the structure of VP_Add/Sub module. The
VP_Add/Sub module consists of three on-chip memories
(RA, RB, and RC, which are 64x64 RAM with one read port
and one write port), two 128-bit shifters, a 134-bit fixed-
point adder, a normalization module, and three address gen-
eration modules (G_A, G_B, G_C).

The first step of VP addition or subtraction is to align
the mantissas of A and B into consistent fixed-point formats,
so they can be summed up with a simple fixed-point adder.
We use a two-level alignment scheme to avoid using a very
long shifter. In the first level, two 128-bit barrel shifters
are used to align the mantissas within 64-bit word and the
results store into RA and RB, respectively. In the second
level, the difference between E4 and Ep is used in address
generation modules (G_A and G_B) to select the appropriate
words from RA and RB to align each word of mantissa, as
shown in Fig. 6 (B). For A>B, the least significant words to
be evaluated are RA[O] and RB[(E4 — E) > 6].

The addition or subtraction of the mantissa of A and B
is executed from the least significant word to the most sig-
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Stepl: Set E,,,=max{Ex, Eg}, Sa= E;ax[5:0]-

EA[5:0], Sg= E,10x[5:0]-Ep[5:0]. The mantissa

of A and B are shifted right by S, and Sp, and

stored into RA and RB, respectively.

Step2: Perform addition or subtraction

operation of the M, and My from the lowest

word to the highest word.

1. Seta=E,.[15:6]-E4[15:6],
b=E,;,x[15:6]-Eg[15:6], Cin=0, ZN=0;

2. For(t=0; t<n; t++)

3 if(A/S==0)

4: {Cin, RC[t]}=RA[a]+RB[b]+Cin;

5: else {Cin, RC[f]}=RA[a]-RB[b]-Cin;

6: if(RC[7]==0)

7 ZN=ZN+1;

8 else ZN=0;
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S1: Table Lookup zy according to y. Set p;=0.25, ------- >[MI]
p=1, ps=1, last_iteration=0;
S2-1: VP_Mul(T, y, 20, p2, p2, p3) D> T=y* 20 -ooceee >MIM2[A/STRCIRMITL]
S2-2: VP_Sub(S, 2, T, p2, p2, p2) > S§s=2- -
$2-3: VP_Mult(zo, 20, S, p2. p3 p2) D> 20=20% S ~._ o
S2-4: if(last_iteration=1) goto S3;
else if(p;<1) { Set p;=2%*p,; goto S2-1:}
else if(2%p,<r) { Set p3=pa, p»=2%p1+1,
P1=2%*py, last_iteration=0; goto S2-1;} J
else { Set p3=p,, pr=r+1, p\=r, !
last_iteration=1; goto S2-1;} //
S3: VP_Mult(z, x, 2o, 7, r+1, r+1) D z=x%* 29

(A) Variable-Precision Division Algorithm and VLIW Instructions
Indata(x)

S1-1: Set pi=r+1, p,=r+2, ps=r, ps=r-1, i=3,
Jj=1, Sel_iteration=0, C=In2/2*%;
S1-2: VP_Mult(Ty, x, 1/In2, ps, r, p)> Ti=x/In2----__

(Sep[MI[M2[A/SI[RCIRM]

{Sep[MI[M2TA/ST

9: a=a-1; b=b-1;

10: End for

Step3: Normalization. Count leading zero
(LZ) of RC and Round M to the nearest even
according to the value of RB and RC; Sc=Sy;

if(A/S==0) Ee=Ey-LZ: ‘ Normalization ‘
else if(M,+Mpg<1) Ec=E,;
else Ec=Es+1; Result

(A) VP addition/subtraction algorithm (B) Structure of VP_Add/Sub

Fig.6  Variable-precision addition and subtraction algorithm (A>B).

nificant word, as shown in Fig. 6 (A). For the addition opera-
tion, the least mantissa part of C is RB[0]~[b-1]; for the sub-
traction operation, the least mantissa part of C is the two’s
complement of RB[0]~[b-1]. Simultaneously, ZN is calcu-
lated, which represents the number of leading zero words
and is used to count the leading zero of RC quickly in the
normalization.

The final result C will be rounded correctly in the
rounding to nearest mode. For addition operation, since the
value of (My+Mp*2Fs~E1) is between 1/2 and 2, it may be
necessary to shift the RC right one position and increment
the exponent. For subtraction operation, since the value of
(M4-Mp*2Fs=En) is between —1/2 and 1, it is necessary to
count leading zero of result C before normalization. First,
the address (AH) of the most significant word not equal to
0 is fixed according to ON (AH=n-ON). Then, the lead-
ing zero (LZ4p) of RC[AH] is counted. Thus, the number
of leading zero (LZ) of C is (64¥*AH-LZ,p) and Ec=FE,-
64*AH-LZ.

Similar to VP multiplication, the total execution time
of VP addition/subtraction is composed of initial time
(T;nir=n), execution time (T,=n), and normalization time
(T,or=r). The VP_Add/Sub unit is equipped with a ping-
pong memory structure, RA[1]&RB[1] and RA[2]&RBI[2].
So, the initialization and the computation can be executed in
parallel and the total execution time is about n+r.

4. Variable-Precision Elementary Function Algorithm

For each VP elementary function, we need to design corre-
sponding VLIW instructions in VV-Processor and dynami-
cally specify the precision of the basic operations to yield
the desired result and achieve high performance. First, the
elementary function is decomposed into a series of basic VP

S1-3: VP_Sep(T1, ¢, F,po, 1,p1) D> Ti—~g+F ~.__
S1-4: VP_Mult(z, F, C, pi, pi,p)) D 2= F *C ~ " [SepIMI[M2[A/SI[RCIRM]
S2-1: VP_Mult(zz, z, 2, 1, p1, p1) D> m=z%z

g[sz-z: VP_MUl(E, 23,2, 7, 1. p1) D> E=zpz=2d " “(SeolMIIMRIA/STIRCIRM]
21S2-3: VP_Mult(T, 25, 1721, r, 1, 1) D> T=22/21 "N

5 — > 2 M T 2 N\ 4Sep[MIM2TA/ST[RCRM]
&[S2-4: VP_AAA(S, Lz, propop) D S=l4z S SeplM] -’
T[S2-5: VP_AAA(S, S, T, propi pr) D> S=S+T

S| S2-6: VP_MulK(T, E, 1/i!, p3, ps, p3) > T=E/i! )\

£|82-7: VP_MUlt(E, E. 2. pi, ps. pr) D E=Exz=g"{\\\

S2-8: if(i>2r+1) goto S3-1;
else if(Sel_iteration=1) {Set ps=pa, ps=ps-1,
i=i+1,Sel_iteration=0; goto S2-5;}
else {Set p3=pa, ps=pa, Sel_iteration=1;
i=i+1, goto S2-5;}

A A/ST

" {SepIMIMIA/ST[RCRM]

-1: —E*, g
:;’ ;j .;71.3—31\;”"(‘?’ S, tS’ Ghnr v > E=EE Sep: VP_Sep.M: VP_Mult,
-2:if(>32)  goto §3-3; /|RC: ROM-C,RM: RAM-M,
else{ j=j+1; goto S3-1:} /| TL: Table Lookup
_3- , q . — E %04 . 4
$33: VEMult(y, B2 ripi ) D y=E*20 | R AR

(B) Variable-Precision Exponential Algorithm and VLIW Instructions

Fig.7 VP division algorithm and exponential function algorithm.

arithmetic operations, which can be executed by the basic
arithmetic units. Then, these basic operations are mapped
into the custom VLIW instructions according to the data de-
pendent between them. Finally, the corresponding VLIW
instructions are executed though the explicitly parallel tech-
nology of multiple VP arithmetic units.

In this section, we use division and exponential func-
tion as examples to illustrate the design of VP elementary
function in VV-Processor. Then, the implementation algo-
rithms of others elementary functions (square root, loga-
rithm, triangle sine and cosine) are introduced in Appendix.

4.1 VP Division Algorithm

As shown in Fig. 1 (B) and Fig. 7 (A), the proposed method
for evaluating VP division (z=x/y) is based on table lookup
and Newton’s method, consisting of three stages.

Stagel: Look up table for an approximation zy of 1/y,
which is a starting value for Newton’s method.

Stage2: Newton’s method is employed to calculate
the reciprocal of y, and the iteration is z;.; = z(1 +
g;), where g=1-z;y and z,=1/y.[22] This iteration has
quadratical convergence and the number of iterations is
N,=log,(prec,/prec;).

Stage3: VP multiplication operation is used to obtain
7= x*z,=xly.

This algorithm uses a 256 word table for an initial ap-
proximation zo of 1/y. Each word in the table has 9 bits.
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The eight highest significant bits of mantissa of y are used
to access the lookup table to obtain the mantissa of z
(M,,). The precision of zy is 8-bit and the exponent of z
isE; = -1-E,.

The latency of VP division is reduced through dynami-
cally varying the precision of intermediate computation in
each iteration. In stage2, p;, representing the mantissa
length of result in this iteration, is increase by a factor of
2 due to the quadratical convergence of Newton’s method;
D2, representing the precision of intermediate results in this
iteration, is p;+1; p; represents the precision of intermedi-
ate results in the front iteration. Since the precision of zj is
8-bit, the precisions of result in the first and second itera-
tion are 16-bit and 32-bit, respectively. So we can use 64-bit
computation bandwidth to obtain the desired result. In the
i iteration (i>2), the precision of result is 64*p; bits, so
64%*(p;+1) bits computation bandwidth is required.

As depicted in the Fig. 7 (A), there are data dependent
among S2-1, S2-2 and S2-3. So they must be executed se-
rially. The critical path in stage2 includes two multiplica-
tion operations and one subtraction operation. The compu-
tational complexity of addition and multiplication are O(n)
and O(n?), respectively [20]. Thus, multiplication is a key
operation and the latency of VP division algorithm reduces
with the performance improvement of VP_Mult.

4.2 VP Exponential Function Algorithm

As shown in Fig. 7 (B), the VP exponential algorithm (y=e*)
is based on the Taylor series and is performed through three
stages as follows.

Stage 1, Range reduction: First, the argument x is
reduced into interval [0, In2). We find s and an integer g,
satisfied x=¢*In2+sand 0 < s <In2. Theny = e* = &’ %29,
Thus, the evaluation of the exponential function on the real
field is transferred into that on interval [0, In2). To derive the
value of s and ¢, x is multiplied by 1/In2, and the integer part
of product is g. The fraction part of product is multiplied by
In2 to gain the value of s.

To reduce the degree of Taylor series, we repeat the
doubling formula (¢** = (e*)?) to reduce the argument fur-
ther. Given z = 5/2%2, then ¢* = (¢%)*” and |z| < 2732. This
is better since the power series converges more quickly for
z. The cost is that the 32 squaring are required to reconstruct
the final result from e*.

Stage 2, Evaluation: ¢° can be evaluated using the
Taylor series approximation approach:
=Y L=l + i+ G

n!

n=0

Stage 3, Reconstruction: The value of e° is calculated
32 times using the doubling formula starting from e°.

Since at most one bit of accuracy will lose in each mul-
tiplication operation [18], the precision of result in Stage 2
should be greater than 64r+32. The error in Stage 2 comes
from two sources: approximation error (g,) and rounding
error (g,). The |z] < 2732 and the ignored terms in the Taylor
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series produce the approximation error

&, = Z Z]/]' < Zi+l < 2—32(i+1) < 2—(64r+32).

>t

Thus, we need to calculate the front 2r+1 terms of the
Taylor series. Rounding error occurs when calculating the
Taylor series. If we use 64(r+1) bits as the internal working
precision and the number of operations is smaller than 232,
the rounding error &, will be smaller than 2764432,

As shown in Fig.7 (B), the Taylor series approach in
stage 2 is a kind of polynomial approximation approach.
S2-5 implements addition operations (F(i-1)+a;*x") in i
iteration, and S2-6 implements multiplication operations
(ais1x™1) in (i+1)™ iteration, and S2-7 implements multipli-
cation operations (x'*?) in (i+2)" iteration of the polynomial
approximation approach. There is no data dependent be-
tween them, thus they can be integrated into one VLIW in-
struction, and executed simultaneously. Therefore, the crit-
ical path in Stage 2 includes only one VP multiplication or
addition/subtraction.

5. Experiments Result
5.1 Experimental Setup

We implemented the proposed hardware design on a de-
velopment board mainly consisting of two FPGAs (Virtex-
5 XC5VLXS50T-1FF1136 and Virtex-6 XC6VLX760-
2FF1760) and two 2GB DDR2 DRAM modules, as shown
in Fig.8. The XC5VLXS50T chip provides a link between
the XC6VLX760 and host PC via a PCI-Express (8x) bus
with bandwidth of 570 MB/s. Each DDR2 Controller runs
at 200 MHz on 128 bit data width. The peak I/O bandwidth
can reach 6.4 GB/s. All modules are coded in Verilog, and
synthesized with Xilinx ISE 12.3. As a base for performance
comparison, we applied the MPFR library, MPFR3.0.0, de-
veloped by Hanrot et al., to measure the results accuracy
and delay time. This library is quite efficient and accuracy
compared to other multiple-precision library.[3] The soft-
ware platform includes a host PC with 2.93 GHz Intel Core
i3 530 CPU and 4 GB DDR3 1333 MHz Memory.

We build a VP arithmetic accelerator (VP-Acc) to mea-
sure the performance of FPGA chip and take the communi-
cation overhead between host PC and FPGA chip into con-
sideration. Figure 8 shows the block diagram of this accel-

/
Board /

Development DDR2 SODIMM /

XCOVIXT60 | //PERal}{yy proc
o F_Wrl
Memory ||/ |,IERp] - -
Controller "’——“"
xc5vIx50t >
VV_Proc |||>| oo e > >
Array g
PCLE Memory PE ROy proc F ol
Controll Controller ||\ ~ S
ontroller] | on Io er \ F_Rb9 9

\
DDR2 SODIMM '

Host Computer

Fig.8 VP arithmetic accelerator based-on VV-Processor.
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erator, which includes a VV-Proc Array module and others
control logic. The VV-Proc Array module is composed of 9
VV-Processor units and 27 FIFOs. Each VV-Processor unit
reads operands A and B from corresponding FIFOs (F_Ra
and F_Rb) and writes the result into FIFO (F_-Wr), respec-
tively. The running time of this accelerator includes compu-
tation time and the time for sending the operands to FPGA
as well as receiving the results back to the host PC.

5.2 Resource Utilization

Table 2 shows details of the FPGA synthesis results for basic
VP arithmetic units, VV-Processor unit, and VP arithmetic
accelerator equipped with 9 VV-Processor units.

A. DSP resource

The DSP48E1 blocks, used to build 64-bit fixed-point
multiplication module in VP_Mult, are the most constrained
resource. The computational complexity of VP addition and
multiplication are O(n) and om?), respectively. Thus, the
VP_Mult module is a key unit in VV-Processor. In our de-
sign, four (p=4) parallel 64-bit fixed-point multipliers are
equiped to obtain the best tradeoff between the performance
and resource utilization. One VV-Processor consumes 11%
DSP48E available in XC6VLX760 FPGA chip. Therefore,
a total of 9 VV-Processor units can be integrated into VP
arithmetic accelerator.

B. Local memory resource

The local memory modules (on-chip memory), clas-
sified into distributed RAM and embedded 18 Kbits block
RAM, are important in the implementation of VV-Processor.
We used 29 and 14 block RAM to implement ROM-C
(8192x64 bit) and VLIW instruction RAM (2048x120 bit),
respectively. The more available storage resources in current
FPGAs can be used to build a larger table lookup, which
provide a rough approximation to the elementary function
in the range reduction. Thus, the latency of evaluation is
reduce further. We used distributed RAM to implement
other small on-chip memory, such as RAM in basic variable-
precision arithmetic units. The distributed RAM elements
are mapped into LUT slices, which is an advantage for
the FPGA placement and layout phase, compared with fix-
positioned embedded block RAMs. However, distributed
RAMs consume more LUT resources. An VV-Processor
unit requires about 3% of the slice LUT resources available
in XC6VLX760-2FF1760, and the VP arithmetic accelera-
tor consumes 31% of the Slice LUTs.

C. Frequency

The achievable maximum frequency of VV-Processor
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unit is 253 MHz. Compared to the same circuit imple-
mented directly in silicon (ASICs), FPGA implementation,
emulated with a very large number of configurable elemen-
tary blocks and network of wires, is typically one order of
magnitude slower. However, the performance of FPGAs
is improved through the custom hardware for applications
equipped with multiple VV-Processor units working in par-
allel. In VP-Acc, the final synthesis frequency can reach
245 MHz and the running frequency is 240 MHz.

5.3 Performance Comparison of VV-Processor

In this subsection, we first evaluate the accuracy and perfor-
mance of VV-Processor unit. Then, a VP arithmetic accel-
erator is built to compare the performance between FPGA
chips and CPU.

A. Accuracy of VV-Processor

The accuracy of the proposed methods was tested by
comparing to the accurate results produced by 4096 bits
precision calculations using the MPFR library. For the
elementary function, we designed corresponding variable-
precision algorithms, in which the internal precision is care-
fully planed and guard words are used to guarantee accuracy
of the result. The experiment results show that we can obtain
results with correctly rounding for addition, multiplication,
that ulp (unit in last place) error is not exceed 0.5, and the
error is smaller than 0.55 ulp for VP elementary functions.

B. Performance comparison with a core of Core i3

Table 3 compares the performance of VV-Processor
unit with the similar precision implementation of MPFR li-
brary [3]. This library runs at a single core of Core i3 pro-
cessor. The speedup factor for basic arithmetic operations
(addition, multiplication, division, and square root) is be-
tween 5 and 34, and that for elementary functions (exponen-
tial, sine, cosine and logarithm) is between 18 and 36.9. In
the logarithm algorithm, the reconstruction, which occupies
half of execution time for others transcendental functions, is
simple. Therefore, the latency of VP logarithm function is
smaller than that of others. However, more on-chip memory
is required to store the approximation in lookup tables. The
performance of FPGA implementation of VP applications is
increase with the number of integrated VV-Processor units.

With the help of Intel VTune Performance Analyzer

Table3  Timing in microsecond comparison with MPFR library, running
on a core of Core i3 processor. The speed of VV-Processor is predicted
based on the frequency in Table 2 and the number of cycles in Table 5.

Op 1024 bits 2048 bits
MPFR | Our [ Speedup | MPFR [ Our | Speedup
Table 2 Synthesis results. “VV-Proc’ represents the VV-Processor unit, Xty 07 0.126 5.6 125 025 5
and ‘“VP-Acc’ represents the VP arithmetic accelerator. XXy 2.9 041 315 32.18 130 24.8
[ Type || SliceLUT | DSP48El1 | BRAM | Freq(MHz) | x/y 18.6 1.95 9.5 64.1 5.05 12.7
VP_Mult 4095 48 0 262.03 Vx 18.8 2.52 7.5 46.9 6.39 7.3
VP_Add 2491 0 0 296.57 Sin(x) 458 21.0 21.8 1766 | 82.0 21.5
VP_Sep 986 0 0 287.55 Cos(x) 405 22.2 18.2 1640 | 73.5 22.3
VV-Proc 16235(3%) 96(11%) 43 (3%) 253.45 Exp(x) 420 23.0 18.3 1515 | 83.2 18.2
VP-Acc 147096(31%) | 964(100%) | 43(27%) 245.50 Ln(x) 579.7 15.7 36.9 1547 | 46.1 33.6
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Table 4  Performance analysis of Vtune, where “N.I” means number
of INST_RETIRED.ANY events, which counts the number of instructions
that retire execution. CPI is the abbreviation of cycle per instruction.

. Div Exp
Library 256 | 2048 756 2048
N.L 13381 285367 | 210476 | 6646332
MPFR CPI 0.71 0.66 0.78 0.67
Time(us) | 322 | 641 | 56.00 1515
Table 5 Performance (cycle) comparison with VPIAP [9] and
CORDIC[12].
o 1024 bits 2048 bits
P [91/[12] | Our [ Speedup | [9)/[12] [ Our [ Speedup
Xty 40 32 1.25 72 64 1.13
xXy 284 104 2.96 1068 328 3.33
x/y 852 493 1.73 3220 1280 2.52
Vx 1146 639 1.79 4314 1620 2.66
Sin(x) 11K 52K 2.12 38K 203K 1.87
Cosx) | 11K | 55K | 20 38K | 182K | 2.09
Exp(x) 11K 5.7K 1.93 38K 20.6 K 1.84
Ln(x) 11K 3.8K 2.89 38K 114K 3.33

tools, we can explain why the performance of VV-Processor,
running at 253 MHz, is higher than CPU platform running
at 2.93 GHz, for exponential function. As shown in Ta-
ble 4, the value of “N.1.” is 6,646,332 for 2048-bit exponen-
tial function in MPFR library. Most instructions are used in
function calls, memory management, error and range check-
ing, exception handling, and so on.

C. Performance comparison with related work

In Table 5, we compare the performance of our design
to two existing design, VPIAP processor [9] and CORDIC
processor [12],[17]. The VPIAP processor was designed
to perform the basic VP arithmetic operations. The perfor-
mance of addition in our design is about the same. For mul-
tiplication operation, the speedup of 3X is obtained, since
multiple fixed-point multipliers are used to generate and ac-
cumulate the partial products in parallel in the multiplica-
tion of M, and Mp. For division and square root, Newton-
Raphson iteration with table-based method is used. The pre-
cision of approximation value zy is 8-bit, and the number
of iteration is log,(prec,)-3. The speedup over 1.7X is ob-
tained for division and square root.

The CORDIC processor, which was designed to per-
form VP transcendental functions. Since the approach based
on multiplication operations has high level convergence and
dynamically varies the precision of intermediate computa-
tion to reduce the latency further, our proposal outperforms
the CORDIC processor by a factor of 1.8X-3.3X.

Moreover, in the comparison to the work in [9] and
[12], our design can implement various VP algebraic and
transcendental functions in the unified hardware.

D. Performance comparison between FPGA chips
and Intel Core i3 processor

Table 6 summarizes the performance of VP arithmetic
accelerator. We evaluate various VP algebraic and transcen-
dental functions on the vector X and Y. The ratio of com-
putation time to communication time is increasing with the
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Table 6 Performance of VP arithmetic accelerator comparison with
MPER library. ‘Ratio’ represents the ratio of communication time to the
total running time. ‘Util’ represents the utilization of VV-processor units.

op 1024 bits
MPER! (s) | VP-Acc?(s) | Speedup | Ratio | Util

Xty 0.36 0.52 0.7 [84.7% 18.5%
xXy 6.06 0.52 11.6 |84.7% 60.2%

x/y 978 0.67 146 | 65.9% 100%

Vx 1253 0.52 243 | 423% 100%
Sin(x) | 220.79 2.69 822 | 82% 100%
Cos(x) | 188.8 2.83 66.8 | 7.8% 100%
Exp(x) | 204.02 2.92 69.8 | 7.6% 100%
Ln(x) | 322.06 1.98 1631 | 11.2% 100%

1. MPFR: Intel Core i3-530 (2 cores and 4 threads) 2.93 GHz CPU (32 nm),
4 MB Intel Smart Cache, Parallel implementation based-on OpenMP

2. VP-Acc: Virtex-6 XC6VLX760-2FF1760 FPGA (40 nm), equipped
with 9 VV-Processor units, running at 240 MHz

Computation Time I Communication Time

100%
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Fig.9  The ratio of communication time to computation time, where A,
D, E refer to addition, division, exponential operations respectively. 0, 1, 2,
3 represent that the size of X and Y is 1K, 10K, 100K, 1 M respectively.

size (n) of X and Y and is tending towards stability when
n > 10K, as shown in Fig.9. Thus, there is little effect
on the performance of VP-Acc for n > 10K. In the fol-
lowing, we set n = 1 M. As shown in Table 6, the perfor-
mance for VP addition and VP multiplication operations is
limited by the I/O bandwidth of DDR2 DRAM. This leads
to the low utilization of computational resource and low per-
formance of FPGA chips. The utilization of VV-Processor
units is only 18.5% for VP addition operation. The ratio of
computation time to communication time is low for VP al-
gebraic functions, due to the simple computational process.
Thus, the communication overhead will take much percent-
age of the total running time. For VP transcendental func-
tions, computational capability of FPGA chips is developed
to the full. We can achieve the maximum speedup of 169.
In the design of high-precision scientific application accel-
erator based on VV-Processor, the on-chip memory are used
to store and reuse the data, in order to eliminate the limit of
I/O bandwidth of DDR2 and PCI-Express.

6. Conclusion and Future Work

We presented a custom processor for variable-precision
floating-point arithmetic processor based on VLIW struc-
ture. It used the explicitly parallel technology of multiple
basic arithmetic units to improve the performance. Sev-
eral VP elementary function algorithms are designed in VV-
Processor. The experimental results show this processor
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could achieve 5X-37X performance speedup compared with
MPER library. Moreover, our hardware design can achieve
better performance than the related works.

In future, we will explore methods to implement com-
pound VP functions in VV-Processor, such as In(1 + e%).
Further, we will apply the VV-Processor unit for accelerat-
ing large-scale scientific applications to exhibit the poten-
tial capability of FPGA chips to implement high-precision
floating-point scientific applications.
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Appendix: VP Elementary Function Algorithms

(1) Variable-Precision Square Root Algorithm

As shown in Fig. A-1 (A), a similar scheme in division algo-
rithm, which employs table lookup and Newton’s method,
can be used to evaluate square root(y = +/x), working as
following:
Stagel: Look table for an approximation zg of x~!/2.
Stage2: Use Newton’s method to evaluate the recipro-

cal square root of x. The iteration is z;.; = z;(1+ %81'), where
& = 1—zZxand z, ~ 1/ y/x. This iteration has quartical con-
vergence as the same to division algorithm.

Stage3: VP multiplication operation is used to obtain

y=x%2z, = VX
(2) Variable-Precision Sine Algorithm

As shown in Fig. A-1 (B), the approach based on Taylor se-
ries to calculate VP sine function (y=sin(x)) works as fol-
lowing stages.

Stagel, Range reduction: First, the argument x is re-
duced into interval [0,27). We find s and an integer
q, satisfied that x=¢*2m+s, with the similar scheme of
computation in stagel in exponential function. Then y=
sin(g*2m+s)=sin(s). Tripling formula (sin(3x) = 3 sin(x) —
4sin*(x)) is used to reduce the argument further. Since
273712 <2710 « 274371 thenz = %3712 and |7] < 271°.

Stage2, Evaluation: The value of sin(z) can be evalu-
ated using Taylor series approximation approach:
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S1: Table Lookup zy, Set p1=0.25, p,=1, ps=1, last_iter=0; S2-9: if(k>r) goto S3-1; S3-1: VP_Mult(S, 28, S, p1, p1, p1) > S= 25%5=25"

S2-1: VP_Mult(Ty, zo, zo, p2, 3, p3) D Ty=2z*z else Set py=py, ps=ps-1, i=i+2, k=k+1, goto S2-6;} $3-2: VP_Sub(S, S», 1, p1, p1, p1) D §=8,-1=25>1

S2-2: VP_Mult(Ts, x, T, p2, p2, p2) D> Th=x* zo* g S3-1: VP_Add(R,, S, S, p1, p1, P1) D> Ry=S+S S3-3: if(>22) goto S3-4;

$2-3: VP_Sub(e, 1, Ts, p, p2, p2) D e=1-xz2 £|$3-2: VP_Mult(Ss, S, S, pi, p1, p1) D S5,=S*§ else{ j=+1; goto S3-1;}

S2-4: VP_AdA(Sy, 1, &2, pa, p2, p2) D> Si=1+e2 #183-3: VP_Mult(54, S, 4, py, p1, p1) D> S4=4%5 S3-4: Sety=S

$2-5: VP_Mult(z, zo, S, p2, P3» P2) D zg=2z* S, el [S3>43 VP_Add(Rs, Ry, S, p1, p1, p1) D> R;=R,+5=3S (C) Variable-Precision Cosine Algorithm

82-6: if(last_iter=1) goto S3; £|83-5: VP_Mult(Ss, 84, >, pi. pr.p) - > S5=54*5,=4S° S1-1: Set py=r+1, p,=3r+2, ps=r-1, p=r-2, i=4, j=1, k=2;

else if(p1<1) { Set p;=2*py; goto S2-1;} & 83-6: VP_AdA(S, S5, Rs, p1, p1, p1) > 5=35+45’ S1-2: VP_Mult(T', x, 127, po, v, p2) - D> Ti=x/2n
else if(2*p,<r) { Set ps=p>, p1=2*p1, p>=pi+l, $3-7: if(j>22) goto S3-8; S1-3: VP_Sep(Ti, q, F, p2, 2, p1) > T\—=g+F

last_iter=0; goto S2-1:} else{ j=j+1; goto S3-1} S1-4: VP_Mult(z, F, 21/2%, pi, pi,p1) D> z = F *2n/2”
else { Set ps=ps, pr=r+1, last_iter=1; goto S2-1;} S3-8: Set)y=S . S2-1: VP_Mult(zs, 2, 2, 7, p1, 1) » z=z*z

S3: VP_Mult(y, x, zo, r, r+1, r+1) D y=x*z, (B) Variable-Precision Sine Algorithm 2l $2-2: VP Mult(E, 22, 22, 7, 7, 1) D E=z*z,=

(A) Variable-Precision Square-root Algorithm S1-1: Set py=r+1, py=3r+2, ps=r-1, ps=r-2, i=4, j=1, k=2; %I: S2-3: VP:Mult(T, 23, =120, 1, 1) D> T=-z/2!

S1-1: Set pi=r+1, p;=3r+2, ps=r-1, p/=r-2, i=5, j=1, k=2; S1-2: VP_Muli(Ty, x, 1/2m, ps, 1, p2) D> Ty=x/2n -~ S2-4: Set S=1

S1-2: VP_Mult(Ty, x, 1/2m, ps, 1, p2) D> Ty=x/2n S1-3: VP_Sep(T\, g, F, p2, 2r, p1) > Ty—g+F | S2-5: VP_AdA(S, S, T, p1, p1, p1) D> S=85+T

S1-3: VP_Sep(T\, ¢, F, p2, 2r, p1) D> T\—g+F S1-4: VP_Mult(z, F, 202, pi, pi,p1) D> z=F *202" 5| $2-6: VP_Mult(T, E, (-1i1, ps, ps, p3) D> T=(-1YE /il

S1-4: VP_Mult(z, F, 21/3'%, pi, pi,p1) D> z=F *2m/3"% i_  S2-1: VP_Mult(z, z, z, 7, p1, p1) D z=z%z &| S2-7: VP Mult(E, E, 23, pa. p3, p1) D E=Eiz,=2"

S2-1: VP_Mult(z,, z, z, 1, p1, p1) D z=z*z %[ S2-2: VP_MulW(E, z3, 25, 1, 1, 1) D E=z*z=7" S2-10: if(k>r) goto S3-1;

S2-2: VP_Mult(zs, z3, z, 1, 1, p1) D z3=z*z=7 n\‘i S2-3: VP_Mult(T, z5, -1/2!, r, r, 1) D T=-2/2! else Set p3=py, ps=pa-1, i=i+2, k=k+1, goto S2-5;}
B[52-3: VP_Mult(T, z3, -1/31, 1, 7, 1) D> T=-z/3! $2-4: Set S=1 S3-1: VP_Mult(Sy, 28, S, pi, propt) D> Si= 25*5=28>
£[S2-4: VP_MUlU(E, z3, 25, ps3, 7, 7) D E=zy*z=2 B| S2-5: VP_AAA(S, S, T, p1, 1. p1) D> S=85+T S3-2: VP_Sub(S, S5, 1, p1, p1, P1) D §=8,-1=25>1
#182-5: VP_Add(S, 0, z, p1, p1, p1) D> §=0+z B| 82-6: VP_Muly(T, E, (-)¥/il, ps, ps, ps) > T=(-1)*E/i! $3-3: if(7>22) goto S3-4;

5[82-6: VP_Add(S, S, T, p1, p1, p1) > S=8+T &| S2-7: VP_MulK(E, E, 21, ps, p3» 1) D E=E*;,=2" else{ j=j+1; goto S3-1;}

F[82-7: VP Mul(T, E, (-1)i, ps, ps. p3) D T=(-1)E /il $2-10: if(k>r) goto S3-1; S3-4: Sety=S

£[82-8: VP_Mult(E, E, z,, pa, p3, p1) D E=E*5=7'" else Set ps=pa, ps=ps-1, i=i+2, k=k+1, goto S2-5:} (D) Variable-Precision Logarithm Algorithm
Fig.A-1  Variable-precision elementary function algorithms.
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. _ (_l)nZ2n+l _ z3 ZS z7
sin(z) = ZO—(ZnH)! =r-ytyomtoos
n=

Stage3, Reconstruction: The value of sin(s) is calcu-
lated using tripling formula 12 times starting from sin(z).

(3) Variable-Precision Cosine Algorithm

As shown in Fig. A-1 (C), a similar scheme in sine function
can be used for cosine function. The VP cosine algorithm
for evaluating y=cos(x) works as following stages.

Stagel, Range reduction: First, reduce the argument
x into interval [0, 27). Then y= cos(g*2n+s)=cos(s). For-
mula (cos(2x) = 2 cos?(x)—1) is used to reduce the argument
further. Since 27 % 371 < 271% then z = s * 271 € [0,2719)
and |z] < 2716,

Stage2, Evaluation: The value of cos(z) can be evalu-
ated using Taylor series approximation approach:

L n.2n 2
cos()= X P =1-5+5-5
Stage3, Reconstruction: The value of cos(s) is calcu-

+...‘

lated using the recurrence formula (cos(2x) = 2 cos?(x) — 1)
19 times starting from cos(z).

(4) Variable-Precision Logarithm Algorithm

As shown in Fig. A1 (D), the VP logarithm algorithm uses
a combined method of table lookup and polynomial approx-
imation as described in [16] and is computed as

y =1In(x) =In(x") + (Ex — 1) - In(2)
where x* = M, and 1 < x’ < 2. The computation of In(x")
works as following:

Stagel, Range reduction: The function In(x’) is eval-
uated using the iterative equation x,; = Xx; - r;, where
Xo = X', r; is the i”* scale factors, and 0 < i < 7. Thus,
In(x") = In(xg) —In(rg) — - - — In(r7). The value of r; and In(r;)
is obtained from the lookup table according to the (2*i) most
significant bits of x;.

Stage2, Evaluation: The value of In(xg) is evaluated
using a power series [22]

2i+1

ln(xg):2(1+§+...+§i+l +-4)

where z=(xg-1)/(xg+1). Compared to the general Taylor se-
ries expansion of In(xg), this z < xg/2 if xg > 1.

Stage3, Reconstruction: The value of In(xg) and In(r;)
(0<i<7)areadded to (E, —1)-In(2) to yield y.
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