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Ranking and Unranking of t-Ary Trees Using RD-Sequences

Ro-Yu WU†a), Member, Jou-Ming CHANG††, and Yue-Li WANG†††, Nonmembers

SUMMARY In this paper, we introduce a concise representation, called
right-distance sequences (or RD-sequences for short), to describe all t-ary
trees with n internal nodes. A result reveals that there exists a close relation-
ship between the representation and the well-formed sequences suggested
by Zaks [Lexicographic generation of ordered trees, Theoretical Computer
Science 10 (1980) 63–82]. Using a coding tree and its concomitant tables,
a systematical way can help us to investigate the structural representation
of t-ary trees. Consequently, we develop efficient algorithms for determin-
ing the rank of a given t-ary tree in lexicographic order (i.e., a ranking
algorithm), and for converting a positive integer to its corresponding RD-
sequence (i.e., an unranking algorithm). Both the ranking and unranking
algorithms can be run in O(tn) time and without computing all the entries
of the coefficient table.
key words: t-ary trees, ranking, unranking, lexicographic order, coding
trees

1. Introduction

Many algorithms have been developed for generating t-ary
trees (as well as binary trees) with n internal nodes. In most
of these algorithms, t-ary trees are encoded to integer se-
quences and all different sequences are generated in a par-
ticular order, especially in lexicographic order [1], [4], [12],
[13], [15], [18], [21], [22] or Gray-code order [2], [6], [11],
[19]. Besides, a few algorithms employ the usual pointer in
computer representation to generate t-ary trees [5], [7], [8],
[20]. Accordingly, we customarily say t-ary trees to mean
their representations.

Given a specific order on the set of t-ary trees with n
internal nodes, a ranking algorithm is a function that de-
termines the position (rank) of a given t-ary tree in that
order, and an unranking algorithm is one that finds the
tree of a given position. To date the best known rank-
ing algorithms [1], [12], [13], [15], [22] and unranking algo-
rithms [1], [13] for diverse representations of t-ary trees re-
quire O(tn) time. However, all of them are demanded to
build a coefficient table of a size approximating to (n(t −
1) + 1) · n in advance before ranking or unranking. For this
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reason, the pre-computation of those coefficient entries takes
additional cost in O(tn2) time. A challenge arisen from this
research is to ask whether the pre-computation for building
coefficient table is necessary in order to compute the rank-
ing and/or unranking function. Lucas et al. claimed that, in
fact, they have been unable to reduce the running time of the
ranking algorithm or unranking algorithm to less than O(n2)
time even if they consider for binary trees (see p. 354 in [8]).

In this paper, we deal with the problem of ranking
and unranking for t-ary trees with n internal nodes in lex-
icographic order. We will show that both the ranking and
unranking problems for t-ary trees can be solved in O(tn)
time without computing all the entries of the coefficient ta-
ble. An observation shows that only the entries located in
a path from the lower-left corner to the upper-right corner
of the table are needed to compute. Thus, we establish four
formulae that can be used for computing the relative right,
left, upper, and lower entries of a given element in the table,
respectively. Because each formula can be computed in a
constant time and the length of a required path is no more
than tn, all subsequent entries can be determined quickly if
an initial term is computed. Consequently, we obtain an im-
provement on the time and space complexities for both the
ranking and unranking algorithms.

2. Structural Representations of t-Ary Trees

We begin with a structure representation of t-ary trees. For
t � 2, a t-ary tree T is an ordered tree defined recursively
as follows: either T is empty or it has a distinguished node
r called its root that is connected to subtrees T1,T2, . . . ,Tt,
each of which is a t-ary tree. Let Tn,t denote the set of t-ary
trees with n internal nodes. If T ∈ Tn,t, then we assume that
all internal nodes of T are numbered from 1 to n in preorder
list (i.e. visit the root and then recursively the subtrees of T
from left to right). For each internal node i ∈ T , we define
right distance di as follows. First, di = 0 for each node
i on the right arm of T (i.e., the path from the root to its
rightmost descendant). For all other nodes, di = dp(i) + t − k
(1 � k � t), where p(i) stands for the parent of node i and
node i is the kth son (from left to right) of node p(i). Thus,
di = dp(i) when node i is the rightmost child of its parent.
Note that di � di−1 + (t − 1). Denote that resulting sequence
by rd(T ) = (d1, d2, . . . , dn) as the right distance sequence
(RD-sequence for short) of T .

The concept of RD-sequences comes from a repre-
sentation introduced by Mäkinen [9], [10] for binary trees.
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Fig. 1 The 3-ary trees with 3 internal nodes.

However, Mäkinen’s distance representation uses the left
arm (i.e., the path from the root to its leftmost descendant)
of the tree to measure the distance of a node, and thus is re-
ferred to as the left distance method. Recently, Wu, Chang
and Wang [16] extended the usage of RD-sequences to rep-
resent a wider class of trees called non-regular trees. Re-
call from [3] that the number of t-ary trees is given by
|Tn,t | = 1

tn+1

(
tn+1

n

)
= 1

(t−1)n+1

(
tn
n

)
. Figure 1 depicts twelve

3-ary trees for n = 3 and their RD-sequences.
In [21], Zaks defined another representation, called Z-

sequence, of a t-ary tree T as follows. For each internal node
i ∈ T , zi denotes the visited order of node i in the preorder
list of T , where both internal nodes and external nodes have
to be traversed and counted in the list. The resulting se-
quence z(T ) = (z1, z2, . . . , zn) is called the Z-sequence of T .
Note that any Z-sequence starts from 1 (i.e., z1 = 1), while
the first entry in an RD-sequence is 0 (i.e., d1 = 0). Also,
every Z-sequence satisfies zi−1 < zi � 1+ t(i− 1). For exam-
ple, Fig. 2 shows the RD-sequence and the Z-sequence of a
particular 4-ary tree T with 6 internal nodes.

The following theorem shows that there is a one-to-one
correspondence between an RD-sequence and a Z-sequence.
Thus, the preprocessing time for ranking and unranking with
Z-sequence may be also reduced by the same ideas of RD-
sequences in the next section. For more complete discussion
about the relationship among various representations of bi-
nary trees, the reader is referred to [8].

Theorem 1: Let T be a t-ary tree. Then di+ zi = 1+ t(i−1)

Fig. 2 A 4-ary tree T where every internal node i ∈ T is labeled by di/zi.

for every internal node i ∈ T .

Proof : Let K be the set of external nodes visited between
two internal nodes i and i + 1 in the preorder list of T , and
let k = |K|. By definition, we have the following relevance:

zi+1 = zi + (k + 1) (1)

We now consider the following two cases to show the rele-
vance between di and di+1 using the term k. The first case to
consider is 0 � k < t. In this case, node i + 1 is the (k + 1)th
child of node i, and thus di+1 = di + t − (k + 1). Next, we
consider the case where k � t. We denote by c(x) = � to
mean that node x is the �th child of its parent. Also, let lcai

denote the least common ancestor of i and i + 1 in T . Ob-
viously, all the t children of i are external nodes and lcai is
the parent of i + 1. Suppose that c(i + 1) = s and the unique
path from lcai to i is lcai = x0, x1, . . . , xp = i. Then, for each
j = 1, . . . , p, the right distance d(x j) of node x j can be com-
puted by d(x j) = d(x j−1)+ t−c(x j). By iterative substitution,
we have

d(xp) = d(x0) + p · t −
p∑

j=1

c(x j)

Since di+1 = d(x0) + t − s and the number of nodes in K
which are not the children of node i is k− t = (s−1)−c(x1)+∑p

j=2(t−c(x j)), this comes into di = d(xp) = di+1− t+(k+1).
Therefore, we obtain the following relevance from the above
arguments:

di+1 = di + t − (k + 1). (2)

From Eqs. (1) and (2) we obtain

di+1 + zi+1 = di + zi + t.

Since d1 = 0 and z1 = 1, we can solve the recurrence (i.e.,
an arithmetic sequence di + zi with the given initial term
d1 + z1 = 1) to obtain the desired result. �

According to Theorem 1, it follows that to generate t-
ary trees on n nodes using RD-sequences in lexicographic
order, it suffices to generate t-ary trees using Z-sequences in
the reverse of lexicographic order, and vice versa.

In the following, we apply a systematical way to de-
scribe all t-ary trees in Tn,t. Given an integer t � 2, the t-ary
coding tree with n levels is a rooted tree T constructed by
the following rules: (1) Every node in T is associated with
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Fig. 3 The coding tree, RD-sequences, Z-sequences, and the rank of 3-ary trees.

a label; (2) The first level contains a single node (i.e., the
root) with label 0; (3) Every nonleaf node (i.e., node not in
the nth level) with label k has t + k children and these chil-
dren are labeled by 0, 1, . . . , t + k − 1 from left to right in
the next level of T. For simplicity, we merely mention cod-
ing tree if t and n are inessential. A result will be shown in
Corollary 3 that the ith level of a coding tree contains |Ti,t |
nodes. Consequently, the full labels along the path from the
root to a leaf in T represent the RD-sequence of a t-ary tree
with n internal nodes. Due to the relationship of di and zi

stated in Theorem 1, there is another way to label the nodes
of a coding tree. Figure 3 demonstrates the 3-ary coding tree
with three levels. In addition, it also shows the two types of
sequences for 3-ary trees and their corresponding ranks.

Similar concepts of coding trees were independently
introduced under various names including the backtracking
tree [23], the recursion tree [8], and the coding tree [16],
[17]. Backtracking trees and recursion trees are used to
generate binary tree sequences while coding trees are con-
structed for t-ary trees and non-regular trees. For throughly
studying the structure of t-ary coding trees, we first observe
the following facts.

Fact 1: The degree (i.e., the number of children) of a node
x in the ith level of T is at most (t − 1)i + 1.

For instance, we consider the coding tree in Fig. 3. The
root has (3 − 1) · 1 + 1 = 3 children, a node in the second
level contains at most (3 − 1) · 2 + 1 = 5 children, and so
on. Thus, the range of labels for nodes in the ith level of T
is between 0 and ((t − 1)(i − 1) + 1) − 1.

Fact 2: For every two nodes x and y with the same label in
the same level of T, the subtree rooted at x and the subtree
rooted at y are isomorphic.

For each level i = 1, . . . , n and 0 � k � (t − 1)(i − 1),
let Xi,k be the set consisting of nodes with label k in the ith
level of T. For example, X3,2 contains three nodes with label

2 in the third level of the coding tree in Fig. 3. It is clear
that every node in Xi,k has the same degree. Since the height
of the subtree of T rooted at a node x ∈ Xi,k is n − i, we let
Ai,(t−1)(n−i)+k denote the number of leaves in such a subtree.
Obviously, An,k = 1 for 0 � k � (t − 1)(n − 1) (i.e., the
case of i = n and thus every subtree rooted at a leaf of T
contains a singleton). Similarly, we have An−1,(t−1)+k = t + k
for 0 � k � (t−1)(n−2) (i.e., the case of i = n−1). In general,
for counting the number of leaves in the subtree of T rooted
at a node x in level i � n − 1, by the decomposition of tree
structure we may separately count the number of leaves in
the subtree rooted at each child of x, and then sum up these
counts for total. Thus we have the following formula:

Ai,(t−1)(n−i)+k =

(t−1)(n−i)+k∑
j=(t−1)(n−i−1)

Ai+1, j, (3)

where 0 � k � (t−1)(i−1). Using Eq. (3), we can prove
the following theorem by induction (see Appendix A).

Theorem 2: Given integers t � 2 and n � 1, for each i =
1, . . . , n and 0 � k � (t − 1)(i − 1) we have

Ai,(t−1)(n−i)+k =
t + k

mt + k

(
mt + k
m − 1

)
, (4)

where m = n − i + 1.

Corollary 3: The ith level of t-ary coding tree T contains
|Ti,t | nodes.

Proof : It can be derived by setting k = 0 and substituting i
for n − i + 1 in Eq. (4). Since m = i in this case, it yields

An−i+1,(t−1)(i−1) =
t
it

(
it

i − 1

)
=

1
it + 1

(
it + 1

i

)
= |Ti,t |.

�
Using Eq. (3), we can set up a table called t-ary re-

cursion table. When t = 2, the special case is the well-
known Catalan’s triangle table [14]. Table 1 shows the 3-
ary recursion table for n = 6. This table can be visualized
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Table 1 The 3-ary recursion table for n = 6.

A (t − 1)(n − i) + k
n i 0 � k � (t − 1)(i − 1) 0 1 2 3 4 5 6 7 8 9 10

1 k = 0 1428
2 0 � k � 2 273 455 700
3 0 � k � 4 55 88 130 182 245

6 4 0 � k � 6 12 18 25 33 42 52 63
5 0 � k � 8 3 4 5 6 7 8 9 10 11
6 0 � k � 10 1 1 1 1 1 1 1 1 1 1 1

Table 2 The 3-ary accumulation table for n = 6.

B (t − 1)(n − i) + k
n i 0 � k � (t − 1)(i − 1) 0 1 2 3 4 5 6 7 8 9 10

1 k = 0 0
2 0 � k � 2 0 273 728
3 0 � k � 4 0 55 143 273 455

6 4 0 � k � 6 0 12 30 55 88 130 182
5 0 � k � 8 0 3 7 12 18 25 33 42 52
6 0 � k � 10 0 1 2 3 4 5 6 7 8 9 10

as a staircase where the corner entry of step i is equal to
Ai,(t−1)(n−i) = |Tn−i+1,t | by Corollary 3. Also, an observation
from Eq. (3) shows that the value of any entry, except those
in the bottom row, is equal to the prefix sum of the entries in
the next lower row (e.g. A3,6=55 =

∑6
j=4 A4, j = 12+18+25

in Table 1). Thus, the value of each entry, except those in
the bottom row and corner entries, is equal to the one below
plus the one at its left (e.g. A3,7 = 88 = A4,7 +A3,6 = 33+ 55
in Table 1). This immediately implies the following.

Corollary 4: Given integers t � 2 and n � 2, for each
i = 1, . . . , n − 1 and 1 � k � (t − 1)(i − 1) we have

Ai,(t−1)(n−i)+k = Ai,(t−1)(n−i)+k−1 + Ai+1,(t−1)(n−i)+k. (5)

For the efficiency of computation, we also define the
following formula:

Bi,(t−1)(n−i)+k =

⎧⎪⎪⎨⎪⎪⎩
0 if k = 0∑k−1

j=0 Ai,(t−1)(n−i)+ j otherwise
, (6)

where 0 � k � (t − 1)(i − 1). This means that the term
Bi,(t−1)(n−i)+k is the prefix sum of the first k nonblank entries
in the ith row of a recursion table. A table built from Eq. (6)
is thus named as a t-ary accumulation table. Table 2 shows
the case for t = 3 and n = 6. Clearly, if k � 0, we can rewrite
Bi,(t−1)(n−i)+k as follows:

Bi,(t−1)(n−i)+k = Bi,(t−1)(n−i)+k−1 + Ai,(t−1)(n−i)+k−1. (7)

Using Eqs. (4) and (7), the following theorem can be
proved by induction (see Appendix B).

Theorem 5: Given integers t � 2 and n � 1, for each i =
1, . . . , n and 0 � k � (t − 1)(i − 1) we have

Bi,(t−1)(n−i)+k =
k

mt + k

(
mt + k

m

)
, (8)

where m = n − i + 1.

In addition, from Eq. (8) we can obtain the following
formulae which are useful for designing ranking algorithm
and unranking algorithm in Sect. 3. In particular, if an en-
try in the accumulation table is given, we can compute the
immediately right entry, the immediately left entry, the im-
mediately upper entry, and the immediately lower entry by
using these formulae, respectively.

Corollary 6: Given integers t � 2 and n � 2, for each
i = 2, . . . , n and 1 � k � (t − 1)(i − 1) − 1 we have

Bi,(t−1)(n−i)+(k+1)

= Bi,(t−1)(n−i)+k · (k + 1)(mt + k)
k(m(t − 1) + k + 1)

, (9)

where m = n − i + 1.

Corollary 7: Given integers t � 2 and n � 2, for each
i = 2, . . . , n and 1 � k � (t − 1)(i − 1) we have

Bi,(t−1)(n−i)+(k−1)

= Bi,(t−1)(n−i)+k · (k − 1)(m(t − 1) + k)
k(mt + k − 1)

, (10)

where m = n − i + 1.

Corollary 8: Given integers t � 2 and n � 2, for each
i = 2, . . . , n and t − 1 � k � (t − 1)(i − 1) we have

Bi−1,(t−1)(n−i)+k

= Bi,(t−1)(n−i)+k · (k − t + 1)(mt + k)
k(m + 1)

, (11)

where m = n − i + 1.

Corollary 9: Given integers t � 2 and n � 2, for each
i = 2, . . . , n − 1 and 1 � k � (t − 1)(i − 1) we have

Bi+1,(t−1)(n−i)+k

= Bi,(t−1)(n−i)+k · m(k + t − 1)
k(mt + k − 1)

, (12)

where m = n − i + 1.
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3. Ranking and Unranking Algorithms

In this section, we first determine the rank of a t-ary tree T
according to the RD-sequences in lexicographic order. Let
T be the t-ary coding tree. Recall that Ai,(t−1)(n−i)+k denotes
the number of leaves of the subtree rooted at a node with
label k in the ith level of T. Also we know from Eq. (6) that
Bi,(t−1)(n−i)+k indicates the total number of leaves for those
subtrees rooted at nodes with labels from 0 to k − 1. Since
a full label (d1, d2, . . . , dn) along the path from the root of
T to a leaf represents a certain t-ary tree T , we can define
the rank of T by using the order (from left to right) of this
appointed leaf in T. It follows that

Rank(d1, d2, . . . , dn) =
n∑

i=1

Bi,(t−1)(n−i)+di . (13)

Note that Rank(0, 0, . . . , 0) = 0 and Rank(0, t − 1, 2(t −
1), . . . , (n− 1)(t − 1)) = |Tn,t | − 1. For example, we consider
a 3-ary tree T with rd(T ) = (0, 2, 1, 0, 1, 2). From Table 2,
we can compute Rank(0, 2, 1, 0, 1, 2) = B1,10 + B2,10 + B3,7 +

B4,4 + B5,3 + B6,2 = 0 + 728 + 55 + 0 + 3 + 2 = 788.
Based on Eq. (13), we design the following algorithm

which takes rd(T ) = (d1, d2, . . . , dn) as the input for comput-
ing the rank of a t-ary tree T . For convenience, we assume
that there exists at least one nonzero item in the sequence
d1, d2, . . . , dn. Indeed, it is unnecessary to build the accu-
mulation table in our algorithm. An alternative way shows
that using Eqs. (9) and (11) instead of Eq. (8) can efficiently
reduce the complexity for computing the rank.

Algorithm Ranking

Step 1. Let � = max{i : di � 0 and 1 � i � n} and
s = min{i : di � 0 and 1 � i � n};
B = k = (n − �)(t − 1) + d�;
for m = 1 to n − � do
// Refer to Eq. (11), move up
B = B · (k−t+1)(mt+k)

k(m+1) ;
k = k − (t − 1);

endfor
Rank = B;

Step 2. j = �;
while j > s do
� = max{i : di � 0 and s � i < j};
m = n − j + 1;
h = ( j − �)(t − 1) + d� − d j;
for k = d j to d j + h − 1 do
// Refer to Eq. (9), move right
B = B · (k+1)(mt+k)

k(m(t−1)+k+1) ;
endfor
k = d j + h;
for m = n − j + 1 to n − � do
// Refer to Eq. (11), move up
B = B · (k−t+1)(mt+k)

k(m+1) ;
k = k − (t − 1);

endfor
Rank = Rank + B;
j = �;

endwhile
Step 3. Output Rank;

Algorithm Ranking calculates the rank by a sequence
of nonzero terms Bi,(t−1)(n−i)+di with index i from n downto
1. Step 1 first determines the largest index of nonzero term
B. In Step 2, we consider any two consecutive nonzero
terms with indices j and � such that j > �. Since dj �
d�+( j−�)(t−1), we have (t−1)(n− j)+d j � (t−1)(n−�)+d�.
Thus, if the given RD-sequence is valid, the term with in-
dex � must appear at the upper or the upper-right of the
term with index j in the t-ary accumulation table, which de-
pends on the value of h to be zero or not. Then, we can
find the next nonzero term by successively traversing the
entries of the table through h steps in horizontal, and then
through j − � steps in vertical. We repeat this procedure un-
til all subsequent nonzero terms are added into the rank. In-
stead of table search, we obtain all nonzero terms using the
calculations of Eqs. (9) and (11), and therefore the correct-
ness of algorithm directly follows. Since each of Eqs. (9)
and (11) can be computed in a constant time if the previ-
ous nonzero term is provided, and since the total steps tra-
versed horizontally and vertically in the table is no more
than (n − 1)(t − 1) + (n − 1) = t(n − 1), we conclude the
following.

Theorem 10: Algorithm Ranking can correctly determine
the rank of a t-ary tree with n internal nodes in O(tn) time.

In the following, we give a reverse procedure, called
Unranking, that converts a positive integer N to its corre-
sponding RD-sequence. We are given n, t and N, and look
for a sequence d1, d2, . . . , dn such that Rank(d1, d2, . . . , dn) =
N. Initially, we assume that di = 0 for all i = 1, . . . , n.

Algorithm Unranking

Step 1. B = |Tn,t | = 1
tn+1

(
tn+1

n

)
;

Step 2. i = k = 1;

while N > 0 do

i = i + 1;

m = n − i + 1;

k = k + (t − 1);

while k > 1 and B > N do

// Refer to Eq. (10), move left

B = B · (k−1)(m(t−1)+k)
k(mt+k−1) ;

k = k − 1;

endwhile

if B � N then

N = N − B;

di = k;
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endif

// Refer to Eq. (12), move down

B = B · m(k+t−1)
k(mt+k−1) ;

endwhile

Step 3. Output (d1, d2, . . . , dn);

Algorithm Unranking decomposes N into a sequence
Bi,(t−1)(n−i)+di for i = 1, . . . , n. For determining which terms
are appropriate in the sequence, similar to Ranking, the
algorithm performs the search in accumulation table us-
ing Eqs. (10) and (12) and without really building the ta-
ble. Step 1 takes O(n) time to pick out the upper bound of
B1,(t−1)(n−1)+d1 . In Step 2, for each round of the outer loop, it
determines an entry B from a row of the table as an appro-
priate term, and then updates N by subtracting B from N.
The choice of entry B is percolated by the inner loop which
can be viewed as a search from right to left in a row of the
table and such that B matches a possibly largest value to ac-
commodate the current N. Since each of Eqs. (10) and (12)
can be computed in a constant time and the total time is no
more than (n − 1)(t − 1) + (n − 1) = t(n − 1), we have the
following theorem.

Theorem 11: Given a positive integer N, Algorithm
Unranking can correctly determine an RD-sequence
d1, d2, . . . , dn of a t-ary tree such that Rank(d1, d2, . . . , dn) =
N in O(tn) time.

4. Conclusion

In this paper, we apply RD-sequences to represent t-ary trees
since such a representation is conceptually simple. From
the structure of coding trees, we can describe all t-ary trees
with n internal nodes in a systematical way by using RD-
sequences. As a result, the ranking and unranking algo-
rithms for t-ary trees can be carried out. Four expedient for-
mulae derived from the t-ary accumulation table are used to
reduce the complexity and thus both the ranking and unrank-
ing algorithms of t-ary trees can be run in O(tn) time and
without computing all the entries of the table. As a corol-
lary, we obtain linear time algorithms for solving the ranking
and unranking problems on binary trees, respectively.
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Appendix A: Proof of Theorem 2

The proof is by induction on m. For m = 1 (i.e., i = n), it
is easy to check An,k =

(t+k)
(t+k+1)(t+k)

(
t+k+1

1

)
= 1 for 0 � k �

(t − 1)(n − 1). Suppose that Eq. (4) holds for m = � < n and
0 � k � (t − 1)(n − �), i.e.,

An−�+1,(t−1)(�−1)+k =
t + k
�t + k

(
�t + k
� − 1

)
.

We now consider m = � + 1 (i.e., i = n − �) and 0 � k �
(t− 1)(n− �− 1). Before the proof, we first note that it holds

p
�

(
�t + p − 1
� − 1

)
+

t + p
�t + p

(
�t + p
� − 1

)
=

p + 1
�

(
�t + p
� − 1

)

for 1 � p � t − 1 + k. By Eq. (3), we have
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An−�,(t−1)�+k

=

(t−1)�+k∑
j=(t−1)(�−1)

An−�+1, j

= An−�+1,(t−1)(�−1) + An−�+1,(t−1)(�−1)+1 +

An−�+1,(t−1)(�−1)+2 + · · · + An−�+1,(t−1)�+k

=
1
�

(
�t
�−1

)
+

t + 1
�t+1

(
�t+1
� − 1

)
+

t + 2
�t+2

(
�t+2
� − 1

)
+· · ·

+
t + (t − 1 + k)
�t + (t − 1 + k)

(
�t + (t − 1 + k)
� − 1

)

=
2
�

(
�t+1
� − 1

)
+

t + 2
�t+2

(
�t+2
� − 1

)
+

t + 3
�t+3

(
�t+3
� − 1

)
+ · · ·

+
t + (t − 1 + k)
�t + (t − 1 + k)

(
�t + (t − 1 + k)
� − 1

)

...

=
t + k
�

(
�t + (t − 1 + k)
� − 1

)

=
t + k

(� + 1)t + k

(
(� + 1)t + k

�

)
.

�

Appendix B: Proof of Theorem 5

The proof is by induction on k. The theorem is trivially
true for k = 0 because Bi,(t−1)(n−i) = 0. We now consider
1 � k � (t−1)(i−1) and suppose that the theorem is true for
k − 1. By Eq. (7), we have Bi,(t−1)(n−i)+k = Bi,(t−1)(n−i)+k−1 +

Ai,(t−1)(n−i)+k−1. Thus, we can use induction hypothesis and
Eq. (4) to get

Bi,(t−1)(n−i)+k

=
k − 1

mt+k−1

(
mt+k−1

m

)
+

t + k − 1
mt+k−1

(
mt+k−1

m − 1

)

=
k

mt + k

(
mt + k

m

)
.
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