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Concept Drift Detection for Evolving Stream Data

Jeonghoon LEE†∗a), Member and Yoon-Joon LEE††b), Nonmember

SUMMARY In processing stream data, time is one of the most signif-
icant facts not only because the size of data is dramatically increased but
because the characteristics of data is varying over time. To learn stream data
evolving over time effectively, it is required to detect the drift of concept.
We present a window adaptation function on domain value (WAV) to de-
termine the size of windowed batch for learning algorithms of stream data
and a method to detect the change of data characteristics with a criterion
function utilizing correlation. When applying our adaptation function to a
clustering task on a multi-stream data model, the result of learning synopsis
of windowed batch determined by it shows its effectiveness. Our criterion
function with correlation information of value distribution over time can be
the reasonable threshold to detect the change between windowed batches.
key words: stream, stream data, concept drift, change of the characteris-
tics, clustering

1. Introduction

Progress in various hardware and sensor technology has cre-
ated new kinds of data management. These data, being gen-
erated and growing continuously and rapidly over time, are
referred to stream. Stream data has become a challenge
to Knowledge Discovery and Data mining (KDD) due to
their large size and dynamics in generation. Even various
problems in managing and processing of stream data issue
from high-dimensional attributes and multi-valued categor-
ical values found in recent stream data.

Many tasks in KDD related stream data have been fo-
cused on relatively simple processes like searching and in-
formation filtering. In various domains, however, there are
needs for more sophisticated tasks like summarizing and
clustering to find hidden knowledge of data. Moreover, it
is the advent of personal mobile hardware like smart phones
and advanced application areas which generate continuous
and pervasive data like social networks, that have changed
most data considered static into types of stream [1], [2].

In processing stream data, time is one of the most sig-
nificant facts not only because the size of data is dramat-
ically increased but because the characteristics of data is
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Fig. 1 A multi-stream data model.

varying over time. Generally stream data sets are too large
to fit in main memory so and linear scan could be a cost-
effective access method. Some common stream data like
sensor network data and internet packet statistics are tran-
sient and do not need to be accumulated on memory. These
data should occasionally be processed at a time when being
generated and then be discarded for memory space when-
ever possible. Therefore processes for such stream data
should be designed to use compressed data like synopsis or
summary. Stream data are seriously affected by time be-
cause they emerge in time line and the characteristics of
them are subject to be changed. Tasks of stream data re-
quire continuous or periodic update the current information
to guarantee so that they reflect the latest status of data.

First, we propose an adaptation function to determine
the size of windowed batches of stream data. We assume
that an item in a data set is not only a singleton of data but
a series of stream and the whole data is a set of multi-series
of streams in a multi-stream data model in Fig. 1. By an
example, each stream data generated by an individual in a
social network service like micro-blog could be an item in
our data model. For effective synopsis reflecting concept
of stream with limited subset of data, our adaptation func-
tion is used to build up the windowed batches of a series
of stream. Second, we present a method for detecting the
change of concepts between windowed batches of stream.
Our approaches provide reasonable criteria to establish win-
dowed batches of stream for efficient processing based on a
clear statistical motivation and make it possible to detect the
change of characteristics on linear scan effectively.

The rest of this paper is organized as follows. In Sect. 2
we present background information and our motivation on
stream data and detecting concept drift on it and we describe
how to model stream data and detect the change of intrinsic
characteristics of stream in Sect. 3. In Sect. 4, we evaluate
the effectiveness of our approaches by applying them to a
clustering task on a synthesized data set. Section 5 con-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



LETTER
2289

cludes the paper by presenting our further remarks.

2. The Change of Data Characteristics

The change of intrinsic characteristics in stream data is phe-
nomenon as known as the concept drift that the distribution
of data collected over an extended period is likely to change
over time. For example, many companies collect an in-
creasing amount of data like customer profiles and sales fig-
ures to find out hidden information and patterns in the cus-
tomer’s behavior. The successful models of data should be
adapted according to the customer’s behavior, which tends
to change.

In the previous problems of concept drift, stream data is
represented by a series of batches labeled as −1 and 1 when
arriving over time. The goal is to predict the label of the next
batch with batches which arrived so far. It is assumed that
any subset of the training items from previous batches (1 to
t) can be used to predict the label of a batch t + 1. The han-
dling of concept drift is often regarded just as the problem
of fixed or variable size of time windowed subset on train-
ing data. Fast adaptability with a small window is conflict
with good generalization with a large window. Some other
researches adopt weights according to their age or utility for
the classification task.

Unsupervised learning tasks like clustering of stream
data have been related to extended works with legacy stud-
ies of large scale data and time driven data. Most of them,
however, focus on development of incremental algorithm for
data generated continuously [3], [4]. In practice, the accu-
rate prediction of the changing concept is infeasible, if no
restrictions are imposed on the type of admissible change
because a function randomly jumping between the values
one and zero cannot be predicted by any learner with more
than 50% accuracy [5]. From this point of view, our research
focuses on modeling and detecting the change of concepts
on multi stream data sets for learning tasks.

3. Our Approach on Evolving Stream Data

In this paper, we study a multi-stream data model and the
problem of concept drift detection on it for learning tasks.
We start with defining attribute domain D, which is the set
of distinct values on a given attribute.

Definition 1: Let D = {D1,D2, . . . ,Dk} be a set of
bounded domains and S = D1 × D2 × · · · × Dk an k-
dimensional non-numerical space. We refer to D1, . . . ,Dk

as the attributes of S. An attribute domain, Di, is a set of all
distinct values occurring in the attribute i and is defined as
follows.

Di =
{
di1, di2, . . . , di|Di |

}
. (1)

We consider all values as distinct discrete value to get
a discrete value distribution vector for each attribute†. Now
we define a stream data as follows.

Definition 2: Let a feature vector of each example of a
stream data item be �x = (x1, x2, · · · , xk), which consists of
values as xi ∈ Di. A stream data X is a series of examples
on batches in windows over time.

· · · , �x(1,t), · · · , �x( f (t),t), �x(1,t+1), · · · , �x( f (t+1),t+1), · · · . (2)

�x(i, j) denotes the i-th example of batch j. The size of
batch is decided by an adjustment function f (t). For each
batch j, the data is distributed with respect to Dsj(�x). The
multi-stream data set S consists of a set of N stream items
S = {X1, X2, · · · , XN}. According to a kind of changing of
concept, the example distribution of Dsj(�x) and Dsj+1(�x)
between windowed batches will show some difference.

The task of clustering on S is to find out groups among
N stream items. Unlike other clustering methods on streams
which determine group for a new arriving data, our task is
to decide how to adjust the changed data and reconstruct
groups reflecting the shift of characteristics. The goal of
task is to decide the size of the windowed batch to contain
sufficient information to generalize the distribution of the
example value and detect a significant change of correla-
tion between batches. In practice, multi-stream data are too
large to remember the whole data scanned in the past. This
scarcity of space necessitates the design of method to utilize
information of neighboring batches.

3.1 Window Adaptation Based on Value Statistics

In our stream model, the size of windowed batch is not sta-
tionary and adaptive by an adaptation function. A batch of
example represents a unit of atomic concept. It should be
small enough to get swift adaptability for change and big
enough to guarantee sufficient generality in order to avoid
unnecessary learning process. Now we should answer to the
question of “How many examples should be in a windowed
batch?” We solve the problem of this compromising neces-
sity by using a statistical result of the Hoeffding bound(also
known as additive Chernoff bound) [6].

Consider a random variable v whose range is R. Ac-
cording to Hoeffding bound, the minimum number of ob-
servation n, which assures that their true mean value v̄ is
within ε of v̄ by the probability of 1 − δ, is computed by the
following equation.

Hoeffding bound(n) =
1
2

(R
ε

)2

log

(
2
δ

)
(3)

By example, when the size of an attribute domain is 10,
ε = 3, δ = 0.1, the value of Hoeffding bound(n) is 16.64,
that is, we only need to gather 17 observations to determine
the value of the attribute to within 3 of its true value with the
probability of 90% without the further observation unless
there is a significant change of the nature of the attribute.

In our model, the size of windowed batch is determined
†Real values can be transformed into discrete ones by his-

tograms or transforming tools such as the Discrete Fourier Trans-
form.
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following a window adaptation function based on domain
value (WAV) with parameters ε and δ.

WAV(t) = max {H(D1t),H(D2t), · · · ,H(Dkt)} (4)

H(Dit) is based on Hoeffding bound for i-th attribute
of an example in t-th windowed batch. For each windowed
batch, the information of the attribute domain value of the
first observed example determines the size of batch for the
rest. The attribute domain set is reassessed every windowed
batch and modified for most recent values over time. Our
WAV function is adapted by change of the whole data char-
acteristics not by change of a single example value.

3.2 Detecting the Change by Value Distribution

Now, we detect the change of data characteristics using cor-
relation of data value distributions. If there is the change
between two batches of examples, the value distribution of
one batch does not correlate with that of the other.

Let a series of examples on a windowed batch t be
�x(1,t), · · · , �x(WAV(t),t) with each �x = (x1, x2, · · · , xk) then the
value distribution of the i-th attribute on the batch t is

�ai,t =
(
a(i,t)1, a(i,t)2, · · · , a(i,t)WAV(t)

)
(5)

The value distribution of an example �xp on a windowed
batch t is

Ap,t =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
a(1,t)1 . . . a(1,t)WAV(t)
...

. . .
...

a(k,t)1 · · · a(k,t)WAV(t)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (6)

For detecting the change of characteristics of an exam-
ple �xp, we exploit correlation information between Ap,t and
Ap,t+1. Ap,t+1 correlates with Ap,t in a significant literature
if the characteristics of data remains unchanged and it does
not otherwise. In our research, we use Pearson Correlation
Coefficient to discover relationship between two windowed
batches.

For two vectors v1, v2, the correlation between them is
computed by the following equation.

corr(v1, v2) =

∑
v1v2 −

∑
v1

∑
v2

n√∑
v12 − (

∑
v1)2

n

√∑
v22 − (

∑
v2)2

n

(7)

The criterion to decide effective correlation model is
the distributional statistics of variables. Pearson Correla-
tion Coefficient can discover a type of linear correlation for
normal distribution effectively. To lessen effect of values
following non-normal distribution, however, Rank Correla-
tion Coefficients like Spearman’s and Kendall’s are more
appropriate. Moreover, degree of freedom of multivariate
t-distribution is more effective. The unit variable in our data
model is for the value of a single attribute varying over win-
dowed batches and is assumed to following to univariate
normal distribution.

Our object function for detecting the change of charac-
teristics in value distribution between windowed batches is
defined as follows.

Definition 3: Let the value distributions of two windowed
batches of with respect to an example p be Ap,t and Ap,t+1

respectively. Both matrices are a form of k × m where m =
min(WAV(t),WAV(t + 1)). When the batch size is bigger
than m, the matrix is constructed by abstraction data selected
randomly. The criterion function to detect the change (DC)
between t and t + 1 for the example p is defined as follows.

DC(pt, pt+1) =

⎛⎜⎜⎜⎜⎜⎜⎝
k∑

i=1

1 − corr(v(p,t)i, v(p,t+1)i)

2

⎞⎟⎟⎟⎟⎟⎟⎠ /k . (8)

where v(p,t)i is a row vector of Ap,t as v(p,t)i = [ap,q]p=i,q=1,···,m.

DC function ranges from 1 to 0, the higher value means
the more change there is. The threshold value for judging
whether the characteristics of data have been changed could
be user’s parameter depending on the kind of data set and
tasks. The threshold is about 0.4 in general and this value is
also shown in our experiment.

In our data model, the change of the multi stream data
set S is determined by following.

DC(S t, S t+1) =

⎛⎜⎜⎜⎜⎜⎜⎝
N∑

p=1

λ(p)DC(pt, pt+1)

⎞⎟⎟⎟⎟⎟⎟⎠ /N . (9)

where λ(p) is the weight of each item in data set. The default
value is 1 when every item has equal weight.

On the multi-stream data model, we apply our ap-
proaches to an unsupervised learning framework (ULEVO)
for evolving stream data as shown in Algorithm 1.

Algorithm 1 Procedure of ULEVO
Input:
S is a multi-stream data set
C is a learning task
1. For first example of stream data items S (1,t) = {X(1,t), X(2,t), · · · , X(N,t)},

Decide the size of a windowed batch t by calulate WAV(t).
2. Conduct C on a batch of stream data set S t.
3. For a new example after the batch t,

Decide the size of a windowed batch t + 1 by calulate WAV(t + 1).
4. Calculate DC(S t , S t+1).

If DC(S t , S t+1) > ϕ then Conduct C on a batch of stream data set S t+1.
5. Set t = t+1;
6. Repeat 3 - 6.

In our learning framework, one windowed batch of
stream data is object to learning process and all data of in
each batch are summarized into a single synopsis. For our
example task, clustering, the mean of data values can be
simple and effective representative.

4. Experimental Evaluation

The purposes of our research are to determine the appro-
priate size of windowed batches to reduce load of repeating
an expensive learning task and to detect the change of char-
acteristics for diminishing a defect in reflecting change of
evolving data effectively. We evaluate the soundness of our
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Fig. 2 The result of the clustering with synopsis and the clustering with
each example.

criterion to detect the change and the efficiency of learning
by the synopsis of windowed batches by showing that its
result is within tolerable error comparing with the result of
learning by every single item in stream data sets. For our
experiment, we use a clustering method suggested in [7] as
a learning task, which is based on k-modes with an effective
dissimilarity measure utilizing intrinsic levels of dissimilar-
ity of domain values.

We generated a synthetic multi-stream data set with
a series of 10,000 items of 10-dimensional space U =

D1 × D2 × · · · × D10 in each example. Each attribute of
data items has one of 9 relative values(i.e., |Di| = 9 for 1 ≤
i ≤ 10) and the whole data items in the first example have
been grouped into 3 clusters. In the first arriving exam-
ple, the attributes D1,D2, . . . ,D5 have randomly selected
values which are irrelevant to groups in order to guaran-
tee the effect of relative importance of attributes for clus-
tering task and the other attributes D6,D7, . . . ,D10 have rel-
evant values selected from designated value sets with size
of 3 for each cluster to preserve relationship among the val-
ues depending on groups. In practice, the value of attribute
i (6 ≤ i ≤ 10) is selected in the subset of each attribute
domain: {di1, di2, di3}, {di4, di5, di6}, {di7, di8, di9} for Cluster
A, B, C respectively. In the same context, all items in ev-
ery example varied within error bound ε = |Di|/3. After
the change occurs, the attributes which have relevant val-
ues from the designated value set become are D1,D2, . . . ,D5

and the other attributes D6,D7, . . . ,D10 have irrelevant val-
ues. To show performance of clustering, we use F1 − value,
the harmonic mean of precision and recall.

In Fig. 2, the result of clustering with a synopsis is not
worse than that with each example in a windowed batch,
whose size is 14 determined by WAV. Several trials for
the different batches show the similar results. For a multi-
stream data model, the clustering process should be repeated
whenever a new example arrives to keep information up-to-
date. However, our window adaption function (WAV) deter-
mines the size of sequence which is enough to establish a
sound synopsis as far as the concept of data is not changed
(values of data varies only within the error bound ε). The
data tend to fluctuate dynamically over time and the noise
factor could be generated in the process. Our WAV is based
on value distribution of data set and can decide the effective
size of a batch in the conceptual point of view. Thus the

Fig. 3 DC of stream data in the same concept and in the different con-
cepts.

synopsis of the batch could have an effect on eliminating
this unnecessary noise factor. For continuously generated
data over time, it can be said that the learning by synopsis
of individual data is sufficiently effective because it is not
just proper for efficient process but could result in the better
performance depending the kinds of tasks and data.

Figure 3 compares the criteria values for detecting the
change of concept (DC) between batches with the same con-
cept (within the errorbound ε) with those with the changed
concept in stream data set. In each circumstance, DC values
of the 10000 series of stream data items are shown. When
the change occurs, our DC ranges over 0.4. DC for the
same concept, however, does under 0.4 on average. The
result shows our DC measure is a reasonable criterion of
the change for DC based on Pearson Correlation Coefficient
ranges from 0 to 1 where 0 means that there is deep correla-
tion between observations and 1 means the opposite.

5. Concluding Remarks

In processing stream data, learning tasks should be adapted
to the change of concept to reflect the up-to-date informa-
tion. We present a window adaptation function (WAV) to
determine the appropriate size of windowed batches and a
method to detect the change of data characteristics with a
criterion function (DC). WAV function utilizes the distri-
bution of domain values and can determine the size of win-
dowed batches which is effective to establish a sound synop-
sis representing values in them. When applying to a learn-
ing task, clustering, it showed that the learning by a syn-
opsis with WAV is efficient and effective. The correlation
of data values distribution could be good information to de-
tect the change of them and DC could provide a reasonable
threshold to detect the change between windowed batches
in stream data set.

For our window adaptation function, there are some
user parameters such as an error bound and probability val-
ues. These values play important roles in deciding the ef-
fective size of batches and the further research of theoretical
basis for them is required. Our research focused only on
preprocessing part of the whole learning framework. There-
fore, practical learning methods to utilize our approaches are
needed and we are planning to develop a kind of incremental
clustering algorithm for these.
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