240

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.2 FEBRUARY 2011

| LETTER Special Section on Foundations of Computer Science — Mathematical Foundations and Applications of Algorithms and Computer Science — |

An Optimal Algorithm for Solving the Towers of Hanoi Problem

with the Least Storage Used

Yu-Kumg CHENY, Chen-An FANG', Nonmembers, and Fan-Chiech CHENG 9, Student Member

SUMMARY The Towers of Hanoi problem is a classical problem in
puzzles, games, mathematics, data structures, and algorithms. In this letter,
a least memory used algorithm is proposed by combining the source array
and target array for comparing the sizes of disk and labeling the disks in
the towers of Hanoi problem. As a result, the proposed algorithm reduces
the space needed from 2n +2 to n + 5, where n represents the disks number.
key words: Towers of Hanoi, data structure, algorithm, mathematic, game

1. Introduction

The Towers of Hanoi problem has been an interesting sub-
ject over a century since Lucas [1] presented in 1883. In the
Towers of Hanoi problem, there are three pegs, labeled 1,
2, and 3, and several numbered disks of different sizes, each
with a hole in the center. Initially, all of the disks are on pole
1, with the largest disk on the bottom, then the next largest,
and so on.

Figure 1 (a) shows the initial configuration of the Hanoi
Tower, which is started with three disks numbered from
smallest to largest. The object of the problem is to move
all of the disks from peg 1 to peg 3. Note that peg 2 is used
for temporary storage. The rules of the problem are:

1. Only one disk can be moved at a time.

2. No disk may ever be placed on top of a smaller disk.

3. Other than the prohibition of rule 2, the top disk on any
peg can be moved to either of the other poles.

In 1971, Dijkstra [2] presented a recursive algorithm to
solve the Towers of Hanoi problem. Considering the pegs to
be in a ring and moving clockwise, Buneman [3] proposed
an iterative program to solve the Towers of Hanoi problem
in 1980. In 1981, Atkinson [4] used the circular approach to
solve the Towers of Hanoi problem.

Based on the binary encoding method, Walsh [5] pro-
posed another recursive algorithm to solve the Towers of
Hanoi problem with the assumed » disks. All of these algo-
rithms need 2" — 1 moves of disk. The parallel Towers of
Hanoi problem is formed when the rule 1 is removed from
the Towers of Hanoi problem.

Based on the four types of parallel moves, such as sin-
gle move, exchanged move, consecutive move, and circular

Manuscript received March 27, 2010.
"The authors are with the Department of Electronic Engineer-
ing, Huafan University, Taipei, Taiwan.

"The author is with the Department of Electronic Engineering,
National Taiwan University of Science and Technology, Taipei,
Taiwan.

a) E-mail: d9802108 @mail.ntust.edu.tw

DOI: 10.1587/transinf. E94.D.240

@ (b)

Fig.1 Example of the Towers of Hanoi problem with three disks (a) the
starting position (b) the final position.

move, Wu and Chen [6] propose an algorithm to solve the
parallel Towers of Hanoi problem in 1992. When n is odd,
this algorithm can reduce the times of move to 3x2"~V/2—1,
Otherwise, it needs 2 x 2"/2 — 1 moves.

All of these algorithms take a lot of memory to
complete the Towers of Hanoi problem. For example,
Buneman’s method [3] takes 2n memory space, Atkinson’s
method [4] takes O(2.733") memory space. In 1996, Chedid
and Mogi [7] proposed a simple iterative algorithm that uses
two one-dimensional arrays with size of n and two mem-
ory variables by applying the concept of the binary tree.
On the other hand, 2n + 2 memory is needed to solve the
Towers of Hanoi problem in this algorithm. In this letter,
a least memory used algorithm is proposed by combining
the source array and target array for comparing the sizes of
disk and labeling the disks in the towers of Hanoi problem.
The proposed algorithm deducts the memory required from
2n+2ton+5.

2. Proposed Algorithm

Let i be the times of moving disk in solving the towers of
Hanoi problem and let d be the disk number moved for each
time i. For solving the towers of Hanoi problem with n equal
to 3, the sequent varied values of d are: 1,2, 1,3, 1, 2, 1.

Figure 2 shows a binary tree with n = 3. The sequence
of d moved can be obtained to solve the towers of Hanoi
problem with the inorder traversal of the binary tree. In
1996, Chedid [7] modeled a simple mathematics formula to
derive the sequence. We also use this mathematics formula
to derive the sequence in the proposed algorithm.

A one-dimensional array FromToPeg[O, ..., n — 1] is
used to store the source and target pegs with n elements.
Besides, another one-dimensional array TopDiskNo[O, ...,
2] is used to store the top disk numbers of three pegs with
3 elements in the proposed algorithm. If there is not any
disk on the peg, the top disk number may be marked »n + 1.
Then the proposed algorithm for solving the towers of Hanoi

Copyright © 2011 The Institute of Electronics, Information and Communication Engineers

LETTER

1 1 1 1

Fig.2 Binary tree for deriving the value of d with n = 3.

Procedure Mark_Hanoi
Input: the disk number n
Output: the ways of disks moved
Step 1. Set FromToPegto {1, 1,1, ..., 1}
Step 2. Set TopDiskNo to {n+1, nt+1, n+1}
Step 3. Fori:=1to2"-1do
begin
Step 3.1. Find the largest d (1<d<n) such that i mod 2/~' = 0;
Step 3.2. Display “FromToPeg[d-1]"; /* move disk d from peg FromToPeg[d-1]*/
Step 3.3. Set TopDiskNo[FromToPeg[d-1]-1] := d;
Step 3.4. if nis even then
begin
Step 3.4.1. if TopDiskNo[(FromToPeg[d-1]) mod 3] > d then
begin
Set TopDiskNo[(FromToPeg[d-1]) mod 3] := d;
Set TopDiskNo[FromToPeg[d-1]-1] :=n+1;
Set FromToPeg[d-1] := ((FromToPeg[d-1]) mod 3)+1;
end;
else
begin
Set TopDiskNo[FromToPeg[d-1]+1 mod 3] :=d;
Set TopDiskNo[FromToPeg[d-1]-1] :=n+1;
Set FromToPeg[d-1] := ((FromToPeg[d-1]) mod 3)+1;
end;
Step 3.4.2. Display “-> FromToPeg[d]”; /*move disk d to peg FromToPeg[d]*/
end;
else /* nis odd */
begin
Step 3.4.3. if TopDiskNo[(FromToPeg[d-1]+1) mod 3] > d then
begin
Set TopDiskNo[(FromToPeg[d-1]+1) mod 3] == d;
Set TopDiskNo[FromToPeg[d-1]-1] :=n+1;
Set FromToPeg[d-1] :=((FromToPeg[d-1]+1) mod 3)+1;
end;
else
begin
Set TopDiskNo[(FromToPeg[d-1]) mod 3] := d;
Set TopDiskNo[FromToPeg[d-1]-1] :=n+1;
Set FromToPeg[d-1] := ((FromToPeg[d-1]) mod 3)+1;
end;
Step 3.4.4. Display “-> FromToPeg[d]”; /*move disk d to peg FromToPeg[d-1]*/
end;
end; /* for */

Fig.3 Pseudo-code of the proposed algorithm.

problem is shown on Fig. 3.

We trace the executions in order to describe the correc-
tion by using a parameter n with odd value (3, 5, 7, etc.) or
even value (2, 4, 6, etc.) in the proposed algorithm. When
n is equal to 3, the array FromToPeg[0. . .2] is used to store
the source and target pegs in the proposed algorithm.

All the elements of this array can be expressed as “1, 1,
17 by the initialization of 1. Another array TopDiskNo[0..2]
is used to store the top disk numbers of three pegs. All the
elements of this array can be expressed as “4, 4, 4” by the
initialization of 4. Then the proposed algorithm runs a loop
with 2" — 1 = 7 times. The sequential values of d for each
times i in the loop are 1, 2, 1, 3, 1, 2, and 1. The value of d
can be derived from the formula in step 3.1. If i is equal to
1, the value of d is 1. The element of TopDiskNo[0] is set to
1 in step 3.4. Since n is odd, the odd processing procedure
is executed in step 3.4.3. Since the value of TopDiskNo[2]
is 4 which is greater than d, the element of TopDiskNo[0] is
setto n + 1 = 4 and the element of FromToPeg[0] is set as
3. The new elements of arrays TopDiskNo and FromToPeg

241

Table 1 Disks moved with n = 3.

FromToPeg TopDiskNo | i | d | MOVE
Before After [Before After
LLL L1144 444
i1 BlLiflas 44]]
3t 3Rl R4 42
B2 P21 2] 414
221 22814 41f
P23 23413 [43
123 B3l 14
33 Bl33[42 44]]

N N R WD = O
S T R
1
)

Table 2 Disks moved with n = 4.
FromToPeg TopDiskNo i MOVE
Before After [Before After
LLLL LLLL 555 555]0 |0
e Rt |is,s sis| 1 1] 12
2l 2Bt F1s s 2 2] 13
Pl B3 isile 55| 31| 23
3311 338201 B35, sl 4 [3] 12
B3.21 [3.21053]] [U35]5 |1 31
1321 1Q2.1 137 1256 |2 32
221 P2.2.1 (125 sils| 7 | 1] 12
22211 222p 1,5 5148 4] 13
D223 B223(5[4 559 |1]| 23
3023 323521 Rlsajio|2] 21
Bl123 [l1,23 2,501 [ss|1|1] 31
1,123 1,13 135 157|123 23
M133 [B1,33 153 s 13 |1] 12
2133 2833 @13 51142 13
D333 B3.3.3 (502 55| 15] 1] 23

are 4,4, 1 and 3, 1, 1, respectively.

Table 1 lists the results of arrays FromToPeg and
TopDiskNo, variable d, and disk moved for each times i.
The numbers with blocks of the array FromToPeg in the
columns of “Before” and “After” fields are the moving num-
bers of the source and the target pegs, respectively. From the
numbers with blocks of the array TopDiskNo in the columns
of “Before” and “After” fields, we can see the changes of the
disk numbers on the top of three pegs. In the case of i equal
to 1, the disk 1 is moved from the peg 1 to peg 3.

When n = 4, the processing steps are the same as that
of n = 3 before the step 3.4. All the elements in arrays
FromToPeg[0..3] and TopDiskNo[0..2] are initialized to 1,
1, 1, 1 and 5, 5, 5, respectively. The sequential values of
d for each times i in the loop are 1, 2, 1, 3, 1, 2, 1, 4, 1,
2, 1,3, 1,2, and 1. Since n is even, the even processing
procedure is executed in step 3.4.1. When d is equal to 1,
the element of TopDiskNo[0] is set to n + 1 = 5 and the
element of FromToPeg[0] is set as 2 because the value of
TopDiskNo[1] is 5 which is greater than d. The new ele-
ments of arrays TopDiskNo and FromToPeg are 5, 1, 5 and
2, 1, 1, 1, respectively. Table 2 lists the results of arrays
FromToPeg and TopDiskNo, variable d, and disk moved for

242
S(n),
—[}— Chedid’s method
200+ [—/X— Proposed method
150+
100+
50+
0 1 L L L 1
0 20 40 60 80 100 n

Fig.4 Memory required for the proposed method and Chedid’s method.

each times I with n = 4. The numbers with blocks of the
array FromToPeg in the columns of “Before” and “After”
fields are the moving numbers of the source and the target
pegs, respectively. From the numbers with blocks of the
array TopDiskNo in the columns of “Before” and “After”
fields, we can see the changes of the disk numbers on the
top of three pegs. In the case of i equal to 1, the disk 1 is
moved from the peg 1 to peg 2.

3. Analysis

Let S (n) be the memory required function of n. Since the
method of Chedid [7] uses two one-dimensional arrays with
n elements and two memory variables, its memory required
can be expressed as

Sn) =2n+ 2. (D

Since there are one array with n elements, one array
with three elements, and 2 memory variables used in the
proposed algorithm, the memory needed can be written as

S(y=n+3+2=n+5.)

IEICE TRANS. INF. & SYST., VOL.E94-D, NO.2 FEBRUARY 2011

Consider the coordinate system with the S(n) and n
axes shown in Fig.4. The lines of the memory required
for the proposed method and Chedid’s method are shown
in Fig. 4. From Fig. 4, the memory needed of the proposed
method is always lower than that of the Chedid’s method
when # is greater than 3.

4. Conclusions

In this letter, we present an effective algorithm to reduce the
memory required for solving the towers of Hanoi problem.
Our main future work involves using the same concepts of
the proposed algorithm to reduce the memory needed for
solving the parallel Towers of Hanoi problem. The contri-
bution of the proposed method is using an array with n el-
ements to store the information of pegs moved. Thus, the
memory required can be reduced from 2n +2ton + 5.

References

[1] M. Gardner, Hexaflexagons and Other Mathematical Diversions: The
First Scientific American Book of Puzzles and Games, University Of
Chicago Press, 1988.

[2] E.W. Dijkstra, A. Short Introduction to the Art of Programming, EWD
316, 1971.

[3] P.Buneman and L. Levy, “The towers of hanoi problem,” Inf. Process.
Lett., vol.10, no.4/5, pp.243-244, 1980.

[4] M.D. Atkinson, “The cyclic towers of hanoi,” Inf. Process. Lett.,
vol.13, no.3, pp.118-119, 1981.

[5] T.R. Walsh, “The towers of hanoi revisited: Moving the rings by
counting the moves,” Inf. Process. Lett., vol.15, no.2, pp.64-67, 1982.

[6] J.S. Wu and R.J. Chen, “The towers of hanoi problem with parallel
moves,” Inf. Process. Lett., vol.44, no.5, pp.241-243, 1992.

[7]1 E.B. Chedid and T. Mogi, “A simple iterative algorithm for the tow-
ers of hanoi problem,” IEEE Trans. Educ., vol.39, no.2, pp.274-275,
1996.

