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PAPER

Error Corrective Fusion of Classifier Scores for Spoken Language
Recognition

Omid DEHZANGI†a), Bin MA††b), Eng Siong CHNG†c), Nonmembers, and Haizhou LI†,††,†††d), Member

SUMMARY This paper investigates a new method for fusion of scores
generated by multiple classification sub-systems that help to further reduce
the classification error rate in Spoken Language Recognition (SLR). In
recent studies, a variety of effective classification algorithms have been de-
veloped for SLR. Hence, it has been a common practice in the National
Institute of Standards and Technology (NIST) Language Recognition Eval-
uations (LREs) to fuse the results from several classification sub-systems to
boost the performance of the SLR systems. In this work, we introduce a dis-
criminative performance measure to optimize the performance of the fusion
of 7 language classifiers developed as IIR’s submission to the 2009 NIST
LRE. We present an Error Corrective Fusion (ECF) method in which we
iteratively learn the fusion weights to minimize error rate of the fusion sys-
tem. Experiments conducted on the 2009 NIST LRE corpus demonstrate a
significant improvement compared to individual sub-systems. Comparison
study is also conducted to show the effectiveness of the ECF method.
key words: Spoken Language Recognition, classifier fusion, error correc-
tive training, error minimization

1. Introduction

Spoken Language Recognition (SLR) is a classification
problem to automatically identify the language of a spoken
utterance [1]–[3]. In recent years, SLR has become an es-
sential technology in many applications such as in multi-
lingual spoken dialog systems, spoken language translation,
automatic call routing and spoken document retrieval.

Typical SLR systems consist of two major modules:
front-end feature extraction and back-end classifier. In
current state-of-the-art SLR systems, three types of fea-
tures are widely used. Acoustic features such as Mel-
frequency Cepstral Coefficients (MFCCs), Shifted Delta
Cepstral (SDC) features [4], high-dimensional feature vec-
tor using the Generalized Linear Discriminant Sequence
(GLDS) kernel [5], phonotactic features such as language
model scores of phone n-grams [2], phonotactic statistics
of phone n-grams [3], and prosodic features which refer to
long time acoustic structures such as in [6], [7]. Extracted
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features are fed to classifiers such as Gaussian Mixture
Models (GMM) [8], Support Vector Machines (SVM) [9],
[3], Hidden Markov Models (HMM) [10] to develop various
SLR systems such as Parallel Phone Recognition followed
by n-gram Language Model [2], Parallel Phone Recogni-
tion followed by Vector Space Model [3], phone Recog-
nition with discriminative keyword selection using recur-
sive feature elimination [11], using Latent Factor Analysis
(LFA) [12]/Nuisance Attribute Projection (NAP) [13], using
GMM supervectors followed by SVM [14], etc.

As a wide variety of effective systems have been de-
veloped in SLR, it has been a common practice to ap-
ply fusion systems in recent National Institute of Standards
and Technology (NIST) Language Recognition Evaluations
(LREs) [15]. In such systems, the results from individ-
ual classifiers utilizing different features and classifiers are
fused to generate the final recognition results. The basic
idea of fusion is to combine multiple decisions generated by
different experts in an attempt to improve the performance
of the overall system. The key issue to design a suitable
and effective fusion scheme is to appropriately exploit all
the available discriminative cues to generate an enhanced
recognition result. Recently, successful SLR systems using
fusion techniques have been introduced [16]–[18].

Information fusion can be carried out at three levels
of abstraction closely connected with the flow of the clas-
sification process: data level fusion, feature level fusion,
and classifier fusion [19]. This paper focuses on the study
of the classifier fusion. The fusion of multiple classifiers
operates as a mixture of experts to make collective deci-
sions by exploiting information from each individual clas-
sifier. Figure 1 shows a block diagram of such a system.
The input feature vectors to each different classifier are gen-
erated by different speech front-ends. If the classifier out-
puts offer complementary information, classifier fusion can
improve the performance. A number of fusion techniques
with considerable improvements over a single system have
been proposed in speaker and spoken language recognition
based on linear score weighting [20], GMM [18], SVM [21],
ANN [22], etc. in which the optimized weighting coeffi-
cients are applied to the scores produced by individual clas-
sifiers.

In SLR, Detection Error Tradeoff (DET) curve is com-
monly employed to report the performance of SLR sys-
tems [23]. In this paper, we aim to improve the DET curve of
the classifier fusion system by adjusting the fusion weights.
An operating point on the DET curve is determined by a
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Fig. 1 Block diagram for a classifier fusion system.

decision threshold. The performance of such an operating
point (e.g. false acceptance and false rejection error rates as
well as a desired tradeoff between the two error types) is
measured by the detection cost function [24]. The best oper-
ating point on a DET curve is the one that yields the lowest
cost. We present an alternative fusion method for SLR in
which an Error Corrective Fusion (ECF) algorithm is pro-
posed to iteratively learn the weights assigned to the output
scores of the classifiers so that the error rate of the classifier
fusion is minimized. The proposed iterative algorithm learns
the score weights one by one by finding the best operating
point of each sub-system (classifier) for each specific target
language (class). At each step assuming that the weights of
all other scores are given and fixed, the resulting weight is
optimal in the sense that it minimizes the detection error rate
of the classifier fusion on the training data.

We will compare the proposed ECF method to the Fo-
Cal system [20], [25] which is currently the most popular
method for fusion and calibration of detection scores for
speaker and spoken language recognition. FoCal estimates
the weighting coefficients of the output scores using a conju-
gate gradient descent algorithm to minimize a linear logistic
regression function. On the other hand, ECF directly relates
the performance of the system to the fusion parameters and
determines the weights one at a time iteratively by solving a
2-class, one-dimensional problem to minimize the errors of
the classifier fusion. FoCal employs a linear learning mech-
anism to optimize the objective function, while ECF makes
use of a non-linear learning algorithm to correct the errors of
the classifier fusion. We expect that the ECF learning mech-
anism leads to improve the performance of the SLR system
by taking into account the inter-language discriminative in-
formation in the non-linear subspaces at the score level.

The organization of this paper is as follows. In Sect. 2,
we introduce the spoken language recognition task and the
employed sub-systems. In Sect. 3, the ECF framework
is presented and the process of learning the fusion score
weights is described. In Sect. 4, some other fusion strategies
are introduced for comparison. In Sect. 5, the experimental
results are presented. Finally, Sect. 6 concludes the paper.

2. Spoken Language Recognition

SLR technology has advanced tremendously in recent years,
as evidenced by the results in the NIST LREs [15]. In this

paper, we study the language recognition problem as formu-
lated in the NIST evaluation campaign, in which, given a
segment of speech and a language hypothesis, the task is to
automatically decide whether the hypothesis correctly iden-
tifies the language spoken in the speech segment.

2.1 Task and Corpus

In the 2009 NIST LRE evaluation [24], 23 target languages
and 16 non-target languages were involved in the 41793 test
segments. Each test segment has a duration of either 30, 10,
or 3 seconds. The test data are from either conversational
telephone speech or Voice of America radio broadcasts.

We examine the IIR (Institute for Infocomm Research,
Singapore) submission as the case study for the proposed
classifier fusion strategy, and report the system performance
using the Equal Error Rate (EER) measure, at which the sys-
tem performs with the equal false acceptance rate and false
rejection rate. In this study, the results are reported based on
the core task where each of the test segments belongs to one
of the 23 target languages.

2.2 Description of the Sub-Systems

A spoken language can be recognized using discriminative
cues obtained from multiple sources. It is generally agreed
upon that the integration of different discriminative cues can
improve the performance of language recognition [16]–[18].
In the IIR’s submission to the 2009 NIST LRE [26], 7 lan-
guage classifiers were developed for the language recogni-
tion, as follows:

1. Bhatt-SVM is an implementation of the GMM-SVM
language classifier derived based on the Bhattacharyya
distance between GMMs [27].

2. Extended Bhatt-SVM coupled with model pushing
is an extension of the Bhatt-SVM to include the co-
variance matrices as part of the supervector [28] and a
pushback strategy [29].

3. GLDS-SVM extracts the feature vectors from an ut-
terance that is expanded to a higher dimensional space
using the Generalized Linear Discriminant Sequence
(GLDS) kernel to form the final input to SVM classi-
fiers [5].

4. LM-GMM coupled with joint factor analysis trains
the target language GMMs with the large margin esti-
mation where the multi-class separation margin is de-
fined as the likelihood distance between true language
model and the closest false language model [30]. The
eigenchannels, which are trained with the joint fac-
tor analysis (JFA) approach [31], transform the feature
vectors to be channel-independent.

5. PW-SVM uses the posterior weights [32] of a GMM to
represent the input feature conveyed by a speech utter-
ance, instead of using the mean vectors to represent the
speech utterances as in Bhatt-SVM.

6. PPRVSM is a system with six parallel phone recogniz-
ers developed in IIR as the front-end and using a vector
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space modeling method to model phonotactic informa-
tion [33].

7. PPRVSM-TALM is another PPRVSM system and is
different only in the frontend phone recognizers used.
Three phone tokenizers are derived from Hungarian
phone recognizer using Target-Aware Language Mod-
els (TALM) [34].

The above classifiers make use of either phonotac-
tic features which are extracted to represent phonetic con-
straints in a language, or acoustic features which represent
the spectral properties of speech spectrum to produce out-
put scores. The details of the individual classifiers are not
the focus in this paper; therefore, sub-system 1 to 7 will be
used instead of the names of the classifiers hereafter.

3. The Error Corrective Fusion (ECF) System

Given an SLR problem with M target languages involved
and Q individual language classifiers for the language recog-
nition task trained using the labeled speech segments. The
i-th classifier maps the speech segment x to a score vector
S i(x) = {S i, j(x)| j = 1, 2, . . . ,M}, in which each element
is the relative log-likelihood associated with one of the tar-
get languages. Figure 2 shows the structure of the classifier
fusion. The fusion output score for the target language j,
S core j(x), is the linear weighted sum of all the output scores
of the sub-systems,

S core j(x) =

⎧⎪⎪⎨⎪⎪⎩
Q∑

i=1

wi, j.S i, j (x)

⎫⎪⎪⎬⎪⎪⎭ , j = 1, 2, . . . ,M (1)

where S i, j (x) is the log-likelihood score of the test seg-
ment x associated with the classifier i and target language
j, and wi, j is the weight corresponding to S i, j (x). However
unlike conventional linear score weighting techniques, the
ECF weighting coefficients are language-dependant (e.g.,
the weighting coefficients vary for different languages and
sub-systems) to employ inter-language discriminative infor-
mation. In this way, it may reflect how one sub-system
contributes to each particular language. There are a total
of Q × M weighting coefficients to be learnt for this LRE
task. A normalization process is also applied on the scores
among M target languages. In the following section, we de-
scribe the proposed ECF approach for learning the fusion

Fig. 2 Architecture of the ECF score fusion system.

weights by a discriminative performance measure.

3.1 The Discriminative Performance Measure

In this section, we propose a discriminative measure min-
imizing errors of a 2-class problem (separating the target
language from its competing languages) to reduce the total
EER. Figure 3 shows the confusion matrix for a 2-class clas-
sification problem (with positive ‘pos’ and negative ‘neg’
class labels), given a set of P positive and N negative la-
beled speech segments. The four different categories of de-
cision results in Fig. 3 are as follows: TP (True Positives)
indicating samples correctly labeled as positive; FP (False
Positives) indicating negative samples incorrectly labeled as
positive; TN (True Negatives) indicating samples correctly
labeled as negatives; and FN (False Negatives) as the pos-
itive samples incorrectly labeled as negatives. The perfor-
mance of a classifier can be extracted from the confusion
matrix by defining a performance measure. For instance,
the error rate of the classifier is defined as:

error rate =
FP + FN

T P + FP + T N + FN
(2)

Generally, a statistical classifier generates likelihood of
positive class, p(x|′pos′), and negative class, p(x|′neg′), for
an input speech segment x denoting the estimated proba-
bilities that x belongs to positive and negative classes, re-
spectively. We can define a measure called negativity(x) as
follows:

negativity(x) =
p(x|′neg′)
p(x|′pos′)

(3)

The measure negativity(x) demonstrates the degree to
which x is believed to be of the negative class. The speech
segment x is classified as negative if its negativity(x) is
greater than a specified threshold and positive otherwise.
Since the likelihoods provided by the classifiers are not
perfect due to deficient parameterization of the observa-
tions and insufficient data, the desired threshold needs to be
learnt by optimizing a discriminative performance measure
on available data. For instance, the error rate in Eq. (2) cor-
responding to each specified threshold can be calculated and
minimized.

We assume that a training set {xt |t = 1, 2, . . . , n} con-
sisting of n labeled speech segments from M different lan-
guages is available. Using the training data, one is able

Fig. 3 Confusion matrix for 2-class problems.
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to find the threshold to make the best decision for a clas-
sifier by varying the threshold from 0 to ∞. An efficient
algorithm for calculating the best threshold in such a way
has been proposed in [35] where the input speech segments
are ranked in an ascending order of their negativity(.) mea-
sure negativity(x1), . . . , negativity(xP+N). Considering any
threshold between negativity(xt) and negativity(xt+1), the
first K segments will be classified as positive and the remain-
ing P+N-K segments as negative. In this way, maximum of
P+N+1 different thresholds need to be examined to find the
best threshold. The first threshold classifies everything as
negative and the last threshold classifies everything as posi-
tive. The rest of the thresholds are chosen in the middle of
two successive measures. The threshold, min thresh, on the
negativity(.) measure is found such that it minimizes the er-
ror rate of the classifier, Eq. (2). The speech segment xt is
classified as positive if negativity(xt) < min thresh. That is,
xt is classified as ′pos′ if,

p(x|′neg′)
p(x|′pos′)

< min thresh→
p(x|′neg′) < min thresh × p(x|′pos′)

(4)

In this way, min thresh can be used as the weight of
the positive class, ′pos′.

3.2 Learning the Fusion Weights

Figure 4 shows the process of learning the fusion weights.
As can be seen, the ECF learning algorithm uses feedbacks
from final fusion scores to tune the fusion weights. The dis-
criminative measure to find the best operating point in 2-
class problems introduced in Sect. 3.1 will be used as an
ingredient in the ECF learning algorithm to learn the fu-
sion weights of the general M-class problem. The language
recognition results are reported as the weighted average over
multiple language detector sub-systems. The score distribu-
tion of each sub-system may be different due to employing
different classifiers and speech front-ends. This makes the
scores less comparable across different sub-systems. Hence,
the score normalization is a necessary step leading to con-
sistency over scores. In this way, the S coreϕ(x) from Eq. (1)
is converted to log-likelihood ratio (LLR) Ŝ coreϕ(x) as fol-
lows,

Fig. 4 The training paradigm for learning the fusion weights.

Ŝ coreϕ (x)=S coreϕ (x)−log

〈
1

M−1

M∑
j=1, j�ϕ

exp
(
S core j (x)

)〉

(5)

The above conversion is considered as the score nor-
malization step as presented in [8]. The speech segment x is
classified as the target language ϕ if,

Ŝ coreϕ (x) > θϕ (6)

where θϕ is the decision threshold for the target language
ϕ to be learnt on a development data set. The weight wi,ϕ

corresponding to the classifier output score S i,ϕ(x) can be
considered as the degree to which S i,ϕ(x) contributes in the
classification decision. From (6), we can directly relate the
fusion weight wi,ϕ to the final classification decision as fol-
lows,

wi,ϕ >

θϕ + log
〈

1
M−1
∑M

j=1, j�ϕ exp
(
−S core j (x)

)〉
−∑Q

k=1,k�i wk,ϕ.S k,ϕ (x)

S i,ϕ (x)

(7)

That is, wi,ϕ has to be greater than the right side of the in-
equality so that the input segment x is classified as the target
language ϕ.

In the following, we present an algorithm that attempts
to minimize the classification error rate of the classifier fu-
sion by adjusting the fusion weights in the interval [0,∞)
using the training speech segments. The weights assigned
to each output score S i, j(.) is set to one (i.e. wi, j ← 1 for
i = 1, . . . ,Q, and j = 1, . . . ,M) as an initial solution to
the problem. Then, the error rate of the classifier fusion is
successively reduced by finding a better solution than the
current one by learning the best fusion weights (resulting
in minimum classification error rate) one at a time. In the
following, we present a procedure that determines the opti-
mal weight of a classifier score assuming that the weights of
all others are given and fixed (i.e. locally optimum weight).
Note that, by optimizing a single fusion weight, a better so-
lution to the problem is presented. To find the weight wi,ϕ

corresponding to output score of clssifier i for target lan-
guage ϕ, the problem is considered as a 2-class problem
where class ϕ is the positive class and class ϕ̄ is the neg-
ative one. The steps are as follows:

1. The wi,ϕ is set to zero (i.e. S i,ϕ(.) does not contribute in
classification decision).

2. The speech segments belonging to language ϕ that are
classified correctly (TP) with current values of the clas-
sifier score weights are removed from the training set.
Note that contribution of wi,ϕ can only help classify
them correctly (wi,ϕ ∈ [0,∞)). We considered wi,ϕ = 0
while generating the confusion matrix. Therefore, TP
segments are classified correctly with no help from wi,ϕ.
Including them in estimating wi,ϕ not only is unneces-
sary but may even lead the learning algorithm to a sub-
optimal solution.
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3. The speech segments of ϕ̄ that are misclassified (FP)
are removed from the training set. Note that these pat-
terns will be misclassified regardless of the value of wi,ϕ

and contribution of wi,ϕ can only make it worse. Hence,
they are not included in estimating wi,ϕ.

4. The m speech segments left in the training set {xt |t =
1, . . . ,m} (i.e. TN and FN) are essential in estimation
of wi,ϕ. We need to estimate wi,ϕ so that error rate is
minimized over {xt |t = 1, . . . ,m}. From Eq. (7), the
measure negativityi,ϕ(.) is calculated for every segment
in {xt |t = 1, . . . ,m} as follows:

negativityi,ϕ (xt) =[
θϕ+log

〈
1

M−1
∑M

j=1, j�ϕ exp
(
−S core j (x)

)〉
−∑Q

k=1,k�i wk,ϕ.S k,ϕ (x)
]

S i,ϕ (x)

(8)

where, negativityi,ϕ (xt) is the amount of wi,ϕ necessary
for xt to be classified as the target language ϕ.

5. The training segments are ranked in an ascending order
of their negativityi,ϕ(.) measure. A threshold is defined
and initialized by zero. Then, assuming that xt and xt+1

are two successive segments in the list, a threshold is
computed as,

thresh = [negativityi,ϕ(xt) + negativityi,ϕ(xt+1)]/2 (9)

We then move the threshold from the lowest score to
the highest. For each of the thresholds, we measure the
associated error rate of the classifier fusion. The value
of the min thresh (i.e. leading to the minimum error
rate) is used as the optimal score weight wi,ϕ assuming
that all other score weights are fixed.

The pseudocode shown in Fig. 5 summarizes the pro-
cess of learning the fusion weight wi,ϕ. The algorithm re-
ceives a set of training speech segments {xt |t = 1, . . . , n} and
results min thresh as the new value for wi,ϕ.

The search for the locally optimum combination of
weights is conducted by optimizing the score weights one at
a time and learning stops if no improvement to the current
performance can be made. Note that the algorithm is depen-
dant to the order of the score weights optimized during the
training process. To avoid the error rate of the classifier fu-
sion to be skewed, the order of weight optimization is fixed
in the way that every consecutive fusion weights to be esti-
mated are corresponding to different target languages. The
ECF method determines the output score weights of the sub-
systems attempting to better discriminate between the seg-
ments of language ϕ and those of the rest by finding the best
operating point of the classifier fusion (including as many
FN segments and as few TN segments as possible). By do-
ing so, we locally optimize the tradeoff between false ac-
ceptance and false rejection error rates. In our experiments,
we show that error rate on the training data never increases
during the optimization of the fusion weights by the ECF
learning mechanism and will converge to a local minimum.

Fig. 5 The algorithm to learn the fusion weight wi,ϕ.

4. Comparable Fusion Strategies

In this section, we describe some other fusion methods for
comparison. For an input speech segment x, fusion score
of each target language j is a linear combination of the
scores {S i, j(x)|i = 1, . . . ,Q} each of which is the relative log-
likelihood associated with the target language j. Compara-
tive methods in this paper range from simple non-trainable
combiners to methods that require sophisticated training
procedures.

• Max Rule results in the maximal predicted probability
of success.

S coremax
j (x) = maxQ

i=1S i, j (x) (10)

• Min Rule yields the minimal predicted probability of
success.

S coremin
j (x) = minQ

i=1S i, j (x) (11)

• Simple Sum whereby the output scores of every indi-
vidual classifier are summed up and the label that re-
ceives the highest score is the output of the fusion sys-
tem.

S coresum
j (x) =

Q∑
i=1

S i, j (x) (12)

• Local Accuracy-based Weighting (LAW) is origi-
nally proposed in [36] in which the local accuracy of
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each individual sub-system is estimated given the in-
put features using K-Nearest Neighbor (KNN) classi-
fier. The final output is solely given by the most reli-
able classifier of the fusion system. A modified version
of LAW was also presented [37] in which the output
is a weighted mean of reliability estimate of each sub-
system which is the fraction of correctly classified sam-
ples in the local region surrounding the test segment
reported by KNN classifier. The output of the fusion
system is then defined as,

S coreLAW
j (x) =

∑Q
i=1 λi.S i, j (x)∑Q

i=1 λi

(13)

where λi is the reliability estimate of the sub-system i.
• Support Vector Machine (SVM) has shown to be

effective in separating input vectors in 2-class prob-
lems [38], in which SVM effectively projects the vector
x into a scalar value f (x),

f (x) =
N∑

i=1

αiyi (xi.x) + d (14)

where the vectors xi are support vectors, yi = {−1, 1}
are the correct outputs, N is the number of support vec-
tors, (.) is the dot product function, αi are adjustable
weights and d is a bias. Learning is posed as an op-
timization problem with the goal of maximizing the
margin (i.e., the distance between the separating hy-
perplane and the nearest training vectors). As a com-
biner method, we concatenate the output scores of all
the sub-systems to form the input super vector to SVM.
Then, we assign one SVM for each of the M languages
(e.g. One-Vs-Rest scheme) and train accordingly to get
the final output scores,

S coreSVM
j (x) =

N∑
i=1

αiyi
(
sup (xi) .sup (x)

)
+ d (15)

where sup(x) is the super vector resulted by concate-
nating the output scores of all the sub-systems for input
segment x.

• FoCal is an approach for fusion and calibration of de-
tection scores which has been successfully used for
speaker and spoken language recognition [20], [25].
For each segment x, scores of the sub-system i that
are assumed to be the relative log-likelihood associ-
ated with the target languages form a score vector
S i(x) = {S i, j(x)| j = 1, . . . ,M}. The calibration scheme
aims to transform detection scores to LLRs. A calibra-
tion transformation function is then defined as follows:

S coreFoCal
j (x) = F (S i (x) , θ) = αS i (x) + β (16)

where α is a scalar, β is an M-dimensional vector and
θ = (α, β) constitute a set of transformation parameters,
which are estimated by using a conjugate gradient de-
scent algorithm to minimize a linear logistic regression
function [18].

5. Experimental Results

We conducted the experiments on the 2009 NIST LRE eval-
uation data [24] including three tasks for the 30-, 10- and
3-second evaluation data sets. For each task, we have the
training set, development set, and evaluation set. The train-
ing and the development sets which were extracted from the
speech corpus provided by NIST, are used for training and
parameter tuning of the system, and the evaluation set which
is the test set of the 2009 NIST LRE, is only used to eval-
uate the performance of the system. The subsequent results
are all based on the evaluation set which is not seen during
training. We have used IIR’s 7 language classifiers submis-
sion to the 2009 NIST LRE introduced in Sect. 2. There are
M = 23 target languages in the LRE task. The output classi-
fier scores are first scaled into the interval [0,1] to eliminate
negative scores. In the following sections, we assess differ-
ent aspects of the ECF learning process.

5.1 Investigating the Learning Process and Convergence
of the ECF Method

In our first experiment, we investigated the convergence of
the ECF learning mechanism during the training phase. We
employed the ECF method to learn the fusion weights on the
training set of 30-second speech segments and recorded the
EER on the same data as the training progressed (close-test).
Figure 6 (a) depicts the EER of the fusion system during
the learning process for 4 training iterations. One training
iteration denotes having all the Q × M fusion weights ad-
justed by the learning mechanism for one round. We chose
4 training iterations because it led to the best performance
of the classifier fusion on the development set. Figure 6 (a)
shows that the error rate decreases as we estimated the fu-
sion weights one after another within each iteration. It can
also be observed that the error curve is non-increasing as the
learning continues and that the error curve becomes almost
flat and converges after several training iterations. We also
investigated the DET curve of the classifier fusion on the 30-
second training set. Figure 6 (b) illustrates the DET curves
of the classifier fusion by 4 iterations of the ECF method
compared to the individual classifiers. It can be seen that
the DET curves improves after each iteration of the ECF
weight adjustments.

In another investigation, we verify the robustness of
the ECF method to different initial weight values. In this
section, we randomly initialize the fusion weights and then
train the ECF system using the set of 10-second training
speech segments for 4 iterations (chosen by experiment on
the development set). We repeat the random initialization
and training process for 30 times and draw the correspond-
ing DET curves. Figure 7 shows the resulted DET curves
of the trained ECF system with 30 different initial weight
values. As illustrated in Fig. 7, there is no significant dif-
ference between the resulting DET curves which shows that
the learning mechanism is not sensitive to the weight initial-
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Fig. 6 (a) EER of the classifier fusion on the 30-second training data set
during the ECF training process. (b) DET curve of the classifier fusion after
each iteration of the ECF method. A training iteration denotes having all
the fusion weights adjusted by the learning mechanism for one round.

ization.

5.2 The ECF Method Compared to the Individual Sub-
Systems

In this section, we investigated the performance of the ECF
method for score fusion compared to the individual sub-
systems. Table 1 summarizes the averaged EERs achieved
by the individual sub-systems and the ECF method for the
case of training the ECF method on the 3-, 10-, and 30-
second training sets and testing on the respective evaluation
sets (open-test) for 4 iterations. The results in Table 1 sug-
gest that the ECF method was successful to reduce the av-
eraged EER of the fusion system significantly compared to
the best individual sub-system in all three tasks. Table 1 also
reports that in most of the cases, after each iteration of ECF
training, the classifier fusion shows an improved results on

Fig. 7 DET curves corresponding to the trained ECF system with 30 dif-
ferent initial weight values.

Table 1 Average EER of 7 individual sub-systems and the ECF method.

the evaluation set.

5.3 The ECF Method vs. the Comparative Fusion Systems

There are a variety of methods to fuse multiple classifiers. In
this section, we compare the ECF method with some other
fusion methods described in Sect. 4. Table 2 reports the re-
sults achieved by the ECF method with 6 other comparative
fusion methods. The results in Table 2 suggest that trainable
methods (LAW, SVM, FoCal, and ECF) produce substan-
tial improvements to the best individual sub-system unlike
the non-trainable strategies (Max rule, MIN rule, and Sim-
ple Sum) that do not seem to be helpful. As it is reported
in Table 2, the ECF method provides the best averaged EER
results among the comparative fusion strategies. It also out-
performs the FoCal system moderately and the improvement
is consistent over all the three tasks.

From Table 2, we can see that FoCal technique also of-
fers a competitive result. It would be interesting to examine
the difference between FoCal and ECF. We note that FoCal
employs a linear learning mechanism to parameterize and
optimize the objective function, while ECF method directly
relates the recognition error through a non-linear learning
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Table 2 Comparison of the averaged EER via ECF method with some
other fusion techniques.

Table 3 SLR results of FoCal vs. ECF fusion with varying number of
sub-systems.

algorithm. This suggests that ECF allows for more flexible
fitting when fusing multiple classifiers, each of which has
its own dynamics. It is observed that ECF indeed leads to a
better performance.

5.4 The ECF Method vs. FoCal with Varying Mixture of
Sub-Systems

In this experiment, the ECF method and the FoCal system
are both applied on varying number of sub-systems in the
fusion. Table 3 illustrates the results achieved using only
a subset of subsystems in the fusion. Q is the number of
sub-systems contributed in the fusion (e.g. using only Q out
of the 7 subsystems) and the numbers in the parentheses are
the id number of the sub-systems with the best performance.
The results show that as the number of sub-systems increase,
the EER decreases or remains the same which is consistent
with the information theory. However, the results show that
the fusion of 4 sub-systems exploits most of the discrimi-
native cues that the combination of all the sub-systems was
capable of providing. Further increasing the number of sub-
systems in the fusion will only lead to minor improvement
to the final results. This observation indicates that the infor-
mation provided by different sub-systems is not entirely un-
correlated. Therefore by choosing the right mixture of sub-
systems in the fusion system, number of parameters of the
fusion system required to achieve the optimal performance
can be reduced. Table 3 also demonstrates that the ECF sys-

tem consistently outperforms the Focal system over varying
number of sub-systems in the fusion and different tasks.

6. Discussion

It has been a common practice to apply fusion methods
utilizing different features and classifiers to generate the
improved results in speaker and spoken language recogni-
tion. A variety of fusion techniques have been proposed
in which the optimized weighting coefficients are applied
to the scores produced by individual classifiers. As an ex-
ample, FoCal system [20], [25] is currently the most popu-
lar method for fusion and calibration of detection scores in
LRE.

In this paper, we proposed a novel error corrective fu-
sion (ECF) system as an alternative fusion method for SLR
in which an iterative learning algorithm was introduced to
estimate the classifier fusion weights. We aimed to improve
the ROC curve corresponding to the classifier fusion by tun-
ing the fusion weights. ECF directly relates the performance
of the system to the fusion parameters and determine the
weights one at a time iteratively by solving a 2-class, one-
dimensional problem to minimize the errors of the classifier
fusion. We expected that with the non-linearity and error
correcting capabilities of the ECF learning algorithm, fur-
ther discriminative information in the non-linear subspaces
at the score level is employed to correct the errors of the
classifier fusion during the learning process.

To validate the effectiveness of the ECF method, we
used multiple output scores generated from 7 language clas-
sifiers in the IIR’s submission to the 2009 NIST LRE eval-
uation. The experiments were conducted on the 2009 NIST
LRE 30-, 10-, and 3-sec evaluation sets. We also compared
the ECF method to several other fusion methods. The exper-
imental results demonstrated the effectiveness of the ECF
system to improve the performance of the best individual
sub-system. The results also showed that the ECF system
outperforms the comparable methods such as the FoCal sys-
tem. Finally, we showed that by incorporating sub-systems
with complementary information in the fusion system, the
number of parameters of the fusion system to achieve the
optimal performance can be reduced.
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