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Sequential Action Selection
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SUMMARY Model-based reinforcement learning uses the gathered in-
formation, during each experience, more efficiently than model-free rein-
forcement learning. This is especially interesting in multiagent systems,
since a large number of experiences are necessary to achieve a good per-
formance. In this paper, model-based reinforcement learning is developed
for a group of self-interested agents with sequential action selection based
on traditional prioritized sweeping. Every single situation of decision mak-
ing in this learning process, called extensive Markov game, is modeled as
n-person general-sum extensive form game with perfect information. A
modified version of backward induction is proposed for action selection,
which adjusts the tradeoff between selecting subgame perfect equilibrium
points, as the optimal joint actions, and learning new joint actions. The al-
gorithm is proved to be convergent and discussed based on the new results
on the convergence of the traditional prioritized sweeping.
key words: multiagent systems, Markov games, model-based reinforce-
ment learning, extensive form game

1. Introduction

Various algorithms have been extended from single agent
learning to multiagent learning such as evolutionary learn-
ing [1], coevolutionary learning [2], [3], and the combi-
nation of game theory and reinforcement learning (RL),
among which the last one seems to be the most promising
solution [4]. RL does not need an explicit model of the en-
vironment [5], which is a key benefit in most of the real-life
applications.

Initially, single agent reinforcement learning (SRL),
[6], was used in multiagent systems without much modifica-
tion. Such approaches treated other agents in the system as a
part of the environment, ignoring the differences between an
active agent and the passive environment [7]. These meth-
ods failed to converge in some difficult coordination prob-
lems. It was experimentally shown that cooperative learn-
ing through sharing sensation, episodes and learned policies
outperforms the independent learning [8].

Contribution of game theory to multiagent reinforce-
ment learning (MRL) was first implied in MinMax-Q [9].
The algorithm can be used for two successive fully competi-
tive agents. Because of the simplicity, MRL was later devel-
oped for agents with simultaneous action selection. Nash-Q
was proposed for general-sum Markov games, where agents
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decide on their actions to reach the presumed unique Nash
equilibrium point (NEP) of the current game [10]. It was
proved that the algorithm gradually converges to the opti-
mal policy. Unfortunately, its applicability is restricted due
to some drawbacks [11], especially with a large number of
agents. Littman proposed another method in which some of
the presumed limitations in Nash-Q were relaxed by adding
some additional (a priori) information about the roles of the
agents in the system [12]. Some other modifications were
also suggested, which can be reviewed in survey papers [4],
[13]–[15].

In some real-life applications, simultaneous decision
making needs a number of cumbersome constraints, espe-
cially on equal resources, authorities, requirements, and so
on. As it was mentioned, sequential action selection was
primarily introduced in MinMax-Q, which was later partly
modified in Asymmetric-Q [16]. The process of learning in
asymmetric-Q was divided into a sequence of 2-person per-
fect information zero-sum extensive form games, referred
to as Stackelberg’s duopoly games. In single state repeated
games, more general forms of extensive form games were
investigated. In [34], value of each action was an index
equal to its past average payoff. Proportional to them, ac-
tions are selected randomly. Thus, the values converged to-
ward the subgame perfect equilibrium values. More pre-
cisely, the sub-sequences of index-maximizing actions con-
verge toward the actual subgame perfect equilibrium, but
random actions continue to be played with a fixed posi-
tive probability. The results are only applicable to single
state repeated games with strictly positive payoffs. Two
MRL algorithms for complete information repeated exten-
sive form games with unique subgame perfect equilibrium
were proposed in [38]. Their first algorithm, “Multiagent
Q-Learning”, was somewhat related to the one in [34].
The second of their algorithms, “Multiagent Learning Au-
tomata”, used the reward obtained at the end of a game
episode to reinforce the strategy (by properly updating its
probability of being chosen) followed at a node of the game-
action pairs instead of reinforcing the values of node. Both
of these algorithms are proved to converge to the subgame
perfect equilibrium of the game. A more sophisticated rule
was considered in [37]: the valuation rule associates to each
action a stochastic index equal either to its past payoffs (with
a probability proportional to their frequency) or to some ran-
dom values (with a probability decreasing with the num-
ber of occurrences of that action); the decision rule states

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



256
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

that agent chooses the maximizing action. Here, the pro-
cess converges (for even a larger class of rules containing
the preceding one) toward the subgame perfect equilibrium
actions, but not toward the equilibrium values, even if they
are recovered by taking the expected value of the random
variable. Another similar work was done in [35]. Based
on their premier work on normal form games [36], they pro-
posed “cumulative proportional reinforcement” which was
to randomly chose actions proportional to a kind of rein-
forcement signal. Their proposed method was only appli-
cable to single state repeated game with positive payoffs.
In their methods, neither delayed reward nor nonstationarity
in learning was addressed. In other words, their proposed
method cannot be used in dynamic tasks.

Previously, we introduced model-free reinforcement
learning for extensive Markov games (EMG). EMG is a
sequence of n-person general-sum extensive form games
with perfect information [17]. The algorithm presents a sen-
sible convergence property regarding the fact that exten-
sive form games with perfect information have pure strat-
egy Nash equilibrium points [18]. Even though the algo-
rithm gradually convergence to the optimal policy without
complex computations, it inefficiently uses the gathered in-
formation and needs a great deal of experiences to achieve
a good performance. This is the same drawback as in
traditional SRL, which was comprehensively addressed in
model-based RL (MBRL). MBRL is also interesting in ap-
plications, where computations are considered to be cheap
while real world experiences are costly [6]. Simultaneous
planning and learning is the key feature in MBRL. Plan-
ning refers to the implementation of estimated models of the
environment to compute state-value functions and thereby
optimizing or improving policies. Actually, it makes more
than a single update per experience. Henceforth, informa-
tion is used more efficiently than the traditional SRL [19].
After each real-world experience

〈
sk, ak, sk+1, r

(
sk, ak

)〉
, Q-

functions as well as the transition function and the reward
function are updated. Dynamic programming could be im-
mediately applied for the estimated environment, but online
dynamic programming, which updates the complete value
function with value iteration after each experience, tends
to be computationally very expensive. To speed up the al-
gorithm, Dyna-Q only simulates k samples randomly and
learns for them [19]. Although Dyna-Q offers a great im-
provement on traditional model-free Q-learning, it suffers
from being relatively undirected, since it selects its simu-
lated observations randomly. Particularly, it is of no use
when the goal is reached or when the agent is stuck in a
dead end. It continues to update random state-action pairs,
rather than concentrating on “interesting” parts of the state
space. The term “interesting” was dealt with in prioritized
sweeping (PS) [20] and Queue-Dyna [21], which are two in-
dependently developed similar techniques. Some other vari-
ants of PS were also introduced such as generalized PS [25]
and general prioritized solver [26].

Application of MBRL in multiagent systems was ini-

tially examined by a simple modification on PS [22]. Their
method can be used for a special class of competitive games
with two agents, which can be regarded as an extension to
MinMax-Q. Instantiating information about the dynamic
objects in the model of the environment and re-planning
based on MBRL, whenever this information is changed, was
proposed in [23]. Their approach can be categorized as a
modified version of SRL, since learning agent did not bear
in mind explicitly the other agents during action selection
and updating value functions. This especially fails when the
other agents are also learning.

In this paper, we develop traditional PS based on game
theoretic solvers, subgame perfect equilibrium points (SPE),
for n-person general-sum multiagent systems with sequen-
tial action selection based on our previous papers [17], [24],
[33]. The existing learning process, called EMG, is con-
sidered as a set of successive extensive form games with
perfect information. Each learning agent is able to observe
other agents’ actions, and model their preferences through
Q-functions. A modified version of backward induction is
introduced for action selection based on Boltzmann distribu-
tion, which controls the tradeoff between SPE, as the opti-
mal joint action, and learning new joint actions. The pseudo
code of the algorithm is proposed that can be easily used for
realization. Finally, the proposed algorithm, which is based
on value iteration with planning, is proved to be convergent.

The reminder of the paper is organized as follows: in
Sect. 2, some preliminary concepts regarding RL and game
theory are reviewed in accordance with RL terminologies.
In Sect. 3, MBRL is stated for EMGs. Section 4 analytically
discusses the algorithm and its convergence proof. Some
concluding remarks and future works are given in Sect. 5.

2. Preliminary Concepts

In the following, we briefly review fundamental issues,
which have been employed in this paper with the terminolo-
gies adopted from the established frameworks in RL.

2.1 Model-Based RL

RL can be used to learn an agent by letting it interact with
its environment and learn from the obtained rewards by trial
and error. The environment is typically formulated as a
finite-state Markov Decision Process (MDP). MDP is a
mathematical framework for modeling action selection in
situations where outcomes are partly random and partly un-
der the control of an agent.

Definition 1: A Markov Decision Process is a tuple
(S , A,R, P), where:

• S is the set of states,
• A is the set of admissible actions,
• R =

{
R|R : S × A→�} is the reward function,

• P : S ×A→ Δ (S ) is the state transition function, where
Δ (S ) is the set of probability distributions over the set
S .
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Agent’s objective is to learn a Markov policy, a map-
ping from states to probabilities of taking admissible actions
π : S × A → [0, 1], that maximizes the expected discounted
future rewards from state s, called state-value function:

Vπ (s) = Eπ
{
rk+1 + γrk+2 + γ2rk+3 + · · · |sk = s

}
= Eπ

{
rk+1 + γVπ

(
sk+1
)
|sk = s

}
=
∑
a∈A

π (s, a)
∑

s′
Pa

ss′
[
Ra

ss′ + γV
π (s′)]

where for all s, s′ ∈ S , a ∈ A

rk Instantaneous reward,
Vπ (s) Value of state s under policy π
π (s, a) Probability of taking action a ∈ A in state s
γ ∈ [0, 1] Discount factor
Pa

ss′ State transition function.
Ra

ss′ Reward function

The optimal state-value function gives the value of each
state under the optimal policy:

V∗ (s) = max
π

Vπ (s)

= max
a∈A

∑
s′

Pa
ss′
[
Ra

ss′ + γV∗(s′)
]

The value of taking action a in state s under policy π, de-
noted by Qπ(s, a), is the expected discounted future rewards
starting in s, taking a, and henceforth following π:

Qπ (s, a) = E
{
rk+1+γrk+2+γ2rk+3+ · · · |sk=s, π (s)=a

}

=
∑

s′
Pa

ss′

⎡⎢⎢⎢⎢⎢⎣Ra
ss′ + γ

∑
a′
π
(
s′, a′

)
Qπ
(
s′, a′

)⎤⎥⎥⎥⎥⎥⎦
The optimal action-value function is,

Q∗ (s, a) = max
π

Qπ (s, a)

=
∑

s′
Pa

ss′

[
Ra

ss′ + γmax
π

Q∗
(
s′, a′

)]

In RL, generally, there is no model containing the transition
and the reward function. Therefore, these function as well as
the policy have to be learned from the experiences during the
interaction with the environment. Although offline dynamic
programming, which recomputes the policy after a com-
plete trial, would be more efficient, online updating is much
better for efficient exploration and is especially needed in
dynamic environment. To speed up online dynamic pro-
gramming in complex environments, some sort of efficient
update-step management should be performed [23]. This
can be done by PS which prioritize updating Q-values of dif-
ferent state-action pairs according to their relative Bellman
errors. It benefits from higher performance with respect to
traditional SRL and Dyna-Q at the expense of additional in-
formation [6], [19]. If the value of state s′ has changed by
amount Δ, then the immediate predecessors of s′ for which
there exists an action a such that P̂ (s, a, s′) � 0 promotes

its priority to Δ · P̂ (s, a, s′), unless its priority value already
exceeds the threshold. The global behavior of the algorithm
is that when a state transition succeed in surprising reward
(for example, the agent come across a goal state), then much
computation is directed to propagate this new information
back to relevant predecessor states. On the other hand, when
the real world transition is dull (the actual result is similar
to the predicted result), then computation are direct to the
more deserving parts of the state space.

2.2 Game Theory

Game theory initially was used for reasoning in economics,
which later has been widely utilized in social, political, and
behavioral phenomena. It provides the necessary tools to
model interactive situations in which self interested agents
select their actions to gain more according to their prefer-
ences and a set of game rules. In this paper, we only focus
on games with perfect and complete information.

Definition 2: An extensive form game with perfect infor-
mation is a tuple g = (X,Σ, f ,Q), where [27]:

• X = {x1, x2, . . . , xN} is the set of agents,
• Σ = {σ|σ ∈ 〈A1, A2, . . . , AN〉} is the set of joint actions,

where Ai is the set of admissible actions for agent i.
• f (σ̂i) is the agent function that assigns an agent to ev-

ery subsequence of actions σ̂i in order to determine
which agent has to select its action after σ̂i

†,
• Q = {Qi|Qi : Σ → �} assigns the values of joint ac-

tions for each agent, referred to as game preferences.

Greedy action selection is optimal in single agent learn-
ing. In multiagent cases, however, the optimal joint actions
have to be elaborated in the form of NEPs in which all of
the agents are satisfied and none of them volunteer to select
another action.

Definition 3: A strategy profile σ∗ is a NEP if no unilateral
deviation in strategy by any single agent is profitable for that
agent [27], that is:

Qi (σ∗) ≥ Qi
(
ai, σ

∗
−i
) ∀i, ai ∈ Ai

where σ−i is a strategy profile of all agents except for agent
i.

Ignoring sequential action selection in extensive form
games may bring about some equilibrium points that are not
robust in steady state [27]. In order to properly define equi-
librium points in extensive form games, subgame must be
defined. A subgame is any part of a game that can be ana-
lyzed as a game itself.

Definition 4: Let g be an extensive form game with per-
fect information. For any subsequence of actions σ̂i−1, the
subgame σ̂i−1 ĝi is the following extensive form game [27].

†Any sequence σ̂i = 〈a1, a2, . . . , ai〉 with respect to joint action
σ = 〈a1, a2, . . . , aN〉 is called a subsequence of actions, where i <
N.



258
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

• Agents, the agents in g.
• Joint actions, the set of all sequences of actions σ′ such

that (σ̂i−1, σ
′) ∈ Σ is a joint action of g.

• Agent function, to each proper subsequence σ̄ of a sub-
game and agent is assigned according to f (σ̂i−1, σ̄).

• Preferences, each agent prefers σ′ to σ′′ if and only if
(σ̂i−1, σ

′) is preferred to (σ̂i−1, σ
′′) in g.

Definition 5: A strategy profile σ∗ is an SPE in extensive
form game g if it is an NEP for every subgame of g [27].

Markov games [23] are the generalization of both static
games and (fully observable) MDPs. We introduced EMG,
which can be regarded as an extension to Markov games
in which each game state is in extensive form with perfect
information [17].

Definition 6: EMG is a tuple Ψ = 〈G, X,Σ, P,R〉, where:

• G is the set of extensive form games with perfect infor-
mation,

• X = {x1, x2, . . . , xN} is the set of agents with fixed pri-
orities in action selection,

• Σ = {σ|σ ∈ 〈A1, A2, . . . , AN〉} is the set of admissible
joint actions, where Ai is the set of admissible actions
for agent i,

• P : G × Σ → Δ (G) is the game transition function,
where Δ (G) is the set of probability distributions over
G.

• R =
{
Ri|Ri : G × Σ→�} is the reward function.

Regarding the aforementioned definitions, we can general-
ize the notion of NEPs in EMGs as follows.

Definition 7: A policy profile π∗ is an NEP in EMG Ψ if
no unilateral deviation in policy by any single agent is prof-
itable for that agent in any game g ∈ G, that is:

Qi (g, π∗ (g)) ≥ Qi
(
g, πi (g) , π∗−i (g)

) ∀g, i, ai ∈ Ai

where Qi (g, π (g)) is the preferences of agent i in game g
with joint policy π (g), and π−i (g) is a policy profile of all
agents except for agent i.

In perfect information games, each agent knows all
about the preferences of the other agents. We refer to the
set of preferences of all agents as Extended Q-values,

Q̄i = [Q1, . . . ,Qi, . . . ,QN]

3. Model-Based Multiagent Reinforcement Learning

3.1 Learning in EMGs

Learning in multiagent systems is the process in which less
than fully rational agents look for optimality over time [28].
Consider a general EMG process as depicted in Fig. 1,
where there is a sequence of extensive form games gk ∈ G,
k = 1, . . . ,K. Every single game can be presented as a finite
tree with a set of nodes as agents xi ∈ X, i = 1, . . . ,N and
a set of arcs as actions ai ∈ Ai. Agent i lead the game to
the subgame σi−1 ĝk

i that maximizes its expected discounted

Fig. 1 Extensive Markov games.

future rewards over the set of games according to its game
policy:

Vπi (g) = Eπ
[
rk+1

i + γrk+2
i + γ2rk+3

i + · · · |gk = g, π
]

= Eπ
[
rk+1

i + γVπi
(
gk+1

)
|gk = g

]
=
∑
σ∈Σ
π (g, σ)

∑
s′

Pσgg′
[
Rσgg′i + γV

π
i

(
g′
)]

where for all g, g′ ∈ G, σ ∈ Σ,

ri Instantaneous rewards for learning agent i,
Vπi (g) Value of game g under policy π,
π (g, σ) Probability of taking joint action σ in game g,
πi (g, ai) Policy of agent i to select action ai in game g,
γ ∈ [0, 1] Discount factor,
Pσgg′ Pσgg′ = Pr

{
gk+1 = g′

∣∣∣ gk = g, σk = σ
}

is the
game transition function,

Rσgg′ Rσgg′ = E
{
rk+1

∣∣∣ gk = g, σk = σ, gk+1 = g′
}

is
the reward function,

Rσ
gg′i

The ith element of the reward function belong-
ing to agent i.

Thus, the value function of the game g in matrix form is:

Vπ(g) = [Vπ1 (g) · · · VπN(g)]

The optimal value of a game state is the expected infinite
discounted sum of future rewards that agent i will gain if it
starts in that game and executes the optimal policy.

Each strategy in an NEP is a best response to all other
strategies in that equilibrium. The NEP may sometimes ap-
pear non-rational in a third-person perspective. This is be-
cause it may happen that an NEP is not Pareto optimal. The
concept of NEP is completely unrelated to Pareto optimality.
Pareto optimality is a measure of efficiency†. An outcome
of a game is Pareto optimal if there is no other outcome that
makes every agent at least as well off and at least one agent

†Pareto efficiency is a minimal notion of efficiency and does
not necessarily result in a socially desirable distribution of re-
sources, as it makes no statement about equality or the overall well-
being of a society.
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strictly better off. That is, a Pareto Optimal outcome can-
not be improved upon without hurting at least one player.
An NEP is not necessarily Pareto Optimal. It implies that
values of agents may all be increased yielding to another
NEP. In perfect information games, where agents know all
about each other, it is clear that rational decision making of
self-interested agents will cause NEP points to be “optimal
reactions” to “optimal reactions”.

On the other hand, SPE is a sharper concept of NEP
(Definition 5). It is “time consistent” in that it remains
an equilibrium point in whatever truncation of the original
game (subgame) the players may find themselves. Thus,

V∗i (g) = max
π

Vπi (g)

= EπNE
[
rk

i + γV
∗
i

(
gk+1

)
|gk = g

]

= SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′ + γV

∗ (g′)]
⎞⎟⎟⎟⎟⎟⎟⎠

(1)

where SPEVi (.) is the value of SPE joint action for agent i.
The same can be deduced for action-value function, which is
particularly important for learning. The value of taking joint
action σ in game g for learning agent i, under joint policy
π, denoted by Qπi (g, σ), is the expected discounted future
reward starting in g, taking σ, and henceforth following π:

Qπi (g, σ) =
∑
g′

Pσgg′
[
Rσgg′i + γV

π
i

(
g′
)]

Similarly, optimal action-value function is,

Q∗i (g, σ) =
∑
g′

Pσgg′
[
Rσgg′i + γV

∗
i
(
g′
)]

(2)

These values are the preferences of each agent in a game
state over possible joint actions. It is clear that optimal
action-value function can be achieved if SPE actions are se-
lected.

The following lemma, formerly proved in [29], sub-
stantiates Eq. (2) and clarify the relation between the opti-
mal value of agent i in an EMG and the value of SPE in a
game with the preferences Q̄∗i =

[
Q∗1, . . . ,Q

∗
N

]
.

Lemma 1: The following two assertions are equivalent:

• π∗ =
〈
π∗1, . . . , π

∗
N

〉
is an equilibrium point in a dis-

counted EMG with equilibrium values
(
V∗1 , . . . ,V

∗
N

)
.

• For each g ∈ G, the joint action
〈
π∗1 (g) , . . . , π∗N (g)

〉
is

an SPE in a game with preferences
[
Q∗1 (g) , . . . ,Q∗N (g)

]
and equilibrium values

(
V∗1 (g) , . . . ,V∗N (g)

)
, where:

Q∗ (g, σ) =
∑
g′

Pσgg′
[
Rσgg′ + γV

∗ (g′)] (3)

3.2 Estimating World Model

The transition function and the reward function are esti-
mated from the observations received during interaction

with the environment. Constructing a model from the expe-
riences can be easily performed by counting the frequency
of observing a situation.

There are a number of simple methods for estimating
the transition and the reward functions P̂ and R̂ that converge
to the true functions P and R. A maximum likelihood model
can be computed as follows [23],

P̂σgg′ =
Cgg′ (σ)

Cg (σ)

R̂σgg′ =
Rgg′ (σ)

Cgg′ (σ)

(4)

where,

Cgg′ (σ) Number of transitions from game g to g′ after
executing joint action σ,

Cg (σ) Total number of times that joint action σ is ex-
ecuted in game g,

Rgg′ (σ) Sum of all immediate rewards received after
executing σ in game g while game g′ is met.

After each observation, both transition and reward functions
are updated. In deterministic environments one experience
per game-action pair is sufficient to infer the true underlying
model. In stochastic environments, however, the effect of an
action in a game has to be explored ad infinitum.

3.3 Action Selection

Backward induction (BI) is a well-known algorithm to find
SPEs in extensive form games. Each agent tries to predict
actions of the lower-level agents, assuming that they are ra-
tional and select greedy actions. Greedy actions would be
the best idea if agents knew the optimal action-value func-
tions. During learning, however, each agent has only an es-
timate of action-value functions. There might be that some
actions are underestimated and are actually better than the
action with the highest value in the current value estimate.
At each step, the learning agent must evaluate the direct ben-
efits of choosing the greedy action (exploitation) with the
possible benefit of choosing some other actions to find out
whether it is not better (Exploration). Regarding the fact
that agent i knows all about the previous agents’ actions
(a1, a2, . . . , ai−1), we propose a modified BI algorithm for
exploration-exploitation tradeoff which is described com-
pactly for learning agent i as follows:

1. Find the set of optimal actions A∗N for different sub-
games σ̂N−1 ĝN agent N may play with respect to QN ,

2. Find the set of optimal actions A∗N−1 for different sub-
games σ̂N−2 ĝN−1 agent N − 1 may play with respect to
QN−1 and A∗N ,

3. Continue the same procedure until agent i is reached.
4. Find the set of agent i’s Q-values according to the pre-

vious set of actions (a1, a2, . . . , ai−1) and the set of op-
timal joint actions A∗i+1 × · · · × A∗N ,

5. Select an action probabilistically with respect to
Boltzmann distribution.
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3.4 Learning Algorithm

At each time step k, the learning agent i decides on its ac-
tions by observing subsequent subgames. At the end of each
game, it observes its own reward, actions taken by the other
agents and their relevant rewards, and the new game state
g′. It later updates its world model, including the transition
function and the reward function. Finally, it updates its Q-
values as well as the others.

During world simulation, the learning agent performs
some imaginary observations on different game-action pairs
based on its models of the world and the beliefs about the
other agents. The priority queue is adjusted according to a
quite similar procedure as the one in [20]. It then updates
both its own preferences as well as the belief about the pref-
erences of the other agents, since it is assumed that there
is no explicit communication among agents. The follow-
ing algorithm consists of four sub-routines: action selection,
updating world model, single update of value function, and
world simulation.

MBRL algorithm for learning agent i:

• Initialize all Q-tables, functions, and Queue;
• Do forever:
• g←current game, k ← k + 1
• Select action;
• Wait until the last agent N selects its action;
• Observe new game g′ and rewards;
• Update world model (Eq. (4));
• Update Q-values: Q (g, σ) =

∑
g′

P̂σgg′
[
R̂σgg′ + γV (g′)

]
• While Queue is not empty or the maximum number of

iterations is not reached (World simulation):

– Select the highest priority game from the Queue,
call it ḡ;

– For all admissible joint action σ̄ (Perform a
Bellman backup to recompute the Q-values)

∗ V ′ = V (ḡ)
∗ Update Q-values: Q̄ (ḡ, σ̄) =

∑
ḡ′

P̂σ̄ḡḡ′
[
R̂σ̄ḡḡ′+

γV (ḡ′)
]

∗ V(ḡ) = SPEV
(
Q̄(ḡ, σ̄)

)
– End for
– Δ(ḡ) = |V (ḡ) − V ′|
– For any predecessors g̃ of ḡ for which there exist

a joint action σ̃ such that P̂σ̃g̃ḡ = P̂(g̃, σ̃, ḡ) � 0:

∗ p = P̂σ̃g̃ḡ.Δ;
∗ If p > θ then insert g̃ in the queue with prior-

ity p;

– End for

• End while
• End do

4. Convergence Proof

In this section we are going to provide a formal convergence
proof for the proposed algorithm based on the well-known
theorems proved in [30], which have being frequently used
in similar papers, such as [31] and [16]. The following as-
sumption is necessary to deduce convergence in RL process,
which its feasibility is discussed.

Assumption 1: Every subgame of game state g ∈ G is
reached infinitely often.

Discussion: Consider that a subgame has been reached
while modified BI is used for action selection. A learning
agent may select its actions randomly proportional to their
corresponding values which are non-zero numbers. Thus,
each action is almost surely selected an infinite number of
times. Recursively, in the higher level subgame, the actions
which end to the current subgame is almost surely selected
an infinite number of times. Hence, the current subgame
(Recall that each game is also a subgame) is reached in-
finitely often if the root game is initiated an infinite number
of times.

The following lemma, which is used in convergence
proof, prove that optimal value operator is non-expansion.

Lemma 2: Assume that B is the space of bounded func-
tions over G. The optimal value operator T : B (G)→ B (G)
is a non-expansion operator, where:

TV (g) = SPEV

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′ + γV

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠

Proof: We should prove that ‖TV − Tv‖ ≤ ‖V − v‖, where,
V = [Vi]|i=1,...,N and v = [vi]|i=1,...,N . For the space of the uni-
formly bounded functions B over G, the appropriate norm is
the supremum norm.:

B =

{
f : X → � : ‖ f ‖ = sup

x∈X
f (x) < ∞

}
(5)

Thus, for the learning agent i, considering that BI is used to
find SPEs, we have,

‖TVi − Tvi‖ =

∥∥∥∥∥∥∥SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′i + γVi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠

−SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′i + γvi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠
∥∥∥∥∥∥∥

=

∥∥∥∥∥∥∥max
ai∈Ai

∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−max
ai∈Ai

∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γvi

(
g′
)]∥∥∥∥∥∥∥

Eq. (5)
−−−−→ = max

g

∣∣∣∣∣∣∣max
ai∈Ai

∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]
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−max
ai∈Ai

∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γvi

(
g′
)]∣∣∣∣∣∣∣

≤ max
g

max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−
∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γvi

(
g′
)]∣∣∣∣∣∣∣

≤ max
g

max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P
σ∗−i×ai

gg′
[
Vi
(
g′
) − vi (g′)]

∣∣∣∣∣∣∣
≤ ‖Vi − vi‖

(Recall that transition probability over games are less than
or equal to 1.) Clearly, in matrix form:

‖TV − Tv‖ � ‖V − v‖

Now, it is possible to prove the convergence of the proposed
algorithm.

Lemma 3: Consider a finite EMG such that Assumption 1
holds. The values are updated iteratively by the following
rule,

Vk+1 (g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SPEV

(∑
g′

P̂σgg′
[
R̂σgg′+γV (g′)

])
, if g = gk

Vk (g) , otherwise

(6)

Assume that the followings hold with probability 1 for all
(g, σ, g′):

1. R̂σgg′ converges to Rσgg′ ,

2. P̂σgg′ converges to Pσgg′ , such that:

lim
k→∞

max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

[
P̂σ−i×ai
gg′ − Pσ−i×ai

gg′

]∣∣∣∣∣∣∣ = 0

3. 0 ≤ γ < 1.

Then,
{
Vk
}

converges to the fixed point of the operator T :
B(G)→ B(G), where:

TVi (g) = SPEV

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′ + γV

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠

Proof: The appropriate approximate dynamic programming
operator sequence

{
T k
}

is defined as,

T k (U,V) (g) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
SPEV

(∑
g′

P̂σgg′
[
R̂σgg′ + γV (g′)

])
, if g = gk

U (g) , otherwise

Now, we should prove that T k approximate T in the sense
that the recursion generated by Uk+1 = T k

(
Uk,V

)
converges

to TV in the norm of B with probability 1. It is clear that we
should prove that the following distance converges to zero

for learning agent i as k → ∞

Dk
i =

∣∣∣∣∣∣∣SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

P̂σgg′
[
R̂σgg′i + γVi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠

− SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′i + γVi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣

(7)

Consider that BI is used to find the SPE solution for learning
agent i,

Dk
i =

∣∣∣∣∣∣∣SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

P̂σgg′
[
R̂σgg′i + γVi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠

−SPEVi

⎛⎜⎜⎜⎜⎜⎜⎝
∑
g′

Pσgg′
[
Rσgg′i + γVi

(
g′
)]⎞⎟⎟⎟⎟⎟⎟⎠
∣∣∣∣∣∣∣

=

∣∣∣∣∣∣∣max
ai∈Ai

∑
g′

P̂
σ∗−i×ai

gg′

[
R̂
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−max
ai∈Ai

∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]∣∣∣∣∣∣∣

(8)

where σ∗−i is the sequence of action except ai, when all
agents follow the BI action selection algorithm. Using tri-
angular inequality, we have,

Dk
i ≤ max

ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P̂
σ∗−i×ai

gg′

[
R̂
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−
∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]∣∣∣∣∣∣∣

≤ max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P̂
σ∗−i×ai

gg′

[
R̂
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−
∑
g′

P̂
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]∣∣∣∣∣∣∣

+max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P̂
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]

−
∑
g′

P
σ∗−i×ai

gg′

[
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]∣∣∣∣∣∣∣

= max
ai∈Ai

∣∣∣∣∣∣∣
∑
g′

P̂
σ∗−i×ai

gg′

[
R̂
σ∗−i×ai

gg′i
− R

σ∗−i×ai

gg′i

]∣∣∣∣∣∣∣
+max

ai∈Ai

∣∣∣∣∣∣∣
∑
g′

[
P̂
σ∗−i×ai

gg′ − P
σ∗−i×ai

gg′

] [
R
σ∗−i×ai

gg′i
+ γVi

(
g′
)]∣∣∣∣∣∣∣

According to assumption 1, Dk
i → 0 as k → ∞ for i =

1, . . . ,N. Thus, T k approximate T .
The rest of the proof is based on the following theorem

proved in [30]:

Theorem 1: [30] Let v∗ be a fixed point of T and let
T =

(
T 0,T 1, . . .

)
approximate T at v∗. Let V0 ∈ B, and
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define Vk+1 = T k
(
Vk,Vk

)
. If there exist random function

0 ≤ ζk (g) ≤ 1 and 0 ≤ ξk (g) ≤ 1 satisfying the condi-
tions below with probability 1, then Vk converges to v∗ with
probability 1 in the norm of B(G):

1. For all U1 and U2 ∈ B, and all g ∈ G,∣∣∣T k(U1, v
∗)(g) − T k(U2, v

∗)(g)
∣∣∣ ≤ ξk(g) |U1(g) − U2(g)|

2. For all U and V ∈ B, and all g ∈ G,∣∣∣T k(U, v∗)(g) − T k(U,V)(g)
∣∣∣ ≤ ζk(g)

(
‖v∗ − V(g)‖ + λk

)
where λk → 0 with probability 1 as t → ∞,

3. For all j > 0, Πn
k= jξ

k (g) converges to zero uniformly in
g as n→ ∞,

4. There exist 0 ≤ γ < 1 such that for all g ∈ G and large
enough k,

ζk (g) ≤ γ
(
1 − ξk (g)

)
Conventionally, the following two functions are se-

lected:

ξk (g) =

{
0, g = gk

1, otherwise

and,

ζk (g) =

{
γ, g = gk

0, otherwise

The aforementioned functions together with the result in
Lemma 2 satisfy all the conditions of Theorem 1, and the
proof is complete.

Another convergence proof for single agent PS was
proposed in [32]. It was tried to establish a formal proof
of convergence to the optimal value function when they are
used as planning algorithms. They proposed not to initialize
priority queue to zero. Instead, of randomly initialization,
we propose to initialize them to a small positive number.
It causes better coordination during action selection since
there is no explicit communication among agents. Another
condition which is proved to be necessary for convergence is
that the Bellman error

∣∣∣Vk+1
i (g) − Vk

i (g)
∣∣∣ converges to zero

in the limit k → ∞. Regarding that the optimal value opera-
tor is non-expansion according to Lemma 2, and the results
in Lemma 3, it is easy to verify the necessary condition for
Bellman error. Thus, according to the convergence lemma
in [32], our proposed multiagent PS is also convergent.

5. Conclusions

The combination of RL and game theoretic solvers repre-
sents a promising solution to effective learning in multiagent
systems, especially in dynamic environments. Most of the
proposed algorithms gradually converge to the optimal pol-
icy after a great number of experiences. MBRL offers simul-
taneously planing and learning to use the gathered informa-
tion more efficiently. Regarding our previous papers, in this
paper, we developed MBRL for EMGs. Every single situa-
tion of decision making in this learning process is modeled

as an n-person general-sum extensive form game with per-
fect information. BI is traditionally used in extensive form
games to find SPEs, which was proposed to combine with
Boltzmann distribution to adjust the tradeoff between explo-
ration and exploitation. During action selection, each agent
assumes that it is the only learning agent and all the lower-
level agents select their actions rationally. The pseudo code
of the algorithm has been given which can be used easily
for implementation. The algorithm was proved to be con-
vergent and discussed based on the newly developed work
on the convergence of the traditional PS.

In the upcoming paper, we will concentrate on the per-
formance of the algorithm. Controlling the number of up-
dates per simulation and using heuristic approaches may
speed up the convergence.
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