
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011
2553

LETTER

Hybrid Parallel Extraction of Isosurface Components from 3D
Rectilinear Volume Data∗

Bong-Soo SOHN†a), Member

SUMMARY We describe an efficient algorithm that extracts a con-
nected component of an isosurface, or a contour, from a 3D rectilinear
volume data. The efficiency of the algorithm is achieved by three factors:
(i) directly working with rectilinear grids, (ii) parallel utilization of a multi-
core CPU for extracting active cells, the cells containing the contour, and
(iii) parallel utilization of a many-core GPU for computing the geometries
of a contour surface in each active cell using CUDA. Experimental results
show that our hybrid parallel implementation achieved up to 20x speedup
over existing methods on an ordinary PC. Our work coupled with the Con-
tour Tree framework is useful for quickly segmenting, displaying, and an-
alyzing a feature of interest in 3D rectilinear volume data without being
distracted by other features.
key words: isosurface, contour tree, contour propagation, multi-core

1. Introduction

Isosurface extraction is one of the most popular techniques
for visualizing a volumetric dataset. An isosurface is a level
set surface defined as I(w) = {(x, y, z)|F(x, y, z) = w}, where
F is a scalar field data and w is an isovalue. Since a sin-
gle isosurface may consist of many connected components,
or contours, with each representing a different feature, the
ability to quickly extract an individual isosurface component
is critical for finding and analyzing a desired feature of the
data without being distracted by other features (Fig. 5).

The Contour Tree (CT) is useful for visualization of
contours [6], [9]. CT provides a topological structure of con-
tours, and it is used as an interactive user interface to seg-
ment and display individual contours. CT also generates
seed cells for efficient extraction of the contours. The ex-
traction process uses a contour propagation algorithm that
incrementally finds and triangulates active cells that are con-
nected to a given seed cell through contour surfaces. We
compute CT and seed sets from input volume data as pre-
processing and use them to interactively select and extract
individual contours. This process is depicted in Fig. 1.

The performance of the contour propagation algorithm
is critical for obtaining necessary interactivity in the CT in-
terface. However, there are two efficiency problems in ex-
isting approaches for contour propagation. (i) When applied
to rectilinear volume data, the propagation from one seed

Manuscript received January 24, 2011.
Manuscript revised August 4, 2011.
†The author is with the School of Computer Science and Engi-

neering, Chung-Ang University, Seoul, Korea.
∗This research was supported by the Chung-Ang University

Research Grant in 2010.
a) E-mail: bongbong@cau.ac.kr

DOI: 10.1587/transinf.E94.D.2553

Fig. 1 Overall process for parallel contour extraction.

cell may generate two or more contours because a cube may
contain more than one contour [3]. Previous methods [6],
[9] subdivided each cube into five or six tetrahedra to avoid
the incorrect result. However, the decomposition of each
cell results in significant degradation of efficiency because
it increases the number of cells by five or six times. (ii) The
propagation methods have not been parallelized and do not
utilize parallel computing resources of ordinary PCs.

In this letter, we describe an efficient algorithm that se-
lects and extracts individual contours from 3D rectilinear
volume. We designed our propagation algorithm to directly
work with rectilinear data without any subdivision and gen-
erate a single topologically correct contour that intersects
with a given seed cell. This approach reduces the number
of active cells, and hence improves the speed of contour ex-
traction and reduces the size of resulting contour meshes.

We further enhance the performance via parallel uti-
lization of multi-core CPUs and many-core GPUs that are
common in ordinary PCs. The number of cores in current
CPUs ranges from two to eight, while current GPUs have
hundreds of cores. Current trends in CPU/GPU technology
indicate that the numbers of cores are expected to increase,
rather than clock speeds [5]. Therefore, the design of a par-
allel algorithm that efficiently utilizes multi-core CPUs and
many-core GPUs is critical for improving performance. We
design a parallel algorithm for contour propagation that uti-
lizes a multi-core CPU. We also separate a data-parallel part
(triangulation step) from the propagation process to opti-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



2554
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

(a) Volume Rendering (b) Contour Extraction using Contour
Tree User Interface

Fig. 2 CT is constructed from an approximate electron density volume
of a hemoglobin molecule (a). Using CT interface (b), we selected and
extracted individual contours of the whole molecule (red), a polypeptide
subunit (purple), and a heme structure (dark blue).

mize the part via GPU acceleartion. Experimental results
indicate that we achieved up to 20x speedup over the pre-
vious method [6] that performs single-threaded propagation
from tetrahedral grids to extract a selected contour.

2. Contour Tree and User Interface

Consider a scalar field F defined from the input volume data.
As an isovalue changes from the maximum to minimum
value, contours are created, merged, split, and destroyed.
CT represents the topological events in the form of a tree.
Each vertex of CT represents a critical point of F where the
topological events occur. Each edge of CT represents a max-
imal set of continuous contours that do not contain critical
points. When CT is laid out on a 2D plane, vertical coordi-
nates of CT vertices are determined as the function values
on the corresponding critical points. A horizontal coordi-
nate of a CT vertex is determined according to the number
of vertices in the subtree that is connected to the CT vertex.

A seed set of CT edge is defined as a subset of edges on
the input domain mesh where any contour that is associated
with the CT edge intersects with an edge in the seed set. A
cell that contains the intersecting edge becomes a seed cell
for extracting the contour. We compute and store a seed set
for each edge of CT in a preprocessing step. We refer to
[8] and [6] for details of CT concepts, CT construction, and
seed set generation (pathseed method).

A point on a contour tree interface has one-to-one cor-
respondence to a contour. Users may select and extract
a specific contour by clicking a point on the contour tree.
When a desired contour is selected, a seed cell is identified
from the precomputed seed set and the entire surface of the
selected contour is efficiently extracted from the seed cell
using our propagation method (Fig. 2).

3. Proposed Approach for Contour Extraction

The original propagation algorithm [3], [6] initially inserts a
seed cell into an empty queue. The seed cell is propagated
through active cells by repeating the process of dequeuing
and triangulating a cell, and then enqueuing neighboring
cells that are connected to the cell by contours in the cell
until the queue becomes empty.

(a) Our method (b) Propagation on
rectilinear grids

(c) Propagation on
tetrahedral grids

Fig. 3 Comparison of our propagation method and previous methods.

We divide the original algorithm into two separate
steps: (i) a propagation step that identifies a set of active
cells that contain the selected contour, and (ii) a triangula-
tion step that computes the geometries (e.g., vertex coordi-
nates, normals, and connectivity) of the contour surface in
each active cell. The division is necessary because the in-
tensive work of interpolation in the triangulation step can
be highly optimized through CUDA programming that fully
utilizes the many-core GPUs, while the propagation step is
hard to optimize using many-core GPUs due to its incremen-
tal and data-dependent algorithm.

3.1 Contour Propagation from Rectilinear Data

Since a cube in rectilinear data may contain more than one
contour, the propagation from a seed cell may generate two
or more contours, as shown in Fig. 3 (b). In order to avoid
the incorrect result, we consider only the selected contour
and ignore undesired contours when processing an active
cell during propagation, as shown in Fig. 3 (a). For this pur-
pose, we assign an id number (e.g., 0, 1, 2, or 3) to each con-
tour in the cell and associates the cell with the id number of
the selected contour. A cell containing the selected contour
is represented as a pair (cell number, contour id number).
Since most active cells have a single contour in practice, the
overall overhead for processing the cells that have more than
one contour is insignificant. Each cell in Algorithm 1 repre-
sents the pair (cell number, contour id number). When am-
biguity exists for triangulating a cell with Marching Cubes
table, we apply a disambiguation method [7]. For such cells,
the triangulation is performed during the propagation step as
exception because CUDA kernel function is optimized for
dealing with only simple cases that involve no ambiguity.

3.2 Parallel Propagation Algorithm

The basic structure of the propagation algorithm is based on
a FIFO queue. The algorithm has a loop that repeats taking a
cell c from a queue, processing c, and inserting new cells to a
queue. We parallelize the algorithm by simultaneously exe-
cuting the loop with multiple CPU threads. We use a variant
of work-stealing methods [4] where each thread maintains a
lock-free local queue. In the method, a thread can steal a
work (cell) from another thread for dynamic load balancing
when a local queue is empty. This distributed task queue



LETTER
2555

method is suitable for achieving high scalability in our mul-
tithreaded and shared-memory environment because using
local queues is designed to be safe in the algorithm and
the synchronization overhead is minimized compared to the
centralized method that uses one global shared queue.

The pseudocode of our parallel propagation algorithm
is shown in Algorithm 1. The basic structure is the same as
that of the serial algorithm except that multiple CPU threads
execute Propagate() simultaneously. In propagate(), each
thread maintains a lock-free local queue. We also intro-
duce a lock-protected global queue through which a thread
that has an empty local queue can steal a cell from another
thread. If a local queue is empty, then that information is
announced to other threads through wait f lag array and a
new active cell is inserted into the global queue instead of
the local queue in another thread. Then, the thread that
has the empty local queue takes the cell from the global
queue. Since the access to the global queue occurs very
rarely in practice while lock-free local queues are used most
of the time, the synchronization overhead related to queue
accesses is minimized during simultaneous propagations.

3.3 Parallel Triangulation Using CUDA

After the list of active cells is computed in multithreaded
CPU mode, we triangulate each active cell through a
GPU using CUDA. To optimize the implementation
of triangulation, we modified a CUDA kernel function
generateTriangles2 that is found in nVidia’s Marching
Cubes sample code [1]. Each GPU thread generated from
CUDA takes an active cell from the list and computes the
vertex positions, normals, and connectivity of contour sur-
faces in the cell based on Marching Cubes triangulation ta-
bles. The computed geometries are written into an output
array that stores the triangles of the selected contour. The
location in the output array must be precomputed for each
active cell so that the CUDA kernel function directly writes
the triangles into the pre-determined position. This is nec-
essary to avoid communication among GPU threads.

4. Experimental Results

We implemented our algorithm and tested it on a desktop PC
equipped with an Intel i7 (2.66 GHz) CPU with four cores,
3 GB main memory, and an nVidia GeForce 480GTX graph-
ics card that has 1.5 GB video memory.

We tested two datasets, a head MRI that highlights the
Cerebro-Spinal-Fluid filled cavities [2] and an approximate
electron density map of a hemoglobin molecule. Figure 2
and 5 show the results of extracting a polypeptide subunit
contour from the hemoglobin dataset and a ventricle con-
tour from the head MRI dataset, respectively. CT computed
from each dataset was simplified before display based on [6]
because the original trees contain too much complexity. As
shown in Fig. 5 (c) and (d), an isosurface of the head MRI
dataset contains many contours that represent brain tissues
and eyeballs as well as the ventricle. Using our method, we

Algorithm 1 Multithreaded contour propagation algorithm
ParallelExtract(s , thread no)
Input - s : seed cell , thread no : the number of threads
Output - A list of active cells that contain the desired contour
1: Visit(s);
2: Global.Enqueue(s);
3: for i← 1 to thread no − 1 do
4: CreateThread(Propagate(i , thread no)); // run in parallel
5: Join(); // waits until all threads call thread exit().

Propagate(thread id , thread no)
1: while (true)
2: c← Dequeue();
3: if (c == EMPTY) then continue;
4: InsertActiveCell(c);
5: foreach face fi of c that contains a contour
6: c′ ← a cell sharing fi with c;
7: lock(c′);
8: if (!isVisited(c′)) then
9: Visit(c′);
10: unlock(c′);
11: Enqueue(c′);
12: else
13: unlock(c′);

Dequeue()
// If local queue and global queue are empty, return EMPTY
1: c← Local.Dequeue(); // dequeue from local queue
2: if (c == EMPTY) then
3: c← Global.Dequeue(); // dequeue from global queue
4: if (c == EMPTY) then
5: wait f lag[thread id] = true;
6: if (all wait f lags are true) then thread exit();
7: return EMPTY;
8: else
9: wait f lag[thread id] = false;
10:return c

Enqueue(c)
1: if (any one of wait f lag is true) then
2: Global.Enqueue(c); // enqueue c to global queue
3: else
4: Local.Enqueue(c); // enqueue c to local queue

extracted only the ventricle contour that is the main feature
of the data. This allows us to visualize and analyze the ven-
tricle surface without being distracted by other features.

We measured the contour extraction times using the
previous method [6] and our method with different numbers
of threads. The previous method that was compared with
our method is Carr et al.’s method described in the paper [6].
In the previous method, rectilinear grids were converted to
tetrahedral grids and then single-threaded contour propaga-
tion was performed on the tetrahedral grids to extract the
selected contours. We used the pthread library to create
CPU threads and measured the time with and without GPU
acceleration. The results are summarized in Table 1. The
graphs in Fig. 4 analyze the results in Table 1. As shown in
the graphs, our basic method using a single thread with no
GPU utilization achieved 2x-3x speedup over the previous
method [6]. The performance of our parallel implementa-



2556
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.12 DECEMBER 2011

Table 1 Timing results for contour extraction algorithms with different
numbers of threads. FPS (Frames Per Second) is computed as 1/(extraction
time). In the previous method (prev) [6], single-threaded propagation was
performed on tetrahedral grids for contour extraction.

data / size GPU
prev [6] our method (FPS)

1 1 2 3 4
Hemoglobin with 3.1 4.7 8.9 13.0 16.9
256x256x256 without 0.8 2.5 4.7 6.9 9.0

Head MRI with 5.6 8.5 16.3 23.8 31.0
256x256x128 without 1.8 4.7 8.7 12.5 16.2

Table 2 The comparison of the number of active cells and the number
of triangles generated for the selected contours.

data
previous method [6] our method
cell# tri# cell# tri#

Hemoglobin 1,171,571 1,439,588 245,485 491,130
Head MRI 523,767 644,704 108,868 224,456

Table 3 Timing results for the propagation step (single CPU thread) and
the triangulation step (with or without GPU acceleration). (unit : second)

data
propagation triangulation

(CPU) without GPU with GPU
Hemoglobin 0.208 0.191 0.004
Head MRI 0.114 0.098 0.002

Fig. 4 Performance of our parallel algorithm for contour extraction.

tion is also shown in Fig. 4. We achieved up to 20x speedup
of contour extraction with high scalability.

Table 2 shows that the number of active cells in our
method is 4 - 5 times smaller than the number in the previ-
ous method [6]. This improves the performance and reduces
the contour mesh size. Table 3 shows the time required for
triangulation with and without GPU utilization. The result
indicates that the computation required for triangulation is
very suitable for GPU acceleration and that the GPU imple-
mentation led to significant improvement in performance.

5. Conclusion

We described a hybrid parallel algorithm that efficiently ex-

(a) Volume rendering (b) Contour Tree

(c) Isosurface (d) Ventricle contour

Fig. 5 The result of extracting ventricle contour from a head MRI data
(a). An isosurface (c) consists of many contours. The ventricle contour
surface (d) that is a main feature of the data is efficiently segmented using
our parallel propagation method and contour tree interface (b). Colors in
(d) show contribution of four different CPU threads.

tracts an isosurface component from 3D rectilinear volume
data. High performance was achieved via optimized paral-
lel utilization of multi-core CPUs and many-core GPUs that
are common in ordinary PCs. Our work coupled with the
Contour Tree framework is useful for quickly finding and
displaying a feature of interest in volume data.

References

[1] nVidia CUDA SDK Code Samples: Marching Cubes.
http://developer.nvidia.com/object/cuda sdk samples.html

[2] Real world medical datasets. http://www.volvis.org
[3] C.L. Bajaj, V. Pascucci, and D.R. Schikore, “Fast isocontouring for

improved interactivity,” Proc. VolVis, pp.39–46, 1996.
[4] R.D. Blumofe and C.E. Leiserson, “Scheduling multithreaded com-

putations by work stealing,” J. ACM, vol.46, no.5, pp.720–748, 1999.
[5] S. Borkar, “Thousand core chips - a technology perspective,” Design

Automation Conference, pp.746–749, 2007.
[6] H. Carr, J. Snoeyink, and M. van de Panne, “Flexible isosurfaces:

Simplifying and displaying scalar topology using the contour tree,”
Computational Geometry: Theory and Applications, vol.43, no.1,
pp.42–58, 2010.

[7] G.M. Nielson, “On marching cubes,” IEEE Trans. Visualization and
Computer Graphics, vol.9, no.3, pp.283–297, 2003.

[8] V. Pascucci and K. Cole-McLaughlin, “Parallel computation of the
topology of level sets,” Algorithmica, vol.38, no.2, pp.249–268, 2003.

[9] B.-S. Sohn and C. Bajaj, “Time-varying contour topology,” IEEE
Trans. Visualization and Computer Graphics, vol.12, no.1, pp.14–25,
2006.


