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PAPER

A Dynamic Geometry Reconstruction Technique for Mobile Devices
Using Adaptive Checkerboard Recognition and Epipolar Geometry

Vinh Ninh DAO†a), Nonmember and Masanori SUGIMOTO†b), Member

SUMMARY This paper describes a technique for reconstructing dy-
namic scene geometry using a handheld video projector–camera system
and a single checkerboard image as a structured light pattern. The pro-
posed technique automatically recognizes a dense checkerboard pattern
under dynamic conditions. The pattern-recognition process is adaptive to
different light conditions and an object’s color, thereby avoiding the need
to set threshold values manually for different objects when the scanning
device is moving. We also propose a technique to find corresponding posi-
tions for the checkerboard pattern, when displayed by a projector, without
needing any position-encoding techniques. The correspondence matching
process is based on epipolar geometry, enabling the checkerboard pattern
to be matched even if parts of it are occluded. By using a dense checker-
board pattern, we can construct a handheld projector–camera system that
can acquire the geometry of objects in real time, and we have verified the
feasibility of the proposed techniques.
key words: checkerboard, pattern recognition, pattern matching, geometry
reconstruction, handheld projector–camera

1. Introduction

Recent advances in 3D scanning technology have made con-
venient and cost-effective systems possible. In particular,
techniques using active structured light are well known for
their accuracy and speed. However, during the past few
decades, 3D scanning with these techniques has usually
been aimed at static capture. Acquisition of 3D geometry
in a dynamic environment remains an open research issue.
Following the recent development of miniature projectors,
ubiquitous projection that can present any surface as a dis-
play [4], [14] is becoming practicable. Therefore, when real-
time 3D scanning systems using such miniature projectors
become more readily available, we will be able to utilize
them for adaptive projection and the augmented reality ap-
plications around us [4], [5].

There are “one-shot” geometry-reconstruction tech-
niques that can acquire the 3D shape of an object from a
single captured image [25], but they usually impose some
conditions on the scanning surface, such as surface smooth-
ness or constant color reflectance. If the conditions do not
hold because of ambiguous colors or abrupt color changes
caused by surface complexity or scanning device movement,
the correspondence will be lost. Among the commonly
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used structured light patterns, a checkerboard pattern has
not been used for geometry-acquisition purposes because it
is difficult to encode the positional information in this pat-
tern. Until now, checkerboard-recognition techniques have
been proposed mainly for camera-calibration purposes [23],
[36], where a checkerboard on a planar surface is used. Con-
sequently, these techniques are usually sensitive to any dis-
tortion, occlusion, and noise in the pattern.

This paper proposes a novel technique to recognize a
dense black and white checkerboard pattern for one-shot
geometry-acquisition purposes (Fig. 1). The checkerboard
pattern can be recognized automatically in dynamic condi-
tions, with the internal edges being extracted adaptively. We
exploit the directional properties of the feature points, the
feature edges, and the graph topology to eliminate noise in
the detected checkerboard pattern. This paper also presents
a pattern-matching technique based on epipolar geometry
that requires no position-encoding technique, with the cor-
responding positions being identified even if parts of the pat-
tern are missing because of occlusion. This method enables
the feature points to be extracted with high accuracy, and
this enables us to easily find the corresponding position for
each patch in a dense checkerboard pattern. Our experimen-
tal evaluation shows that the epipolar constraints of locally
connected feature points are sufficient to solve for the corre-
spondence robustly and effectively.

The remainder of the paper is organized as follows.
The next section is about related work in checkerboard-
recognition and shape-acquisition techniques. In Sect. 3, we
present our method for recognizing the checkerboard pat-
tern adaptively. This checkerboard-recognition technique

Fig. 1 A handheld geometry acquisition system using a checkerboard
pattern and a mobile projector–camera system.
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involves three steps, namely feature-point detection, feature-
edge detection, noise elimination and a labeling process.
Section 4 describes a pattern-matching technique for the
checkerboard pattern in which we show that the simple
epipolar geometry of connected feature points and feature
edges is sufficient to find the corresponding positions of seg-
ments of the checkerboard pattern. In Sect. 5, experimental
results are discussed. Finally, the conclusion of the paper is
given in Sect. 6.

2. Related Work

2.1 Checkerboard Recognition

The checkerboard-recognition process has usually started
from a corner-detection process. Then, the geometric re-
lations between the corners are analyzed to recognize the
checkerboard pattern. There are several approaches to the
detection of crossing corners. A common approach to find-
ing the checkerboard corners is to use universal corner de-
tectors such as those proposed by Harris [34] or Smith and
Brady [30]. However, these detectors require some manual
setting of thresholds, and usually produce too many redun-
dant corners that are not specific to the checkerboard cross-
ing corner.

Alternatively, the checkerboard pattern can be detected
as an array of regular rectangles or grid lines. Wang et
al. [11] and Bouguet [36] recognize the checkerboard’s cor-
ners as the intersections of horizontal and vertical lines.
However, this approach can find the corners only when
the checkerboard pattern is on a planar surface. Rufli et
al. [8] proposed a method for recognizing a checkerboard
pattern as a collection of rectangular areas, which resem-
bles the widely used cvFindChessBoardCorner function in
the OpenCV library [23], but is more robust with respect
to distortion and light-condition changes by using adaptive-
threshold techniques to generate the binary image and by
using image morphing at different levels to achieve the best
detection.

Recently, Sun et al. [6] proposed using a crossing-point
descriptor, generated by using neighboring pixels, to recog-
nize the corners of a distorted checkerboard pattern. This
method requires minimal space to detect the crossing cor-
ner robustly without the manual setting of thresholds. How-
ever, it requires the checkerboard pattern to be fully detected
for correspondence matching, with this requirement being
very difficult to satisfy in geometry-reconstruction condi-
tions that have occluded, discontinuous, or mosaic surfaces.

2.2 Edge Extraction

In most of the geometry-reconstruction techniques that use
light stripes or light grid patterns, edges are the target of the
pattern-extraction process because they contain dense infor-
mation about the object geometry. Pure feature-edge detec-
tion has been the subject of much research in image process-
ing, and various techniques have been proposed [30], [35].

However, these techniques are universal, and detect many
false edges that are not specific to the inner edges of the
checkerboard pattern. In existing checkerboard-recognition
techniques, edges are used to provide information about the
connections between the crossing points [6], [17]. However,
these edges are approximated by straight lines for detection
and noise-filtering purposes, but not for geometric informa-
tion.

In shape-acquisition techniques that use light stripes or
grid patterns, color may be used to identify horizontal and
vertical stripes [1], [7], [13], [29]. Edges are detected by fol-
lowing the peak response of catoptric light on different color
channels, which is heavily dependent on the quality of the
object’s surface and the light source. Therefore, the thresh-
olds for edge continuity and edge detection require manual
setting for different conditions. In that research, noise was
either neglected [1] or dominated by over-constraint condi-
tions [7], even though many false edges may have appeared
depending on the object being scanned.

2.3 Correspondence Matching

The research into structured light techniques for acquiring
3D geometry has been well investigated and summarized
by Forest and Salvi [18] and Blais [16]. Most techniques
using structured light patterns can be categorized as either
time encoded or space encoded, with the latter being more
suited to capturing dynamic objects. Space-encoded tech-
niques can be divided further into techniques that use local
spatial encoding of color [2], [20], [32] and techniques that
use projector–camera geometry constraints to solve the cor-
respondence of the feature points [1], [7]. Our work belongs
to this second category, and we will therefore discuss some
of the more relevant work here.

Correspondence-matching techniques that use epipolar
geometry have been widely used in one-shot shape acquisi-
tion systems. Maruyama and Abe [31] proposed using light
slits with random cuts. Tateishi et al. [9] used a multi-spot
laser projector to acquire a sparse 3D geometry of an object
at extremely high speed. These studies solved the corre-
spondence for each point by using its corresponding epipo-
lar line. This technique is easily implemented on a hardware
device to archive the high speed performance. However, the
density of the pattern is strictly limited, because if there are
more than two laser spots on an epipolar line, the correspon-
dence cannot be resolved. Watanabe et al. [10] improved the
measurement density by using massively parallel processors
to track the corresponding laser spots on epipolar lines for
a dense array (33 × 33). They need an initialization phase
to find the corresponding position for each laser spot, and
if the tracking is lost, they cannot solve the corresponding
problem for each image.

Koninckx and Gool [13] used epipolar geometry to en-
code vertical stripe patterns, but they also used distinguish-
able color stripes to support the correspondence-matching
process. The use of color makes the pattern easily affected
by surface color and light conditions. In addition to stripe
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patterns, 2D grid patterns have been investigated. Hu and
Stockman [33] suggested using a grid pattern and showed
that the problem can be simplified greatly. The observed
grid in the camera is matched to the projected pattern by ex-
ploiting a number of geometric and topological constraints.
Proesmans et al. [29] also used a grid pattern with a belief-
propagation method to reduce noise. However, these meth-
ods impose the conditions that the object surface must be
continuous and that most of the pattern must be recovered
successfully for pattern matching to be archived.

Recently, Furukawa et al. [7] proposed using a grid pat-
tern comprising horizontal and vertical colored lines. The
constraint of coplanarity of the horizontal and vertical pro-
jection planes was used to solve for the correspondence.
However, the process of performing a singular-value de-
composition on a large and very sparse matrix is very time
consuming. Similarly to Furukawa et al., Ulusoy et al. [1]
also used a grid pattern with horizontal and vertical colored
lines. To resolve the correspondence problem, Ulusoy et
al. used an epipolar-geometry approach, which resulted in a
shorter calculation time. Ulusoy et al. also proposed using
De Bruijn spacing patterns instead of the random spacing
patterns proposed by Furukawa et al. for more robust evalu-
ation results. By using a nonuniform spacing pattern [1], [7],
the density of the pattern will be decreased, and the detail of
the surface geometry will not be well constructed where the
space between the grid lines is sparse.

3. Checkerboard Recognition

In this section, we propose an automatic checkerboard-
recognition technique that is robust with respect to dynamic
conditions such as illumination, color, surface distortion,
and discontinuity. The recognition process analyzes the
checkerboard pattern as a mesh of feature points connected
by feature edges. In this process, no threshold value is re-
quired for crossing-point detection. The thresholds for iden-
tifying the feature edges’ continuity are calculated adap-
tively and dynamically based on connected feature points.
This automatic checkerboard-recognition technique enables
a handheld 3D acquisition device to be used in dynamic con-
ditions.

We use three steps to detect the checkerboard pattern.
First, crossing feature points are detected and refined to sub-
pixel accuracy. In the second step, the relatively vertical
and horizontal feature edges are detected by extending the
neighboring pixels of the detected feature points in the di-
rectionally filtered edge images. After this processing, noise
is inevitable. In the third step, we propose a priority-based
propagation method to label the feature points, and then ap-
ply topological constraints to eliminate noise at the graph
level. Finally, feature points and feature edges are labeled
by their relative position to prepare for the checkerboard-
matching process.

3.1 Feature Point Detection

The feature-point-detection process is essential to the ro-
bustness of the projection pattern because it is used in the
search for corresponding positions in the checkerboard pat-
tern. In the first step, the regions of each crossing point
are approximately detected using the method proposed by
Sun et al. [6]. This method detects a checkerboard crossing-
point by using a descriptor, generated by linear extension of
its neighboring points. The intensity of the neighboring pix-
els in a circle around a crossing point will vary from low to
high and high to low twice. This method detects all points
that have four alternating black and white areas surrounding
them. Consequently, it requires no manual setting of thresh-
olds related to light intensity. To increase the positional ac-
curacy of the feature points and to eliminate wrongly de-
tected crossing points at the pixel level, adjacent points are
grouped and the crossing-point position is calculated by tak-
ing the mass center of all points in the same group.

Next, we apply the radial saddle-point approximation
algorithm to refine the detected crossing points to sub-pixel
accuracy. We use the method described in the OpenCV li-
brary [23] to find the sub-pixel radial saddle point iteratively.
This method does not require the radial saddle point to be
inside the initial pixel position, and it gives good conver-
gence after several iterations. Finally, we use a linear fil-
ter, as shown in Fig. 2(a), to categorize the feature points
into two categories, namely P+ and P–, depending on their
directional characteristics (Figs. 2 (b) and 2 (c)). A feature
point P is classified into the P+ category if its convolution
integral with the linear filter results in a plus response, and
classified into the P– category if its convolution integral with
the linear filter results in a minus response. The linear filter
in Fig. 2 (a) work correctly when categorizing feature points
that are relatively aligned in the horizontal or vertical di-
rections. By aligning the posture of the projector and the
camera such that the projection area appears to be relatively
parallel to the camera images, we can make sure that the
feature points are always classified properly.

3.2 Feature Edge Detection

Our aim is to extract automatically the step edges that are
the boundaries of the black and white areas in the checker-
board pattern with high accuracy. We present two tech-
niques for eliminating unrelated feature edges automatically

Fig. 2 Categories for feature points: a) linear filter for the feature-point
categorization, b) P+, and c) P–.
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Fig. 3 Edge filters and corresponding categories for feature edges:
a) H–, b) H+, c) V–, and d) V+.

Fig. 4 Feature edges and their relative positions to feature points.

and for changing the edge-detection threshold adaptively, so
that separated edges are detected separately and each edge
is detected continuously in a dynamic environment.

To limit the detected edges to only those belonging to
the checkerboard pattern, we note that there are exactly four
edges connected to each feature point, so that we can de-
tect feature edges based on their connection with the de-
tected feature points. The feature edges are distorted by the
geometric projection, but their directions will remain rela-
tively aligned to the horizontal or vertical axis when epipo-
lar lines are relatively aligned to the vertical or horizontal
axis. To detect the feature edges, we first use 3 × 3 Sobel
filters (Fig. 3) to differentiate the image in four different di-
rections. Based on the direction of the filters, the edges in
the images are divided into four different categories, namely
H+, H–, V+, and V–.

The feature edges must be at positions where the con-
volution integral between the filters and the image is locally
maximal. However, because of the symmetry property, the
values given by a convolution integral of the original image
with edge filters will be zero or very small at the feature-
point positions (Fig. 4). We can search for feature-edge to
feature-point connections by looking for pixels in the neigh-
borhood of the feature points. From a feature point, at a
distance d equal to half of the size of the edge filter, the con-
volution integral values are not affected by the symmetric
geometry of the feature point, and its maximal value should

Fig. 5 Neighboring relations between the feature edges and the feature
points.

be the starting point of an edge. In the case of the 3 × 3
Sobel filters, a distance of two pixels is sufficient to decide
the connectivity between the feature points and the feature
edges.

Consider a feature point P(xp, yp) and a feature edge
E that connects to the feature point P at one end E1(x1, y1).
Their relative positions will satisfy the conditions of Eqs. (1)
and (2):

E ∈ H± ⇒
{

x1 = xp + σd
yp − 1 ≤ y1 ≤ yp + 1

(1)

E ∈ V± ⇒
{

xp − 1 ≤ x1 ≤ xp + 1
y1 = yp + σd

(2)

Here, parameter σ is the direction relation between the fea-
ture point and the feature edge, where σ equals 1 if the fea-
ture point and the feature edge are of the same sign and σ
equals −1 if the feature point and the feature edge are of
different signs. Their neighboring relations are expressed
in Fig. 5. The edge’s starting point E1 is decided by taking
the pixel with the maximum response (Eq. (3)) in the range
expressed by Eqs. (1) and (2).

(x̂1, ŷ1) ≡ arg max
x1,y1

I(x1, y1) (3)

where I(x, y) is a convolution integral value between an
original image and appropriate edge filters. The edge-
detection process is continued by extending the detected
pixel En(xn, yn) in an edge E in the direction specified by
σ in Eqs. (4) and (5).

E ∈ H± ⇒
{

xn+1 = xn + σ
yn − 1 ≤ yn+1 ≤ yn + 1

(4)

E ∈ V± ⇒
{

xn − 1 ≤ xn+1 ≤ xn + 1
yn+1 = yn + σ

(5)

By extending to the adjacent pixels with maximum response
in the filtered image in the corresponding direction for each
feature edge, we obtain the feature edges connecting to each
feature point (Eq. (6)).

(x̂n+1, ŷn+1) ≡ arg max
xn+1,yn+1

I(xn+1, yn+1) (6)

with the condition of Eq. (7):

I(xn+1, yn+1) ≥ αI(x1, y1) (7)

Here, α is used to decide the continuity of the detected fea-
ture edge. The edge-extension process will finish when the
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response of the next pixel is smaller than the threshold, or
the next pixel has been labeled with another edge. An edge
connecting two feature points will have two different conti-
nuity thresholds at its ends. In this case, the edges may be
extended from different starting points and then merged into
one if they belong to the same feature point category (e.g.
P+ or P–). In our implementation, the threshold for edge
continuity is taken to be half the value at its starting point
(α = 0.5). From our experiments, this value is adequate for
edge extraction under most conditions.

Finally, the pixel-scale edges are refined to sub-pixel
accuracy. In this research, we adopt sub-pixel edge es-
timation based on a quadratic approximation to find lo-
cal derivative maxima in the filtered image. In our imple-
mentation, this method is adequate, calculating sub-pixel
edges rapidly and robustly. However, many sub-pixel edge-
detection techniques have been proposed, and they could be
used to achieve possibly better results.

3.3 Noise Filtering and Labeling Scheme

During the detection processes for feature points and feature
edges, various types of error may occur, resulting from sur-
face mosaic colors, occlusion, or discontinuity. For the fea-
ture points, errors involve false detection and misdetection.
For the feature edges, errors involve disconnection and false
detection. Misdetected feature points and discontinuous fea-
ture edges will result in holes in the reconstructed geome-
try, but do not affect the accuracy of the correspondence-
searching process. On the other hand, falsely detected fea-
ture points and feature edges will result in inaccurate geom-
etry.

An edge can connect with at most two feature points at
a time at its ends, so any feature points that connect with the
feature edge in the middle are considered noise. This kind of
noise may occur as a result of the adaptive feature-edge de-
tection process, and can be filtered out by these constraints.
The average length of the edges that connect with two dif-
ferent feature points is also used to limit the proper length of
the edges that connect with only one feature point. However,
there may still be errors caused by occlusion or discontinu-
ity on the object’s surface, and the error may spread during
the labeling process.

For our implementation, we propose using topological
constraints to eliminate noise during the labeling process.
This approach is not new, having been used to recognize a
checkerboard pattern by Chang et al. [17] and by Proesmans
et al. [29] to eliminate noise in a grid pattern. However, by
categorizing the feature points and the feature edges, we can
filter out the noise more efficiently.

In Fig. 6, the labeling process that starts from a ran-
dom origin point (0, 0) may result in inconsistency at points
(3, 1), (3, 2), and (3, 3). These errors can be detected by
checking the consistency of the loops in the groups. How-
ever, in the example shown in Fig. 6, it is not obvious where
the error is. The feature points at positions (1, 0) and (2, 0)
may be falsely detected, or the edges between feature points

Fig. 6 Inconsistent labeling.

Fig. 7 Propagation based on the feature point’s priority, where the
number on each feature point is its number of neighboring points.

(0, 1)–(3, 1), (0, 2)–(3, 2), and (0, 3)–(3, 3) may be in error
because of edge collapse. Edge collapse is rare and falsely
detected feature points are more common. This is because
falsely detected feature points can be noise or any cross-
ing corner in the image itself that does not belong to the
checkerboard pattern. On the other hand, the edge collapse
only occurs on some specific mosaic patterns or partly oc-
cluded surfaces. We solve the problem of the inconsistency
by setting a priority for the detected feature points based on
their number of neighbors, and then start the labeling pro-
cess with points of high priority, moving towards points of
lower priority (Fig. 7). This method takes the precedence
of eliminating noise corners over false edges, and therefore
may result in false 3D reconstruction results. This issue is
discussed further in Sect. 5.3.

The origin for the labeling process is taken to be at the
middle of the points of highest priority, which is labeled
(0, 0). The neighboring points of the labeled point are then
searched and put into a queue in order of their priority, and
the labeling process continues from the point of the high-
est priority in the queue. Feature points of lower priority
can then be labeled in more than one way. If such a point
(of low priority) is labeled inconsistently, it is interpreted as
noise.

4. Checkerboard Matching

To resolve a correspondence problem, we use the epipolar
geometry of the projector–camera system. Epipolar geom-
etry has been used to solve the correspondence problem in
computer vision for a long time ago. However, it is diffi-
cult to solve the correspondence for a dense pattern when
the crossing points are detected at low accuracy. In this re-
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search, we propose a method of using the epipolar geometry
of groups of feature points to solve for the correspondence.
We also prove the uniqueness of the correspondence result
for the group of feature points if the group is sufficiently
large.

4.1 Epipolar Geometry and Correspondence Matching

In a rigidly attached and calibrated projector–camera sys-
tem, a point Pi(xi, yi, 1) in the projection pattern is mapped
to a point P′i(x′i , y

′
i , 1) in a camera image (Fig. 8). For the

calibrated camera, when the distance from the projector–
camera system to the screen changes, the trajectory of the
mapped point P′i is an epipolar line l′i(x′i , y

′
i , z
′
i). The epipolar

line l′i in the camera’s image is calculated from the position
Pi(xi, yi, 1) in a projection pattern by the equation:

l′i = FPi (8)

and conversely:

li = FT P′i (9)

Here, F is a fundamental matrix of the rigidly attached
projector–camera system and it is calculated by the calibra-
tion process. The ambiguity is that not only point Pi but also
all points lying on the corresponding epipolar line li in the
projection pattern will map to the same epipolar line l′i in the
camera’s image (Fig. 8). This ambiguity is inevitable when
the checkerboard pattern is dense.

In a checkerboard pattern, this ambiguity will be re-
solved if there is a connection clue between at least two
feature points in the camera image of different epipolar
lines. Consider the case of Fig. 9, where multiple points
{P1, P2, . . . , Pn} of the same feature point category on the

Fig. 8 Epipolar geometry and the dis-ambiguity method when feature
points lie on the same epipolar line.

projection pattern lie on an epipolar line l0. Under ideal con-
ditions, this means that the Euclidean distance from those
points to the epipolar line l0 should be 0 (Eq. (10)).

d(P1, l0) = d(P2, l0) = · · · = d(Pn, l0) = 0 (10)

The corresponding feature points {P′1, P′2, . . . , P′n} in the
camera image will lie on the corresponding epipolar line
l′0, meaning that their correspondence will not be distin-
guishable by using individual epipolar lines. However, the
ambiguity is resolved if their neighboring points on differ-
ent epipolar lines are identified. If a feature point P′i in
the camera image has a neighboring feature point N′i on
a different epipolar line l′i , then its corresponding epipolar
line li in the projector image is defined by using Eq. (9).
Because of the grid structure of the checkerboard pattern,
the line that goes though the feature points {P1, P2, . . . , Pn}
and the line that goes through their neighboring feature
points {N1,N2, . . . ,Nn} will be parallel together as shown in
Fig. 8 (c). As the feature points {P1, P2, . . . , Pn} are on the
epipolar line l0, then the epipolar lines going through their
neighboring points {N1,N2, . . . ,Nn} will be separated, if the
epipole on the projector image ep is not at infinity. By taking
the neighboring point Ni is the point with the smallest dis-
tance to the corresponding epipolar line li (Eq. (11)) as the
corresponding feature point of N′i (Fig. 9 (c)), we can conse-
quently resolve the ambiguity for the feature point Pi via its
connection to the feature point Ni:

ĵ ≡ arg min
0≤ j≤n

d(Nj, li) (11)

In general, because of noise or other external factors, the
condition in Eq. (10) does not always hold. In a dense
projection pattern, when the number of feature points in-
creases, the resolution angle (and the distance) between

Fig. 9 Disambiguation by using the connection with the neighboring
feature points.
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corresponding epipolar lines becomes very small. There-
fore, an epipolar line is considered to go through a fea-
ture point if its distance to the feature point is minimum
or smaller than a tolerance value ε. To increase the accu-
racy of the correspondence-matching process, we can use
all feature points in a group to find the corresponding posi-
tion for that group. The distance to corresponding epipolar
line (Eq. (11)) will reach the minimal value when it comes
to the true correspondence. We can therefore sum the cor-
responding distances for all points in the same group to get
a better-discriminated evaluation result based on the follow-
ing procedure.

For the case of a group of m+1 connected feature points
Ω′t = {P′t0, P′t1, . . . , P′tm} (detected as a part of the checker-
board pattern) in the camera image, if the corresponding po-
sition of one feature point in the group is defined, the cor-
responding positions of other points in the group are conse-
quently defined as discussed above. Without loss of gener-
ality, instead of finding the corresponding positions for all
points in the group, we can find the corresponding position
for a feature point P′t0 of the group Ω′t . In our implemen-
tation, we use the feature point at the origin position (0, 0)
as shown in Fig. 7 to find the correspondence. We call the
collection of candidate corresponding positions of feature
point P′t0 is Φt = {P0

t , P
1
t , . . . , P

n
t }, where n + 1 is the num-

ber of candidate corresponding positions. These candidate
corresponding positions are chosen by taking the crossing
corners that have a distance to the corresponding epipolar
lines lt0 of the feature point P′t0 smaller than the threshold ε
(Eq. (12)).

d(Pi
t, lt0) < ε (12)

The candidate corresponding points must be in the same cat-
egory as the selected feature point P′t0 (Fig. 8 (c)). Assuming
that, the corresponding point of the feature point P′t0 is Pi

t0 ∈
Φt, then the corresponding points for other feature points in
the group Ω′t are consequently Ωi

t = {Pi
t0, P

i
t1, P

i
t2, . . . , P

i
tm}

(Fig. 10). The temporary corresponding positions Pi
t j ( j =

0, . . . ,m) are derived from Pi
t0.

The sum of the distance Dti of all temporary corre-
sponding feature points Pi

t j in the group Ωi
t to their corre-

Fig. 10 Correspondence matching for a group of feature points (3 × 3).
(The correspondence epipolar lines for feature points in P– category (blue-
square points) are not drawn for clarity, but included in calculation.)

sponding epipolar lines is calculated by Eq. (13):

Dti = Dt(P
i
t0) =

m∑
j=0

d(Pi
t j, lt j) (13)

where lt j is the epipolar line corresponding to the feature
point P′t j in the group Ω′t . lt j is calculted from P′t j via
Eq. (9), and does not change for different candidate corre-
sponding position Ωi

t (Fig. 10). The sum of the distances Dti

indicates the error for different corresponding positions Ωi
t

for the group Ω′t . We can therefore use Dti as the evalua-
tion function to find the corresponding position of Ω′t . The
average distance of each feature point to its corresponding
epipolar line can be calculated by taking the average value
of Dti (Eq. (14)):

dti = Dti/m (14)

The corresponding position Pt0 for the feature point P′t0 is
taken to be the point at î that minimizes the sum of distances
Dti or the average distance dti (Eq. (15)):

î ≡ arg min
0≤i≤n

Dt(P
i
t0) ≡ arg min

0≤i≤n
dti (15)

When the corresponding epipolar line of a feature point in
a group is determined based on values obtained through
(Eq. (15)), corresponding epipolar lines of other feature
points in the groups are determined accordingly.

4.2 Conditions for Correspondence Matching

Epipolar geometry and the grouping of feature points can
be utilized to resolve ambiguity, as described in Sect. 4.1.
The accuracy of the matching process depends on four main
factors: the accuracy of the feature-point detection, the ac-
curacy of calibration process, the size of the groups, and
the projector-camera system settings. Detecting the crossing
points with high accuracy in accordance with high calibra-
tion accuracy result in more reliable corresponding evalua-
tion values; enabling us to solve the correspondence prob-
lem for a dense checkerboard pattern.

On other hand, a larger group of feature points results
in a more discriminating evaluation value. The sizes of the
groups depend mainly on the condition of the object’s sur-
face. We restrict the corresponding positions of groups so
that all feature points with high priority in a group must
be inside the checkerboard pattern, and that feature points
with high priority in different groups do not overlap each
other. These restrictions enable us to reduce the number of
candidate corresponding positions, which increase the per-
formance of the corresponding matching in its accuracy and
speed. In case there are several groups, the correspondence
matching process is carried out by the order from larger to
smaller groups. For the checkerboard pattern, we also limit
the corresponding feature points to those in the same cate-
gory (Fig. 8). This means that the correspondence of feature
points in category P+/P– must be crossing points in category
P+/P– in the projection pattern.
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Finally, the condition for the existence of a minimum
value in Eq. (11) is that the epipoles in the camera image
and the projector image are not at infinity. This means that
the projector and the camera must not be aligned parallel to
each other in the direction of their axis. On the contrary, if
the epipoles are closer to the image centers, the distances
between different feature points to the epipolar lines will be
more discriminating.

5. Configuration and Experiment

5.1 Configuration

We have implemented a handheld projector–camera system
to investigate the efficiency of our proposal for one-shot ge-
ometry acquisition in a dynamic environment. In our imple-
mentation, a Logicool camera (QCAM-200V 640×480) and
a Mitsubishi projector (DLP-PK20 800×600) are rigidly at-
tached as shown in Fig. 11. The camera works at 30 fps.
We calibrated the projector–camera system by extending
the method for camera calibration proposed by Zhang [22]
to the projector, and by using a calibration rig to measure
the relative positions of the projector and the camera via a
computer-vision technique. After the calibration process,
the projector’s intrinsic parameters, the camera’s intrinsic
parameters, and the external parameters relating the projec-
tor to the camera will have invariant values.

In our implementation, the camera center is located at
(108.5, 12.7, 81.4) mm relative to the projector center, and
the Y-axis rotation is 12◦. Because the focal length of the
projector is longer than that of the camera, the projection
area appears in the camera image at a resolution of approxi-
mately 320 × 240 pixels.

The working range of the scanning system is from
30 cm to 100 cm. The region in the camera image where
the projection pattern appears (the region of interest) is a
rectangle of 500 × 300 pixels. Using a computer with an
Intel Core 2 Duo 2.4 GHz CPU and 2 GB RAM, our imple-
mentation achieved a geometry-reconstruction speed of 12
to 13 fps for a full 30 × 20 checkerboard pattern and 5 to
6 fps for a full 40 × 30 checkerboard pattern.

5.2 Experiment

To compare the robustness of the proposed checkerboard-

Fig. 11 The rigidly attached handheld projector-camera system.

recognition method with existing techniques, we carried out
experiments with the three sample images shown in Fig. 12.
These images were created by displaying a relatively sparse
20 × 15 checkerboard pattern from the projector and cap-
turing the images statically via the attached camera. The
first image (Fig. 12 (a)) is the planar surface of a wall. The
second image (Fig. 12 (b)) is a corner of multiple planar sur-
faces of different colors and illumination-reflection condi-
tions, and the third image (Fig. 12 (c)) is a doll that has a
curved surface with high-contrast mosaic areas.

We compared our checkerboard corner-detection
method with two other methods, namely the method pro-
posed by Rufli et al. [8] and the widely used Harris corner
detector [34] because many checkerboard-detection tech-
niques use a Harris corner detector for the checkerboard
pattern-detection process [15], [17]. The method proposed
by Rufli et al. was implemented to detect black rectangu-
lar areas, so we converted the sample images into negative
black and white images, as shown in Fig. 13. Both the Harris
corner-detection technique and the checkerboard-detection
technique proposed by Rufli et al. require some thresholds
in the detection process. We chose the best detection re-
sults for these techniques to compare with our automatic
checkerboard-detection technique.

The precision and recall for each detection technique
are summarized in Table 1. The results for corner detec-
tion based on the Harris filter are shown in Fig. 13 (a) with
a Harris-recommended threshold (k = 0.01 in [34]) and var-
ious quality factors (q in [23]). We can decrease the qual-
ity factor (q) for a better detection rate (recall), but overall,
the Harris corner detector produces much noise unrelated to
the checkerboard corners. The method proposed by Rufli et
al. (Fig. 15 (b)) can detect checkerboard corners with quite
high precision (Table 1). However, it requires a relatively
uniform areas for the rectangular areas to be detected.

Figure 13 (c) shows the corner detection results for dif-
ferent sample images by using the detector by Sun et al.
before the noise filtering process. The larger recall (Table 1)
proves that the method proposed by Sun et al. can detect the
checkerboard corners more efficiently than that proposed by
Rufli et al., because the former method requires less space
for detecting a corner. However, when the checkerboard pat-
tern is displayed on a non-uniform surface many corners are

Fig. 12 Sample images for experiment.



344
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.2 FEBRUARY 2011

Fig. 13 Checkerboard detection results for different sample images using different methods.

Table 1 Precision and recall of checkerboard detection techniques in term of the number of detected corners.

Harris corner Rufli et al. Before noise filtering (Sun et al.) After noise filtering
Sample Precision Recall Precision Recall Precision Recall Precision Recall

Planar surface 79.17 100 88.67 100 100 100 100 100
Corner (Multi-planar) 50.65 87.97 94.80 82.33 81.09 95.11 99.20 92.86
Doll (Curved surface) 40.66 81.15 98.32 67.69 67.07 84.6 99.09 83.46

falsely detected, and therefore the detection precision dete-
riorates without the noise filtering. However, after the noise
filtering process by using topology constraints (Fig. 13 (d)),
the precision of the detected corners is improved remark-
ably (Table 1); The precision of the method with topology
constraints is close to 100% for all the sample images while
its recall is still better than that of the method proposed by
Rufli et al.

In our algorithm, the accuracy of the detected feature
edges depends directly on the accuracy of the feature points,
because the edges are detected by adaptively expanding the
detected feature points in different directions. The high ac-
curacy of feature-point detection also means that the feature
edges are detected with high accuracy. We compared the
results for the edge-detection process with the widely used
Canny edge-detection technique. The results for an exam-
ple image are shown in Fig. 14. We can confirm that the
Canny filter may not detect all the edges of the checker-
board pattern and may include many unrelated edges using
the selected thresholds. On the other hand, our algorithm
can detect the inner edges of the checkerboard pattern with

high accuracy. The edges are detected separately, enabling
them to be analyzed easily. It is worth noticing that the edge-
detection process is self-adaptive and automatic, making it
robust with respect to different light conditions and color
changes.

To verify the accuracy of the proposed method, we
measured a blank planar surface from different distances by
using a 40 × 30 checkerboard pattern, and calculated the
depth distances errors between each of the 40 × 30 points
on the surface and a reference point on the projector. Fig-
ure 15 shows the averaged distance errors and standard de-
viations among these individual points. Each distance on
the horizontal axis of the figure means the distance between
the reference point in the projector-camera system and the
planar surface. The measured depth distance and standard
deviations of the individual points were calculated by us-
ing 200 sample images. Figure 15 proves that the proposed
method could conduct stable distance measurements within
the 100 cm distance; for example, the standard deviation at
80 cm was less than 4.5 mm. The standard deviation in-
creases in proportion to the distance. However, the mea-
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Fig. 14 Comparison between edge detection techniques: a, b) edges detected using a Canny filter,
c) edges detected by adaptively expanding from feature points, and d) edges detected after noise filtering
using topology constraints.

Fig. 15 Measured distance errors to a planar surface. The error bar is the
standard deviation of measurement for each feature points.

Fig. 16 Distances of candidate crossing points to an epipolar line and
their ambiguity (the blue-circle means the true correspondence and the red-
triangles mean the wrong correspondences due to noise).

sured distance error does not show the same tendency. This
may be because of human errors when measuring the dis-
tance from the reference point to the planar surface.

To verify the convergence and correctness of the eval-
uation function (Eq. (13)) in the correspondence-matching
process, we measured the value of the evaluation function
for different group sizes at the center of a 50 × 40 checker-
board pattern. Figure 16 shows the distances of cross-
ing points in the checkerboard pattern to the corresponding
epipolar line of a single feature point. The candidate cor-
responding positions when the threshold value ε (Eq. (12))
equals 1 pixel are marked in circle and triangle areas. The
true corresponding point is circled, but the ambiguity (points

Fig. 17 Average of corresponding distance for groups of 5 × 5 feature
points (influence of noise is suppressed).

Fig. 18 Average of corresponding distances for groups of 10×10 feature
points (influence of noise is more clearly suppressed).

in triangles) is not resolvable by using only epipolar geom-
etry. Figures 17 and 18 show the average corresponding
distances (Eq. (14)) for all points in groups of 25 (5 × 5)
and 100 (10 × 10) feature points. By measuring the corre-
spondence for a group of connected feature points, the am-
biguity about each feature point can be resolved as have dis-
cussed in Sect. 4.1. The sum of corresponding distances for
larger groups discriminates better and converges faster, and
is therefore more robust for the correspondence-matching
process.

Several experiments were conducted with deformable
and rigid real objects to investigate the robustness of the
proposed method. The surface of the doll (Rirakuma) can
be scanned by a 40 × 30 checkerboard pattern as shown in
Fig. 19. However, there remain holes in the areas of the eyes
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Fig. 19 Scanning a doll: a) doll under 40 × 30 projection pattern, b) ex-
tracted edges, c) recognized checkerboard pattern and d, e, f) different view
of doll geometry.

Fig. 20 Scanning a human face: a) human face under projection pattern,
b) recognition results indexed by color, and c, d, e) different views of face
geometry.

and mouth of the doll. The holes are partly because checker-
board detection has failed in those areas, and also because
of limitations in the triangulation-creation process. In future
work, we will seek a better method for triangulation to solve
this problem. Similarly a human face can also be scanned
with the same pattern, as shown in Fig. 20.

Although our current setup focuses on the mobility and
the robustness of the system under dynamic conditions, and
only a low-resolution Web camera is being used, the sys-
tem can capture the geometry of a complex object such as
a human hand (Fig. 21). The capture results for a colorful
and high-contrast object such as the puppet shown in Fig. 22
(Kyoro-chan) and the surfaces with large discontinuity as
shown in Fig. 23 may be evidence supporting the robustness
of the detection technique.

5.3 Discussion about the Limitations of the Proposed
Method

Currently, the proposed technique has several limitations
mainly in the image processing process. They are the den-
sity of the checkerboard pattern, the surface distortion, the

Fig. 21 Scanning an object with complex geometry: a) a hand under
a 40 × 30 projection pattern, b) recognized checkerboard pattern, and c,
d) hand geometry from different viewpoints.

Fig. 22 High-contrast colorized object (Kyoro-chan): a) different views
of the object, b) checkerboard recognition results, and c, d) reconstructed
geometry in different views.

Fig. 23 Reconstruction of geometry of discontinuous surfaces: a) pro-
jected patterns, b) camera images, and c) reconstructed geometry.

limited size of mosaic areas and the surface occlusion that
results in edge collapses. The checkerboard recognition pro-
cess requires several layers of neighboring pixels to identify
a crossing corner. The resolution of the checkerboard pat-
tern is limited by the minimum number of the layers to rec-
ognize a crossing point. Therefore this technique cannot ac-
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quire the depth-map of an object for each pixel. Our current
technique can reduce the number of pixels between crossing
corners to three, if only two layers are used for the checker-
board recognition. However, an extremely dense checker-
board pattern is too sensitive to noise. Moreover, when a
measured surface is distorted, the distance between crossing
points may become smaller in the camera image. A sparse
checkerboard pattern is therefore more robust to surface dis-
tortion, but it trades off against the resolution of acquisition
data. In our current implementation a web-camera attached
on a light weight projector is used. The area of the projected
checkerboard pattern in the camera image is 320 × 240 pix-
els (QVGA), and the averaged space between the corners is
5 or 6 pixels. One method for increasing the density of the
pattern to be successfully recognized is to use a high reso-
lution camera. For example, if a camera whose resolution is
1600 × 1200 pixels is used, the density of the checkerboard
pattern can theoretically be improved to 25 times as high as
the current density.

Finally, in the labeling process (Sec. 3.3), to keep the
consistency, we decided to ignore the collapsed edges and
removed inconsistent feature points. However, this assump-
tion is not always true. The edge collapse happens due to a
surface mosaic pattern or occlusions as shown in Fig. 24 and
can produce a failure 3D reconstruction result as shown in
Fig. 25. The collapsed edges may wrongly connect different
parts of the checkerboard pattern, and cannot be detected by
using topological constraints. In Fig. 25, an edge collapse
is detected through the feature points to which the corre-
sponding matching is not applicable (circled in red). Fur-
thermore, we can also detect the edge collapse based on the
value calculated by using the evaluation function. Wrong

Fig. 24 Edge collapse caused by occlusion.

Fig. 25 A false reconstruction result caused by edge collapse: a) pro-
jected checkerboard pattern, b) captured checkerboard pattern with edge
collapse and c) wrong reconstruction result. (Vertical eclipses show edge
occlusion areas and horizontal eclipses show areas where the correspond-
ing matching failed.)

connections of feature points result in wrong correspond-
ing epipolar lines. For example, a detected feature point P,
which is on an epipolar line lP, is corresponding to an epipo-
lar line lP′ . If the wrong connection is used, a large error in
the evaluation function is obtained (Eq. (13)). By using a
threshold for the distance of the corresponding positions to
the corresponding epipolar lines, or using a threshold for the
evaluation function, we can detect the false correspondence
matching result caused by the edge collapse.

6. Conclusion

In this paper, we have proposed a one-shot 3D acquisition
technique that uses a checkerboard pattern for structured
light projection. The checkerboard pattern does not require
any special position-encoding technique used by many ex-
isting studies. We have shown that, by using the local con-
nectivity of simply categorized feature points and feature
edges, the pattern can be analyzed robustly and is mini-
mally affected by surface colors, discontinuity, or occlu-
sion. The recognition technique is adaptive, and no man-
ual setting of threshold values is required during the de-
tection process, making this technique particularly suited
to geometry acquisition in dynamic environments. Our
checkerboard-recognition technique allows the recognition
of dense and distorted patterns, which is particularly de-
sirable for geometry-reconstruction systems. We have im-
plemented a handheld scanning system by using a mobile
projector and a Web camera to measure the geometry of a
nearby object, and users can check the reconstructed geom-
etry in real time.

In future work, we aim to merge 3D geometric data to
create a 3D model in real time. It is an advantage of the
handheld system that it can easily capture the geometry of
an object from different angles. By merging the captured
data, we can increase the accuracy of the model. We also
plan to make the pattern adaptive to the environment by dy-
namically changing its horizontal and vertical line density.
We believe that an adaptive pattern will produce a better 3D-
scanned result in a dynamically changing environment.
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