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Laplacian Support Vector Machines with Multi-Kernel Learning

Lihua GUO†a), Nonmember and Lianwen JIN†, Member

SUMMARY The Laplacian support vector machine (LSVM) is a semi-
supervised framework that uses manifold regularization for learning from
labeled and unlabeled data. However, the optimal kernel parameters of
LSVM are difficult to obtain. In this paper, we propose a multi-kernel
LSVM (MK-LSVM) method using multi-kernel learning formulations in
combination with the LSVM. Our learning formulations assume that a set
of base kernels are grouped, and employ l2 norm regularization for auto-
matically seeking the optimal linear combination of base kernels. Experi-
mental testing reveals that our method achieves better performance than the
LSVM alone using synthetic data, the UCI Machine Learning Repository,
and the Caltech database of Generic Object Classification.
key words: semi-supervised learning, manifold regularization, multi-
kernel learning, Laplacian support vector machine

1. Introductions

Supervised learning algorithms require a large amount of la-
beled data, which is often difficult or costly to obtain. Semi-
supervised methods offer an interesting solution for this re-
quirement, enable learning from both labeled and unlabeled
data. In semi-supervised classification, the ultimate goal is
to find a classifier that not only minimizes classification er-
rors with labeled examples, but also can be compatible with
the input distribution by monitoring values on unlabeled
points [1]–[3]. Based on different problem settings, semi-
supervised methods can be classified into two main cate-
gories: transductive learning (TL) [4] and semi-supervised
inductive learning (SSIL) [5]. Recent studies have revealed
that the success of SSIL depends on certain semi-supervised
assumptions about the distribution of the data [6], such as
the manifold assumption, which utilizes the fact that the dis-
tribution of the data has a low dimensional manifold. The
underlying geometry of the data can typically be captured
by representing the data as a graph, with samples as the ver-
tices, and pair-wise similarities between the samples as edge
weights. Based on this assumption, several graph-based al-
gorithms including the label propagation [6], Markov ran-
dom walk [7], graph cut [8], spectral graph transducer [9],
and low-density separation [10] algorithms have been pro-
posed in the literature. Recently, Belkin [11] proposed a ver-
sion of the Laplacian support vector machine (LSVM) that
used manifold regularization for inductive learning by con-
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structing a maximum-margin classifier and penalizing the
corresponding inconsistency with a similarity matrix. The
LSVM used kernel functions, which operated in the feature
space without ever computing the coordinates of the data,
but rather by simply computing the inner products between
all pairs of data. There are numerous forms of kernel func-
tions in common use, such as the Linear, Poly and RBF so
on. Since the feature space of data is not known, it should
be based on empirical considerations, i.e. what kind of ker-
nel parameters can be successfully presented for the feature
space of data, and the optimal parameters, such the types
and parameters of kernel, will be difficult to obtain. Kernel
parameters selection is conventionally performed through
repeated cross validation over a range of kernels and their
parameters. Unfortunately, the LSVM model is one of semi-
supervised learning framework, the unlabeled data cooper-
ate with the labeled data for learning together and the cross
validation is not used, so the LSVM still face the problems
of kernel selection.

Multi-kernel learning (MKL) is an attractive tool for
tracking many supervised learning tasks [12]–[14], and
MKL algorithms have achieved very good results with chal-
lenging real-world applications [15], [16]. Inspired by these
previous findings, our paper develops a new LSVM model
involving multi-kernel learning (MK-LSVM) to automati-
cally seek optimal parameters of kernel. Firstly, we anew
model the semi-supervised learning problem based on the
LSVM framework of Belkin [11], and change the single
kernel learning into multi kernel learning; secondly, in the
semi-supervision framework, we add the L2 norm regula-
tion; finally, we use the Newton’s descent method and iterate
optimizations to get the direct solution.

2. MK-LSVM Algorithm

Belkin [11] proposed an LSVM classifier based on the mani-
fold regularization, which extended the SVM by solving the
following problem:

min
f∈HK

1
l

l∑
i=1

(yi − f (xi))+ + γA ‖ f ‖2K +
γI

(u + l)2
f T L f (1)

The solution to the above problem is given by:

f ∗(x) =
l+u∑
i=1

a∗i K(x, xi) (2)

The kernel trick is a useful tool for mapping low-
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dimensional datasets to a higher number of dimensions for
seeking the optimal classifying plane, but defining the op-
timal parameters of kernel function is difficult, based on
the multi-kernel learning, the linear combination of given
base kernels may be the optimal solution. Inspired by that,
we introduce the multi-kernel learning into the LSVM, and
add norm regularization of kernel coefficients in the semi-
supervised learning framework. The L1 norm regularization
has been more popular because of sparse kernel mixture, but
the Lp for P>1 outperforms L1 MKL due to non-sparsity
in the kernel weight which avoids over-fitting in some situ-
ations [17], [18]. In our method, L2 norm regularization is
used for consideration that the system’s optimization is easy.

Support we have a set of base kernels K ={
k j(x, x)

}
, j = 1, 2, . . . ,m. In the laplacian support vector

machine with multi-kernel learning, we anew describe the
semi-supervised learning problem as:

min
f∈HK

1
l

l∑
i=1

(yi − f (xi))+ + γA ‖ f ‖2K
+

γI

(u + l)2
f T L f + γσ ‖D‖2

(3)

The solution is given by:

f ∗(x) =
l+u∑
i=1

a∗i
m∑

j=1

d jKj(x, xi) (4)

Where D =
{
d j

}
j = 1, 2, . . . ,m is the coefficient of the lin-

ear combination of base kernels. ‖ f ‖2K is the regulation of
the classifying function, which is aT DKa. f T L f is the man-
ifold regulation, L is the Laplacian matrix, ‖D‖2 is the l2
norm regularization of coefficients, γA, γI and γσ are the co-
efficients, which are used to balance the loss function and
three regularizations in function space. The optimal values
of these coefficients are always practical ones and set ac-
cording to some empirical consideration. Our method fo-
cuses on how to seek the optimal coefficients of base ker-
nels.

Often in SVM formulations, an un-regularized bias
term b is added to the above form. Again, the primal prob-
lem can be easily described as the following:

min
a∈Rl+u,ξ∈Rl,d∈Rm

1
l

l∑
i=1

ξi + γAaT DKa

+
γI

(u + l)2
aT (DK)T L(DK)a + γσDT D

(5)

subject to:

yi

⎛⎜⎜⎜⎜⎜⎜⎝
l+u∑
k=1

ak

m∑
j=1

d jKj(xi, xk) + b

⎞⎟⎟⎟⎟⎟⎟⎠ ≥ 1 − ξi, i = 1, . . . , l

ξi ≥ 0

i = 1, . . . , l

Introducing the lagrangian:

Ω(a, ξ, b, β, ς, d) =
1
l

l∑
i=1

ξi + γAaT DKa

+
γI

(u + l)2
aT (DK)T L(DK)a + γσDT D

−
l∑

i=1

βi

⎛⎜⎜⎜⎜⎜⎜⎝yi

⎛⎜⎜⎜⎜⎜⎜⎝
l+u∑
k=1

ak

m∑
j=1

d jKj(xi, xk) + b

⎞⎟⎟⎟⎟⎟⎟⎠ − 1 + ξi

⎞⎟⎟⎟⎟⎟⎟⎠
−

l∑
i=1

ςiξi

(6)

The dual requires the following steps:

∂Ω

∂b
= 0⇒

l∑
i=1

βiyi = 0

∂Ω

∂ζi
= 0⇒ 1

l
− βi − ςi = 0

using above identities, we formulate a reduced lagrangian
as:

Ω(a, ξ, b, β, ς, d) = aT (γADK

+
γI

(u + l)2
(DK)T L(DK))a + γσDT D

−aT DKJT YB +
l∑

i=1

βi

(7)

where J = [I, 0]l×l+u is a l × (l + u) matrix with I as l × l
identity matrix, Y = diag(y1, y2, . . . yl) and B = [βi]. Taking
derivative of the reduced lagrangian with respect to α:

∂Ω(a, ξ, b, β, ς, d)
∂a

= 0⇒

a =
1
2

(
γADK +

γI

(u + l)2
(DK)T L(DK)

)−1

DKJT YB
(8)

Define P = γAI + γI

(u+l)2 (DK)T L, It implies:

a =
1
2

P−1JT YB (9)

Ω(a, ξ, b, β, ς, d)

=

l∑
i=1

βi − 1
2

BT 1
2

(P−1JT Y)T DKJT YB + γσDT D
(10)

If fixing D, and define Q = 1
2 (P−1JT Y)T DKJT Y , then

semi-supervised learning problem can be:

minΩ(a, ξ, b, β, ς, d) ≡ min

⎛⎜⎜⎜⎜⎜⎜⎝
l∑

i=1

βi − 1
2

BT QB

⎞⎟⎟⎟⎟⎟⎟⎠ (11)

This function can be implemented using a standard SVM
solver with the quadratic form induced by the above matrix.
After solving this problem, the D can be updated. Taking
the derivative of the reduced Lagrangian with respect to D:
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Table 1 The proposed MK-LSVM algorithm.

MK-LSVM
Input: l labeled examples {(xi, yi)}li=1,u unlabeled examples
{(xi, yi)}l+u

i=l+1
Output: Estimated function f : 	n →	
Step1: Choose γA, γI , γσ, and randomly set the initial coefficient D ={
d j

}
Step2: Compute the gram matrix DK =

m∑
p=1

dpKp(xi, x j), where

Kp(xi, x j) is the base kernel matrix.
Step3: Compute graph laplacian matrix:L = P − W, where W is the
weights of data adjacency graph, and P is a diagonal matrix given by

Pii =
l+u∑
j=1

Wi, j.

Step4: Compute α∗ using Equations 11 and 9 together with the SVM
QP solver for soft margin loss.
Step5: Update the D using Equations 14 until Dnew − Dold < ε.
Step6: If the loss function in Equations 3 doesn’t decrease, then exit,
otherwise go to step 2

∂Ω(a, ξ, b, β, ς, d)
∂D

=

1
4

∂BT ((γAI + γI

(u+l)2 (DK)T L)−1JT Y)T DKJT YB

∂D
+2γσD

(12)

The function can be simplified as:

∂Ω(a, ξ, b, β, ς, d)
∂D

=
1
4
γABT YT JKJT YP−2B+2γσD (13)

Using the Newton descend method,

Dnew = Dold + δ
Ω

∂Ω/∂D

= Dold + δ
4Ω

γABT YT JKJT YP−2B + 8γσD

(14)

The pseudo code of MK-LSVM is summarized in
Table 1.

3. Experimental Results

Experiment 1: Two synthetic datasets, i.e. two-circle and
star, are chosen as the test datasets, and labeled examples
are marked using red and blue colors. The results of the
LSVM method [11] are shown in Fig. 1 to Fig. 4. Kernel
functions are RBF (K(x, xi) = exp{ ‖x−xi‖2

2σ2 }), with parameter
σ of 0.35 and 0.1, respectively. When using RBF function
(σ=0.35), the LSVM can perfectly classify the star dataset,
but fails with the two-circle dataset. However, when us-
ing the RBF function (σ =0.1), the two-circle dataset can
be successfully classified, but the star dataset cannot. This
result confirms that the optimal parameters of kernel func-
tion are difficult to obtain. Our MK-LSVM method chooses
a set of base kernels, such as Linear kernels (K(x, xi) =
x · xi), Poly kernels (K(x, xi) = ‖1 + xxi‖t) and RBF ker-
nels (K(x, xi) = exp{ ‖x−xi‖2

2σ2 }). The kernel parameters of Poly
are tpoly ∈ (2, 3, 4, 5, 6), and the kernel parameters of RBF
are σRBF ∈ (0.01, 0.05, 0.1, 0.2, 0.4, 0.8, 1.6, 3.2, 6.4, 12.8).

Fig. 1 Results of the two circles dataset using the LSVM [11] with RBF
kernels with a width of 0.1.

Fig. 2 Results of the two circles dataset using the LSVM [11] with RBF
kernels with a width of 0.35.

Fig. 3 Results of the star dataset using the LSVM [11] with RBF kernels
with a width of 0.1.

Fig. 4 Results of the star dataset using the LSVM [11] with RBF kernels
with a width of 0.35.

Since our method can automatically seek the optimal param-
eters, the two synthetic datasets can be successfully classi-
fied without the need to define the kernel parameters in ad-
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Fig. 5 Results of the star synthetic dataset using MK-LSVM.

Fig. 6 Results of the two-circle synthetic dataset using MK-LSVM.

Table 2 Three experiments: one-versus-rest multi-class average error
rates.

method SVM [20] LSVM [11] MK-LSVM (our method)
USPS (error) 23.60 12.67 12.50
Wine (error) 17.08 8.86 6.96
TEXT (error) 19.24 10.41 5.46

vance, as shown in Fig. 5 and Fig. 6.
Experiment 2: The UCI Machine Learning Reposi-

tory [19] (USPS, Wine) and TEXT categorization (available
at: http://vikas.sindhwani.org/manifoldregularization.html)
databases are used in this experiment. Comparisons are
made using inductive methods (SVM) [20] and LSVM [11].
For simulating the cross validation for overcoming the over-
fitting of model, we design one-vs-rest multi-class experi-
ments on USPS data with l=50 and u=1957 with 10 random
splits, the wine data with l=20 and u=158 with 10 random
splits, and the TEXT data with l=50 and u=1896 with 10
random splits. Each split is tested independently, and calcu-
lated the average performance. The average performance of
the different methods is shown in Table 2. From Table 2, it
can be seen that the average error rate of our proposed MK-
LSVM method is much lower than that of the LSVM and
SVM after testing ten splits.

Experiment 3: Generic Object Classification is a chal-
lenging topic in computer vision and machine learning. To
confirm the validity of our proposed algorithm, we use
Caltech-5 datasets [21], which include five objects, such as
plane, car, background, leaves and faces. The PHOW fea-
tures [22] are extracted from the datasets. Comparisons are
made with inductive methods (SVM) [20], regularized least

Fig. 7 Performance of inductive and semi-supervised classifiers.

squares (RLS) [11] and LSVM [11]. Figure 7 shows the per-
formance (error rate) of inductive and semi-supervised clas-
sifiers on unlabeled and test sets as a function of the number
of labeled examples in the training set. The benefit of unla-
beled data can be determined by comparing the performance
curves of inductive and semi-supervised classifiers, reveal-
ing that our proposed MK-LSVM method achieves the high-
est performance.

4. Conclusion

The conventional LSVM method is one of the most im-
portant semi-supervised learning methods in machine learn-
ing applications. However, the optimal kernel parameters
of LSVM are difficult to define. Based on the notion that
the linear combination of given base kernels can provide
optimal solutions, the present paper proposes an LSVM
method with multi-kernel learning based on manifold reg-
ularization. Because multi-kernel learning can automati-
cally determine the linear combination of base kernels for
adapting all datasets and applications, our method is able to
solve the shortcomings of LSVM kernel selection, which
is the main essential advantage of our method. We test
our MK-LSVM method using synthetic data, UCI Machine
Learning Repository data and Caltech-5 datasets. The re-
sults have revealed that our method can efficiently solve a
semi-supervised learning problem in the absence of training
datasets.

In multi-kernel learning, there are different norm reg-
ularizations. The L1 norm regularization is more popular
in previous studies because it outputs sparse kernel mixture,
but the Lp for P>1 maybe outperforms L1 norm regulariza-
tion due to non-sparsity of the kernel weight in some ap-
plications. The selection of best norm regularization is a
very interesting research topic in semi-supervised learning
framework that merits our future study.
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