
42
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

PAPER

Trust Management of Grid System Embedded with Resource
Management System

Sherihan ABU ELENIN†a), Nonmember and Masato KITAKAMI†b), Member

SUMMARY Recently, Trust has been recognized as an important factor
for Grid computing security. In this paper, we propose a trust model in Grid
system. It consists of Application Domain (AD), Client Domain (CD), Re-
source Domain (RD), and Trust Manager (TM). TM controls the relation-
ship between RD and CD depending on the trust level value of each client
and classification of each resource. Performance criteria are makespan and
utilization. We evaluated our trust model in six scheduling algorithms in
nine scenarios. The simulation results show that the proposed trust model
improves the performance in all scheduling algorithms.
key words: Grid computing, security, trust model, resource management
system

1. Introduction

The security problem is a hot topic in Grid research due
to the dynamics and uncertainty of Grid system. There are
three entities defined as users, applications and resources in
Grid environment. In such situation, users are vulnerable to
risk because of potential incomplete or distorted information
provided by malicious resources, and as Grid system grows
tremendously in size, the possibility of users attacking the
network by providing aggressive or vicious applications will
increase greatly. Trust management is an effective method
to maintain the credibility of the system and keep honesty
of entities [8].

Trust [1]-[3] is the firm belief in the competence of an
entity to act as expected such that this firm belief is not a
fixed value associated with the entity but rather it is subject
to the entity’s behavior and applies only within a specific
context at a given time. Trust management (TM) is col-
lecting, codifying, analyzing, and evaluating evidence relat-
ing to competence, honesty, security, or dependability with
the purpose of making assessments and decisions regarding
trust relationships [9]. Trust management systems (TMS)
must support analysis of trust and recommendation speci-
fications to detect conflicts and inconsistencies and support
trust queries related to decision making.

In this paper, we focus on trust management in Grid
computing. The proposed model is based on the trust model
proposed by Azzedin and Maheswaran [1]–[5]. They mea-
sured the performance of Grid system by applying their trust
model in a resource management system. They worked with

Manuscript received November 16, 2009.
Manuscript revised July 06, 2010.
†The authors are with the Graduate School of Advanced Inte-

gration Science, Chiba University, Chiba-shi, 263–8522 Japan.
a) E-mail: sherihan@graduate.chiba-u.jp
b) E-mail: kitakami@faculty.chiba-u.jp

DOI: 10.1587/transinf.E94.D.42

Minimum Completion Time heuristic, Min-min heuristic,
and Sufferage heuristic algorithms. In this paper, we ex-
amined six scheduling algorithms with our trust model. The
new point in the proposed trust model is the computing and
evaluating trust. Trust manager’s operations in the proposed
trust model make more control and management in the sys-
tem than Trust agent’s operations in the conventional trust
model.

2. Related Work

There is a lot of research on the trust in distributed systems.
Here we just mention some works that are deeply related to
our paper.

Abdul-Rahman and Hailes [10] proposed a trust model
for computing the trust for an agent in a specific context
based on the experience and recommendations. They ap-
plied and implemented their trust model in P2P networks.
Trust can have only four possible values; very trustworthy,
trustworthy, untrustworthy, and very untrustworthy. Each
agent stores the trust values for the agents with him/her in-
teracts and the recommender trust with respect to another
agent. So each agent has to store all history of past experi-
ences and received recommendations.

Azzedin and Maheswaran [1]–[5] defined the notion of
trust as consisting of identity trust and behavior trust. They
separate the “Grid domain” into a “Client domain” and a
“Resource domain”. They view trust in two steps: verifying
the identity of an entity and what that identity is authorized
to do, and monitoring and managing the behavior of the en-
tity and building a trust level based on that behavior. The
way they calculate trust is limited in terms of computational
scalability, because they try to consider all domains in the
network.

C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi [11]
presented trust management architecture for trust enhanced
Grid security. The trust model is capable of capturing var-
ious types of trust relationships that exist in a Grid system
and providing mechanisms for trust evaluation, recommen-
dations and update for trust decisions. The outcomes of the
trust decisions can then be employed by the Grid security
system to formulate trust enhanced security solutions.

3. Conventional Trust Model

Trust evaluation has always been a challenge for online
communities [10]. Most of the research focuses on P2P and

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers

ABU ELENIN and KITAKAMI: TRUST MANAGEMENT OF GRID SYSTEM EMBEDDED WITH RESOURCE MANAGEMENT SYSTEM
43

Internet. The problems of managing trust in Grid environ-
ments are discussed by Azzedin and Maheswaran [1]–[5].
Figure 1 shows the overall trust model in which the Grid is
divided into Grid domains (GDs). They associate two vir-
tual domains with each GD, namely a resource domain (RD)
to signify the resources within the GD and a client domain
(CD) to signify the clients within the GD. As RDs and CDs
are virtual domains mapped onto GDs, some instances of
RDs and CDs can map onto the same GD. Trust agents ex-
ist in each GD with mechanisms to update the GDs’ trust
tables, allow entities to join GDs and inherit their trust at-
tributes, and apply a decay function to reflect the decay of
trust between domains.

They define the trust level Table (TLT) as it is built on
past experiences and is given for a specific context. TLT as
shown in Table 1 has six values from very low trust level
to extremely high trust level. From TLT, they can compute
the offered trust level (OTL) for the composite activity be-
tween X and Y. There are two required trust levels (RTLs),
one from the client side and the other from the resource
side. If the OTL is greater than or equal to the maximum
of client and resource RTLs, then the activity can be pro-
ceed with no additional overhead. Otherwise, there will be
additional security overhead involved in supplementing the
OTL to meet the requirements. The trust level values used
in Table 1 range from very low trust level denoted as A, to
extremely high trust level denoted as F. They can compute

Fig. 1 Components of conventional trust model.

Table 1 Description of trust level table.

Trst Level (TL) Description

A very low trust level
B low trust level
C medium trust level
D high trust level
E very high trust level
F extremely high trust level

the expected trust supplement (ETS) for different RTL and
OTL values. The ETS values are given by RTL −OTL. The
ETS value is zero, when RTL − OTL < 0.

4. Proposed Trust Model

4.1 Overview

Figure 2 shows the proposed trust model in which the Grid
is divided into Grid domains (GDs). GD consists of applica-
tion domain (AD), resource domain (RD), and client domain
(CD). The functions of CD and RD are the same of the trust
model in [1]–[5]. Every client has a trust level value. This
value is one point real value from 0 to 1 to measure the trust
value for every client; those values are different from the
model in [1]–[5]. The examples of trust level values are 0.3,
0.4, 0.9, etc. These values are changed depending on the
trustee of the client. If he is trusted, his trust level value will
be incremented by 0.1 until it reaches the maximum trust
value; 1. If he isn’t trusted as shown in Fig. 3, his trust level
value will be decrement by 0.1 until it reaches 0. This means
this client isn’t trusted and can’t use the system at all. AD
is added to execute any resources. The system always has
the direct relationship between CD and RD. We have some
services as examples in RD such as print file, open file for
readable, copy file, rename file, move file, delete file, and
open file for writable. The system also has direct relation-
ship between CD and AD, but not examined yet.

Trust Manager (TM) is replaced in the model. TM’s
operations consist of Trust Locating, Trust Computing, and
Trust Updating. Trust Locating consists of Authentication
Controller and Certificate Authority Controller. Trust Lo-
cating is responsible of authentication of clients and checks
the certificate authority for every client. Trust computing

Fig. 2 Proposed trust model.

Fig. 3 Example of Client3 trying to use R4.

44
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Table 2 Comparison between conventional and proposed trust model.

Conventional Trust Model Proposed Trust Model

GD is divided into RD and CD. GD is divided into RD, CD,
and AD.

Trust agent’s functions are up-
dating the GDs’ trust tables,
allowing entities to join GDs,
and applying a decay function.

Trust manager’s operations con-
sist of Trust Locating, Trust
Computing, and Trust Updat-
ing. Every operation consists
of sub-operations.

Trust level’s values are from
1 to 6 (A-F); from very low
trust level to extremely high
trust level. These values are not
changed at all.

Trust level’s values are from
0 (untrusted) to 1 (trusted).
These values are changed to
reflect the trust level of every
client in every context.

There is no classification of re-
sources.

There is classification of re-
sources to access them easily;
low, medium, or high.

consists of Authorizing Controller, Trust Relationship Con-
troller, and Environment Evaluation. Trust Computing de-
termines the allowed resources for every client depending on
his/her trust level value and computes components required
for the evaluation of trust relationships. Trust Updating re-
turns to trust manager all updates in the system.

The proposed trust model likes the trust model [1]–[5]
in the structure of the Grid but they are completely different
in the management of the system and the way the trust is
computed as in Table 2.

4.2 Trust Manager

The following is the procedure of TM works:

1. Trust Manager is the first component to be activated
and it will assign a task to Trust Locating.

2. Trust Locating assigns a task to Authentication Con-
troller, and Authentication Controller wants to know
“who are you?”

3. Authentication Controller returns the authentication of
the client to Trust Locating.

4. Trust Locating requires certificate authority for both
host and client and sends the request to Certificate Au-
thority Controller.

5. Certificate Authority Controller returns the Certificate
Authority to Trust Locating.

6. Trust Locating returns information of locating of trust
to Trust Manager.

7. Trust Manager requires trust computing to compute
and evaluate the trust relationship and it will assign a
task to Trust Computing.

8. Trust Computing assigns a task to Authorizing Con-
troller to know the allowed resources to specific client
and checks the resource classification which is classi-
fied into three levels: low, medium or high resource. If
it is low, medium, or high, it will have value −1, 0, 1 re-
spectively. In Table 3 there are some of these resources
classification.

9. Authorizing Controller returns back the allowed re-
sources to Trust Computing.

Table 3 Examples of resources classification.

Rnumber Resource Fuzzy Logic Value

R1 Print −1
R2 Open as readable(R) −1
R3 Copy −1
R4 Rename 0
R5 Move 0
R6 Delete 1
R7 Open as writable(W) 1

Table 4 Proposed Trust Level Table (TLT).

Client Trust Value (X)
Client1 0.3
Client 2 1
Client 3 0.5
Client 4 0.3
Client 5 0.2

Table 5 Modification Trust Table (MTT).

Client Trust Value (X)
Client1 0.3
Client 2 1
Client 3 0.4
Client 4 0.4
Client 5 0.2

10. Trust Computing sends a request to Trust Relationship
Controller to get the trust value (X) from Trust level
Table (TLT) as in Table 4 to specific client to know
if he/she can use the required resource. If the client’s
trust value less than or equal 0.3, he/she can use the
low resources. If the client’s trust value greater than 0.3
and less than or equal 0.8, he/she can use the medium
and low resources. If the client’s trust value greater
than 0.8 and less than or equal 1, he/she can use the
high, medium and low resources and can also execute
applications.

11. Trust Relationship Controller returns the trust value of
client and he/she can use the required resource or not
to Trust Computing.

12. Trust Computing requires Environment Evaluation to
evaluate the trust. After evaluation, computing the new
trust value (Y); computation depends on if there is ex-
ception or not. If there is exception the trust value will
be decreased until it becomes 0, it means this client be-
comes untrusted, but if there is no exception the trust
value will be increased. If the trust value is the maxi-
mum trust value (X=1) it will not increase; and enter Y
in Modification Trust Table (MTT) as in Table 5.

13. Environment Evaluation returns the new trust value (Y)
to Trust Computing.

14. Trust Computing integrates the results of 9, 11, and 13
and returns computing result to Trust Manager.

15. Trust Manager sends two trust values; X from TLT and
Y from MTT; to Trust Updating.

16. Trust Updating makes the new updates and computes
the trust bit value depending on the increment or decre-

ABU ELENIN and KITAKAMI: TRUST MANAGEMENT OF GRID SYSTEM EMBEDDED WITH RESOURCE MANAGEMENT SYSTEM
45

Fig. 4 Flow chart of computing trust.

Table 6 Trust Bit Table (TBT).

R1 R2 R3 R4 R5 R6 R7
C1 1 1 0
C2 1 1 1 1 1 1 1
C3 1 1 1 0 1
C4 1 0 1
C5 1 1 1

ment in the trust value. If there is increment, the trust
bit will be 1, but if there is decrement, the trust bit will
be 0. The new value of trust bit is entered in Trust Bit
Table (TBT) as in Table 6 and is returned back to Trust
Manager.

The heart of the proposed trust model is Trust Manger.
TM makes its work in three stages and every stage has sub-
stages to do. The new thing in the model is how to compute
the trust depend on experience. Experience can depend on
not only user history but also certificate of the others; lookup
in the Table 6. Figure 4 shows the flow chart of computing
trust, starting with authorization, trust relationship, and end-

ing with evaluation.

4.3 System Environment

Our Grid platform consists of: 1) Hardware Components:
Nodes: 5 PCs (Intel Pentium4 2.2 GHz processor, Intel
RAM 256 MB) and 10 PCs (Intel Atom 1.66 GHz processor,
Intel RAM 2 GB), and Interconnection Network: Fast Eth-
ernet. 2) Grid Middleware: Globus Toolkit 4.2.1. 3) Soft-
ware Components: Operating System: Linux Fedora 10,
and Tools: Programs written in Java, packages from pon-
der policy language, and Apache Ant for Java-based build
tool.

The system is divided into two domains (D1 and D2).
D1 consists of G1, G2, G3, G4, G5, G6, G7, and G8. D2
consists of G1, G2, G3, G4, G5, G6, and G7. Trust Manger
of D1 is existed in G1 and that of D2 in G1. Nodes G5 and
G7 are existed in the two domains. Every domain has re-
source domain, client domain, and application domain with
of course TM. In the system, always every node is called

46
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

with its domain name such as G5: D2.

5. Resource Management Systems

Resource Management Systems (RMSs) are used to govern
the execution of the tasks that arrive for service [6]. Grid
task scheduling is one of the most important parts in Grid re-
source management system. The performance of algorithm
is the key performance goal to evaluating Grid. The process
of matching and scheduling tasks is referred to as mapping.
There are two types of mapping heuristics: Immediate mode
heuristics, and Batch mode heuristics.

5.1 Batch Mode Heuristics

Tasks are collected into a set that is examined for mapping
at prescheduled times called mapping events [6]. The inde-
pendent set of tasks that is considered for mapping at the
mapping events is called a meta-task. A meta-task can in-
clude newly arrived tasks and the ones that were mapped in
earlier mapping events but did not begin execution. It con-
siders a task for mapping at each mapping event until the
task begins execution. We discuss here in this paper 3 types
of batch mode heuristics.

Min-min heuristic algorithm: This heuristic begins
with the set U of all unmapped tasks. Then the set of mini-
mum completion times, M, is found. Next, the task with the
overall minimum completion time from M is selected and
assigned to the corresponding machine and the workload of
the selected machine will be updated. And finally the newly
mapped task is removed from U and process repeats until all
tasks are mapped [7].

Max-min heuristic algorithm: It is very similar to min-
min, but chooses the maximum expected execution time.

Sufferage heuristic algorithm: In this heuristic for each
task, the minimum and second minimum completion time
are found in the first step. The difference between these two
values is defined as the sufferage value. In the second step,
the task with the maximum sufferage value is assigned to the
corresponding machine with minimum completion time [7].

5.2 Immediate Mode Heuristics

A task is mapped onto a machine as soon as it arrives at the
mapper [6]. Each task is considered only once for matching
and scheduling, i.e. the mapping is not changed once it is
computed. It considers a task for mapping only once. We
discuss here in this paper 3 types of immediate mode heuris-
tics.

Opportunistic Load Balancing heuristic algorithm
(OLB): This method assigns a job to the earliest idle ma-
chine without taking into account the execution time of the
job in the machine. If two or more machines are available at
the same time, one of them is arbitrarily chosen [6].

Minimum Completion Time heuristic algorithm (MCT):
This method assigns a job to the machine yielding the ear-
liest completion time. When a job arrives in the system, all

available resources are examined to determine the resource
that yields the smallest completion time for the job [6].

Minimum Execution Time heuristic algorithm (MET):
This method assigns a job to the machine having the small-
est execution time for that job. Unlike MCT method, MET
does not take into account the ready times of machines [6].

6. Results and Discussions

6.1 Performance Evaluation

The performance of the proposed trust model which based
on six types of scheduling algorithm was evaluated. Two
metrics were used to evaluate the performance of the model.
The first one is the makespan; the makespan is defined as
Cmax = max j C j, where C j is the completion time. The sec-
ond criterion is utilization of machines for all the results dis-
cussed here. The experiments are performed on a number of
meta-tasks of size 50, 100, and 1000. We have nine scenar-
ios:

Scenario I: 50 Tasks, 5 Machines, Consistent, Low Task,
Low Machine Heterogeneity (LoLo);

Scenario II: 50 Tasks, 10 Machines, Consistent, Low Task,
Low Machine Heterogeneity (LoLo);

Scenario III: 50 Tasks, 15 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo);

Scenario IV: 100 Tasks, 5 Machines, Consistent, Low Task,
Low Machine Heterogeneity (LoLo);

Scenario V: 100 Tasks, 10 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo);

Scenario VI: 100 Tasks, 15 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo);

Scenario VII: 1000 Tasks, 5 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo);

Scenario VIII: 1000 Tasks, 10 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo);

Scenario IX: 1000 Tasks, 15 Machines, Consistent, Low
Task, Low Machine Heterogeneity (LoLo).

In the first part of the experiment, we computed the
makespan of meta-tasks for nine scenarios. We try to re-
duce the makespan to make improvement by the proposed
trust model. All algorithms were tested twice. Once when
the Grid system didn’t apply the proposed trust model, and
another when it has proposed trust model. We computed the
improvement of the proposed trust model in all algorithms.

In the second part of the experiment, we computed the
machine utilization. Utilization is the ratio of time a system
is busy divided by the time it is available. Utilization is a
useful measure in evaluating performance.

We note that the proposed trust model is successes with
Batch mode heuristics than Immediate mode heuristics. The
reason is the Batch mode environment is dynamic in map-
ping meta-tasks, and this is suitable for the dynamic change
in the trust values in the proposed trust model. But the
static mapping of meta-tasks in Immediate mode environ-
ment isn’t suitable with changing trust values in the pro-

ABU ELENIN and KITAKAMI: TRUST MANAGEMENT OF GRID SYSTEM EMBEDDED WITH RESOURCE MANAGEMENT SYSTEM
47

Table 7 Performance evaluation of Scenario I (50Tasks × 5Machines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 3268 93.19 62
Yes 1241 92.67

Max-min No 3979 99.31 35
Yes 2567 99.16

Sufferage No 3563 94.30 56
Yes 1541 95.47

OLB No 7368 92.30 7
Yes 6857 92.31

MET No 21220 74.33 3
Yes 20595 74.33

MCT No 4244 93.91 45
Yes 2319 93.99

Table 8 Performance evaluation of Scenario II (50Tasks × 10Machines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 2363 90.31 65
Yes 810 89.33

Max-min No 2857 96.47 47
Yes 1495 96.22

Sufferage No 2541 91.20 60
Yes 999 91.71

OLB No 5491 87.90 10
Yes 4911 87.90

MET No 15444 69.91 8
Yes 14088 69.88

MCT No 3157 89.90 49
Yes 1595 90.01

Table 9 Performance evaluation of Scenario III (50Tasks × 15Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 1534 82.40 72
Yes 420 82.19

Max-min No 1789 89.99 50
Yes 883 89.34

Sufferage No 1581 84.11 69
Yes 490 84.34

OLB No 3084 81.11 11
Yes 2728 81.18

MET No 9610 60.48 10
Yes 8597 60.30

MCT No 1922 81.99 50
Yes 961 82.12

posed trust model.
When number of meta-tasks is 50 as shown in Tables 7-

9 (Scenario I, Scenario II, and Scenario III), Min-min al-
gorithm is the best algorithm in reducing makespan. The
improvement of it is increased with increasing the number
of machines. The highest improvement value is recorded
in Scenario III with Min-min algorithm (72%). The small
number of tasks and the large number of machines are
the reasons in this result. Beside these reasons, it selects
minimum completion time tasks, so it helps in reducing
makespan. MET algorithm is the worst algorithm in reduc-
ing makespan as shown in Tables 7-9. If number of ma-
chines is 15, the improvement of makespan is 10% and this

Table 10 Performance evaluation of Scenario IV (100Tasks × 5Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 6372 96.15 31
Yes 4394 95.93

Max-min No 8018 99.82 14
Yes 6864 99.64

Sufferage No 6594 97.21 30
Yes 4598 97.45

OLB No 15593 94.62 4
Yes 14966 94.63

MET No 35085 76.46 1
Yes 34670 76.46

MCT No 7017 96.95 30
Yes 4934 96.99

Table 11 Performance evaluation of Scenario V (100Tasks × 10Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 4594 91.45 36
Yes 2896 91.11

Max-min No 5770 96.81 18
Yes 4000 96.62

Sufferage No 4585 94.91 35
Yes 2970 94.99

OLB No 10717 89.92 6
Yes 9999 89.94

MET No 25593 70.11 2
Yes 24999 70.12

MCT No 4994 91.61 33
Yes 3311 91.91

is the smallest value according to the number of tasks; 50,
and number of machines; 15. We think this result is because
the MET algorithm doesn’t take into account the ready times
of machines.

In the second part of the experiment as shown in Ta-
bles 7-9, Max-min algorithm is the best algorithm in intro-
ducing good utilization; 99.16%, 96.22%, and 89.34% in
Scenario I, Scenario II, and Scenario III respectively. It se-
lects the maximum completion time tasks, so the waiting
time is always small to the remaining tasks and it also makes
the machines always busy. MET algorithm is the worst al-
gorithm in introducing good utilization. The reasons are
discussed above. We note that when number of machines
is increased, the utilization is decreased. Utilization is in-
creased by increasing number of tasks and decreasing num-
ber of machines.

When number of meta-tasks is 100 as shown in Ta-
bles 10-12 (Scenario IV, Scenario V, and Scenario VI), Min-
min algorithm and sufferage algorithm are the best algo-
rithms in reducing makespan. MET algorithm is the worst
algorithm in reducing makespan as shown in tables 10-12.
We note that all improvements of all algorithms are in-
creased when number of machines is increased. For exam-
ple, Sufferage algorithm is improved by 30%, 35%, and 37%
when number of machines is 5, 10, and 15 respectively.

In the second part of the experiment as shown in Ta-

48
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Table 12 Performance evaluation of Scenario VI (100Tasks × 15Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 2686 84.54 40
Yes 1597 84.31

Max-min No 3709 91.88 20
Yes 2932 91.76

Sufferage No 2897 88.81 37
Yes 1799 88.99

OLB No 6996 82.40 10
Yes 6283 82.48

MET No 16542 65.66 3
Yes 15935 65.77

MCT No 2808 87.66 37
Yes 1767 88.01

Table 13 Performance evaluation of Scenario VI (1000Tasks × 5Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 10394 98.01 37
Yes 6468 97.89

Max-min No 14934 99.99 17
Yes 12310 99.97

Sufferage No 11071 98.66 29
Yes 7812 98.64

OLB No 35179 95.81 2
Yes 34375 95.81

MET No 61560 79.11 1
Yes 60860 79.11

MCT No 12312 98.20 28
Yes 8812 98.28

Table 14 Performance evaluation of Scenario VI (1000Tasks × 10Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 7112 95.91 42
Yes 4111 95.55

Max-min No 10312 97.01 20
Yes 8211 96.88

Sufferage No 7260 95.43 32
Yes 4871 95.41

OLB No 25312 90.99 3
Yes 24550 90.98

MET No 44179 71.48 1
Yes 39111 71.55

MCT No 8542 94.88 34
Yes 5635 94.91

bles 10-12, Max-min algorithm is also the best algorithm in
introducing good utilization; 99.64%, 96.62%, and 91.76%
in Scenario IV, Scenario V, and Scenario VI respectively.
MET algorithm is the worst algorithm in introducing good
utilization; 65.77% in Table 12. It makes waiting time of
tasks is very large and don’t take ready time of tasks so the
machines is almost idle.

When number of meta-tasks is 1000 as shown in
Tables 13-15 (Scenario VII, Scenario VIII, and Scenario
IX), Min-min algorithm is the best algorithm in reduc-
ing makespan. It recorded 49% improvement in Scenario

Table 15 Performance evaluation of Scenario VI (1000Tasks × 15Ma-
chines).

Algorithm Using Makespan Utilization Improvement
Trust (sec) (%) (%)

Min-min No 4197 90.84 49
Yes 2100 90.66

Max-min No 6567 93.11 23
Yes 5055 93.08

Sufferage No 4535 91.77 35
Yes 2906 91.70

OLB No 16589 87.88 4
Yes 15900 87.84

MET No 29780 65.91 1
Yes 29430 65.98

MCT No 5156 90.02 39
Yes 3106 90.13

Table 16 Comparison between conventional and Proposed trust models
in Min-min algorithm.

Utilization (%) Improvement (%)
of Using Con. Pro. Con. Pro.

Tasks Trust Model Model Model Model
50 No 93.17 93.19 25.28 62

Yes 92.53 92.67
100 No 96.15 96.15 25.32 31

Yes 95.91 95.93

IX. MET algorithm isn’t recorded any improvement of
makespan as shown in Tables 13-15. This is the only case
that the proposed trust model failed in reducing makespan.
MET algorithm is one type of Immediate mode heuristics,
so it is static environment. It isn’t suitable with the dynamic
trust value changes. In the second part of the experiment
as shown in Tables 13-15, Max-min algorithm is also the
best algorithm in introducing good utilization; 99.97% as in
Table 13 is the highest utilization value in all scenarios.

When number of meta-tasks is 50 as shown in Tables 7-
9 (Scenario I, Scenario II, and Scenario III), the average
improvement in all algorithms is 9%. When number of
meta-tasks is 100 as shown in Tables 10-12 (Scenario IV,
Scenario V, and Scenario VI), the average improvement in
all algorithms is 7%. When number of meta-tasks is 1000
as shown in Tables 13-15 (Scenario VII Scenario VIII, and
Scenario IX), the average improvement in all algorithms is
6 %. When number of machines is increased, the improve-
ments of all algorithms except MET algorithm are also in-
creased.

6.2 Comparison with Conventional Model

The complete result comparison between the conventional
trust model and the proposed trust model in the three algo-
rithms showed in Tables 16, 17, and 18.

In Table 16, the proposed trust model is better in im-
proving the makespan than the conventional trust model in
all cases. Min-min algorithm selects minimum completion
time tasks with dynamic mapping of meta-tasks. So with the
minimum number of tasks; 50 and 100, and the dynamic en-
vironment in changing trust values, the proposed trust model

ABU ELENIN and KITAKAMI: TRUST MANAGEMENT OF GRID SYSTEM EMBEDDED WITH RESOURCE MANAGEMENT SYSTEM
49

Table 17 Comparison between conventional and Proposed trust models
in Sufferage algorithm.

Utilization (%) Improvement (%)
of Using Con. Pro. Con. Pro.

Tasks Trust Model Model Model Model
50 No 94.14 94.30 32.67 56

Yes 95.32 95.47
100 No 97.11 97.21 33.19 30

Yes 97.33 97.45

Table 18 Comparison between conventional and Proposed trust models
in MCT algorithm.

Utilization (%) Improvement (%)
of Using Con. Pro. Con. Pro.

Tasks Trust Model Model Model Model
50 No 93.90 93.91 34.44 45

Yes 93.96 93.99
100 No 96.51 96.95 34.26 30

Yes 96.81 96.99

can make better improvement.
In Table 17, the proposed trust model is better in im-

proving the makespan than the conventional trust model in
only one case 50 tasks. It failed to improve 100 tasks more
than the conventional trust model. This result is because suf-
ferage algorithm depends on the calculation of the minimum
and second minimum completion time in every mapping of
the tasks. This sufferage value takes more time beside the
time takes to change the trust value. When number of tasks
is increased in this algorithm, the conventional trust model
may be better than the proposed trust model.

In Table 18, the proposed trust model is better in im-
proving the makespan than the conventional trust model in
only one case 50 tasks. It failed to improve 100 tasks more
than the conventional trust model. MCT algorithm is one
type of Immediate mode heuristics. It is static in mapping
meta-tasks. The proposed trust model depends on the dy-
namic environment of changing trust values. So the im-
provement of MCT algorithm isn’t always good. Except of
that, when number of tasks is small as 50 tasks, the aver-
age of tasks executed in every machine will be from 6 to
10 tasks. This is small number, so the trust locating, trust
computing, and trust updating will not be increased, and
makespan can be reduced by the proposed trust model.

In the summary, there are six cases that compare the
conventional trust model and the proposed trust model. Ac-
cording to the result, the proposed trust model shows better
performance in four cases than the conventional trust model.

The conventional trust model and proposed trust model
introduce approximating results in the utilization in the three
algorithms.

7. Conclusions and Future Work

Trust and security are not the same areas in the domain of
Grid. In this paper, we have proposed trust model to ex-
amine the trust in resource management systems. We have
tested it in six heuristic algorithms to evaluate the perfor-

mance. In the experiment, we have measured makespan and
utilization. The proposed trust model can successfully re-
duce makespan for most algorithms, but in the utilization it
isn’t fully successed. The result says that our trust model
provides better performance than the original trust model in
most cases especially in the Min-min algorithm.

For future work, the trust model should take into con-
sideration the failure to improve the performance. The per-
formance evaluation of the proposed trust model with the
scheduling heuristics should be improved with other large
scale tasks such as millions tasks and more.

Acknowledgments

The authors are grateful to Prof. Hideo Ito for his discus-
sions and advices.

References

[1] F. Azzedin and M. Maheswaran, “Towards trust-aware resource
management in grid computing systems,” First IEEE International
Workshop on Security and Grid Computing, pp.452–457, 2002.

[2] F. Azzedin and M. Maheswaran, “Evolving and managing trust in
grid computing systems,” IEEE Canadian Conference on Electrical
& Computer Engineering (CCECE ’02), pp.1424–1429, 2002.

[3] F. Azzedin and M. Maheswaran, “Integrating trust into grid resource
management systems,” 2002 International Conference on Parallel
Processing, pp.47–54, 2002.

[4] F. Azzedin and M. Maheswaran, “Trust modeling for peer-to-peer
based computing systems,” 12th IEEE Heterogeneous Computing
Workshop (HCW 2003)(in conjunction with IPDPS 2003), 2003.

[5] F. Azzedin and M. Maheswaran, “Trust brokering system and its ap-
plication to resource management in public-resource grids,” 2004 In-
ternational Parallel and Distributed Processing Symposium (IPDPS
2004), 2004.

[6] M. Maheswaran, S. Ali, H.J. Siegel, D.A. Hensgen, and R.F. Freund,
“Dynamic mapping of a class of independent tasks onto heteroge-
neous computing systems,” J. Parallel Distrib. Comput., vol.59, no.2,
pp.107–131, 1999.

[7] H. Izakian, A. Abraham, and V. Snasel, “Comparison of heuristics
for scheduling independent tasks on heterogeneous distributed en-
vironments,” The 2009 IEEE International Workshop on HPC and
Grid Applications, (IWHGA2009), 2009.

[8] B. Ma, J. Sun, and C. Yu, “Reputation-based trust model in grid
security system,” Journal of Communication and Computer, USA,
vol.3, no.8 (Serial no.21), pp.41–46, 2006.

[9] A. Chakrabarti, Grid computing security, 1st ed., pp.33–45,
Springer, 2007.

[10] A. Abdul-Rahman and S. Hailes, “Supporting trust in virtual com-
munities,” 33rd IEEE Annual Hawaii International Conference on
System Sciences (HICSS-33), 2000.

[11] C. Lin, V. Varadharajan, Y. Wang, and V. Pruthi, “Enhancing grid
security with trust management,” IEEE International Conference on
Services Computing, pp.303–310, 2004.

50
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.1 JANUARY 2011

Sherihan Abu Elenin received the B.Sc.
from the faculty of computers and information,
Mansoura University, Egypt in 2002. She is
currently pursuing the doctoral degree at Chiba
University, Chiba, Japan. Her scientific interests
include parallel processing, distributed comput-
ers, cluster systems, and grid computing. She is
a student member of the IEEE.

Masato Kitakami received the B.E. de-
gree in electrical and electronic engineering, the
M.E. degree in computer science, and the Dr.
Eng. degree all from the Tokyo Institute of Tech-
nology, Tokyo, Japan in 1991, 1993, and 1996,
respectively. He joined Department of Elec-
trical and Electronic Engineering, Tokyo Insti-
tute of Technology in April 1996 and moved
to the Department of Information and Image
Sciences, Chiba University in December 1999.
From April 2001 to March 2003, he is with

VLSI Design and Education Canter, the University of Tokyo. He has been
with Graduate School of Advanced Integration Science, Chiba University
since April 2007 and is now associate professor. Dr. Kitakami received
the Young Engineer Award from the IEICE in 1999. His research interests
include error control coding, dependable paralell/distributed systems, error
control in data compression. He is a member of the IEEE.

