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SUMMARY One typical phonotactic system for language recogni-
tion is parallel phone recognition followed by vector space modeling
(PPRVSM). In this system, various phone recognizers are applied in par-
allel and fused at the score level. Each phone recognizer is trained for a
known language, which is assumed to extract complementary information
for effective fusion. But this method is limited by the large amount of
training samples for which word or phone level transcription is required.
Also, score fusion is not the optimal method as fusion at the feature or
model level will retain more information than at the score level. This paper
presents a new strategy to build and fuse parallel phone recognizers (PPR).
This is achieved by training multiple acoustic diversified phone recogniz-
ers and fusing at the feature level. The phone recognizers are trained on the
same speech data but using different acoustic features and model training
techniques. For the acoustic features, Mel-frequency cepstral coefficients
(MFCC) and perceptual linear prediction (PLP) are both employed. In ad-
dition, a new time-frequency cepstrum (TFC) feature is proposed to extract
complementary acoustic information. For the model training, we exam-
ine the use of the maximum likelihood and feature minimum phone error
methods to train complementary acoustic models. In this study, we fuse
phonotactic features of the acoustic diversified phone recognizers using a
simple linear fusion method to build the PPRVSM system. A novel lo-
gistic regression optimized weighting (LROW) approach is introduced for
fusion factor optimization. The experimental results show that fusion at the
feature level is more effective than at the score level. And the proposed
system is competitive with the traditional PPRVSM. Finally, the two sys-
tems are combined for further improvement. The best performing system
reported in this paper achieves an equal error rate (EER) of 1.24%, 4.98%
and 14.96% on the NIST 2007 LRE 30-second, 10-second and 3-second
evaluation databases, respectively, for the closed-set test condition.
key words: language recognition, parallel phone recognition followed
by vector space modeling (PPRVSM), acoustic diversified phone recogniz-
ers, feature fusion, logistic regression optimized weighting (LROW), time-
frequency cepstrum (TFC)

1. Introduction

Language recognition is the process of determining the
language identity from a sample of speech. It is an es-
sential technology in many applications, such as multilin-
gual speech recognition, spoken language translation and
information security [1], [2]. Generally speaking, language
recognition acts as a front-end for many multilingual speech
processing systems, where the language identities of speech
need to be established for further information extraction.

Language recognition can be performed using infor-
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mation from multiple resources. In the past few decades,
researchers have developed many different systems to ex-
plore the discriminative information. Currently, two types
of systems are widely used for language recognition: acous-
tic systems and phonotactic systems. Acoustic systems use
Gaussian Mixture Models (GMM) [3] or support vector ma-
chines (SVM) [4] to model the long-term spectral character-
istics. Phonotactic systems use parallel phone recognizers
(PPR) to convert the speech into phone sequences or lattices
and then perform phonotactic analysis using an N-gram lan-
guage model [2], a binary tree [5] or a vector space model
(VSM) [6]. State-of-the-art systems often include both tech-
niques to achieve optimal performance. This paper focus
on a phonotactic system called the parallel phone recog-
nizer followed by vector space modeling (PPRVSM), which
employs VSM to model the phonotactics of different lan-
guages [6]. In the system, phone lattice is used due to its
superiority over phone sequence [7].

Generally, the PPRs of a phonotactic system can be
developed in two ways. One is to train phone recogniz-
ers on multiple language-specific speech data with differ-
ent phone sets to provide phonetic diversification [2]. The
other is to train phone recognizers on the same language-
specific speech data with one phone set but using different
acoustic models to provide acoustic diversification [8]. The
PPRs developed using phonetic diversification can make
sure that the phone coverage will be sufficient enough to
cover the sound units of all target languages in a language
recognition task. But one problem is that word or phone-
level transcription is needed to train a phone recognizer.
While an increased number of phone recognizers provides
better performance, it also requires more transcribed train-
ing data. For acoustic diversification, the phone recognizers
are often well-designed to emphasize different acoustic as-
pects of the speech to achieve a good diversification. Com-
pared with phonetic diversification, acoustic diversification
can be adopted to overcome the difficulty of collecting large
amounts of transcribed data. Moreover, comparable results
can be achieved under both diversifications [8]. Therefore,
the acoustic diversification becomes more attractive when
building the PPR front-end.

However, there are three main problems for the acous-
tic diversified phone recognizers. First, the phone sequences
or lattices are homogeneous since the same training data and
phone set are used. It will be a great challenge to develop
a set of phone recognizers to achieve a good acoustic diver-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



680
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.3 MARCH 2011

sification. In reference [8], different model structures and
training paradigms are employed to build multiple phone
recognizers. But it’s not the best way as the same acous-
tic feature is used. While different acoustic features extract
different information from the speech, they will provide bet-
ter acoustic diversification. Second, these phone recognizers
are fused by combining multiple phone sequences to retain
more information for fusion. It has been demonstrated that
this method is more effective than score fusion [8]. But it
becomes infeasible when phone lattices are used instead of
sequences as the acoustic scores of different phone recog-
nizers are compatible. Finally, as the same training data and
phone set are used, high correlation exists among different
phone recognizers. Therefore, not all the phone recognizers
are useful for fusion. It is necessary to study how each phone
recognizer contributes to the language recognition task.

This paper will take an investigation into the problems
stated above. First of all, multiple acoustic diversified phone
recognizers are developed to construct the front-end for the
PPRVSM system. To get better acoustic diversification, we
use different acoustic features and model training methods
to develop different phone recognizers. For the acoustic fea-
tures, the Mel-frequency cepstral coefficients (MFCC) and
perceptual linear prediction (PLP) features are both used. In
addition, we propose a new time-frequency cepstrum (TFC)
feature to extract complementary acoustic information for
phone recognition. The TFC feature is obtained by per-
forming a temporal discrete cosine transform (DCT) on the
cepstrum matrix and selecting the transformed elements in
a specific area with large variances. Recently, feature min-
imum phone error (fMPE) training has been shown to out-
perform the conventional maximum-likelihood (ML) train-
ing approach [9]. We will examine the use of fMPE training
as an alternative to train different acoustic models to cap-
ture the acoustic variation within a phone. As the fMPE is
performed by transforming the acoustic features, then it can
also be treated as a way to get different acoustic features.
As mentioned above, it is difficult to combine phone lat-
tices as the acoustic scores in lattices from multiple phone
recognizers may not be compatible. This is the case when,
for example, combining phone lattices with acoustic scores
for ML- and fMPE-trained systems. We propose to fuse the
phonotactic features which are extracted from the phone lat-
tices for the acoustic diversified phone recognizers. The fu-
sion of phonotactic features is performed using a simple lin-
ear weighting method. The weighting coefficients should be
optimized to obtain effective fusion of different features. In
this paper, a theoretical inference is made to build a math-
ematical relationship between the feature weighting coef-
ficients and the score fusion coefficients. And the logistic
regression optimized weighting (LROW) method is intro-
duced to optimize the feature weighting coefficients. Since
not all the acoustic diversified phone recognizers are effec-
tive when fused, we also extend the work by formulating the
quantitative measures to select phone recognizers for fusion.

This paper is organized as follows. In Sect. 2, we give a
brief description of the PPRVSM system. The details of de-

veloping acoustic diversified phone recognizers is described
in Sect. 3. Section 4 discusses the fusion technique and se-
lection criterion for effective integration of the acoustic di-
versified phone recognizers. The experimental results on the
NIST 2007 LRE evaluation database are given in Sect. 5,
followed by a conclusion in Sect. 6.

2. The PPRVSM System

The phonotactic system employed in this paper for lan-
guage recognition is the prevailing PPRVSM system, which
is depicted in Fig. 1. In the PPRVSM system, a phone lat-
tice is adopted due to its superiority over 1-best phone se-
quence [7]. According to Fig. 1, the PPRVSM system com-
prises two main components: the phonotactic feature extrac-
tion and the vector space modeling (VSM).

2.1 Phonotactic Feature Extraction

In phonotactic systems, the front-end employs several phone
recognizers to convert the speech into phone lattices, which
are then used as input to the back-end to perform phono-
tactic analysis to classify languages. A phone lattice is
a rich and compact representation of multiple hypotheses
with acoustic likelihoods, from which the expected counts
of phonetic N-grams are estimated. Given the lattice �, the
expected counts are calculated over all possible hypotheses
in the lattice as follows [7]:

c(si . . . si+N−1|�) = ∑
S∈�

p(S |�)c(si . . . si+N−1|S )

=
∑

si...si+N−1∈�
[α(si)β(si+N−1)

i+N−1∏
j=i
ξ(s j)]

where, p(S |�) is the probability of the sequence S in the lat-
tice �, α(si) is the forward probability of the starting node
in the N-gram si . . . si+N−1, β(si+N−1) is the backward prob-
ability of the ending node, ξ(s j) is the posterior probability

Fig. 1 The PPRVSM system.
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of the edge s j. The probability of the N-gram si . . . si+N−1 in
the lattice is then computed as follows:

p(si . . . si+N−1|�) = c(si . . . si+N−1|�)∑
i c(si . . . si+N−1|�)

The probabilities of phonetic N-grams are then concatenated
to form a phonotactic feature vector for a given utterance.

2.2 VSM

In VSM, each spoken utterance is represented by a super-
vector and then modeled using an SVM [6]. The core of the
SVM classifier is the sequence kernel construction, which
defines the similarity between two utterances. We employ
the term frequency log-likelihood ratio (TFLLR) kernel that
has been proven to be effective for phonetic speaker recogni-
tion [10]. Let �X = {p(d1|�), . . . , p(dF |�)} denotes the phono-
tactic feature for the lattice �, then the kernel between two
phonotactic features �X1 and �X2 is

K(�X1, �X2) =
F∑

i=1
pn(di|�1) ∗ pn(di|�2)

=
F∑

i=1

p(di |�1)√
p(di |all)

∗ p(di |�2)√
p(di |all)

(1)

where, di = si . . . si+n−1 (n ≤ N) and F = f + f 2+ · · ·+ f N ( f
is the size of the phone inventory for a single phone rec-
ognizer). The denominator p(di|all) is the probability of
di in all the phone lattices used for training, which is cho-
sen to make sure that N-grams with large probabilities will
not dominate the similarity in the kernel. The inner prod-
uct form in Eq. (1) indicates that a high degree of similarity
will exist between the two lattices if the same N-grams are
present in them two, and vice versa.

Given the scaled super-vector �X and the kernel function
K(�X, �Xl), the SVM scoring can be implemented as follows:

f (�X) =
∑

l
αlK(�X, �Xl) + d (2)

A decision is based on the output of the SVM in Eq. (2)
compared to a threshold. The �Xl are support vectors trained
using the Mercer condition. The training is carried out with
a one-versus-rest strategy. We view the samples in the target
language as the positive set and the remainder as the nega-
tive one. The training is carried out between them two.

Generally, high-order N-grams have higher discrimi-
native ability for language recognition compared with low-
order ones [6]. But it is problematic that the number of N-
grams grows exponentially as the order N increases. Then
a high dimensional phonotactic feature vector will be pro-
duced if we use high-order N-grams, which is a challenge
for SVM training. However, experiments have demon-
strated that not all the N-grams are necessary [11]. In this
paper, we use a method similar to the discriminative key-
word selection proposed in [11] to pick out the most dis-
criminative N-grams for language recognition. The ap-
proach comprises two stages: selection and construction.

The selection is designed to pick out the most discrimi-
native low-order N-grams using the max-relevance criteria
based on mutual information, the construction is the process
of building high-order N-grams based on the selected low-
order ones. Details can be found in our previous work [12].

3. Development of the PPR Front-End Based on
Acoustic Diversified Phone Recognizers

3.1 Acoustic Diversified Phone Recognizers

There are two main problems for phonotactic systems us-
ing only one phone recognizer. First, the recognizer is lan-
guage specific. Then the phone set may not cover the sound
units of another language. It makes sense to employ multi-
ple phone recognizers of different languages to broaden the
phone coverage. The other problem is that the phone recog-
nition results are error-prone, which will inevitably degrade
the performance of the back-end phonotactic language mod-
els. This can be solved by combining the results from mul-
tiple acoustic diversified phone recognizers which is similar
to [8]. Using phone recognizers of different languages often
comes at the cost of collecting multiple sets of annotated
training samples. The introduction of acoustic diversified
phone recognizers is attractive as it maximizes the use of
limited transcribed training data. But it is a challenge to
develop phone recognizers that will extract complementary
information for language classification.

The construction of acoustic diversified phone recog-
nizers can be implemented by training different acoustic
models for phone recognizers using the same training data
and phone set. Generally, the phone lattices obtained by
acoustic diversification are homogeneous as the same phone
set is used. It is necessary to train different acoustic mod-
els that will generate phone lattices containing error patterns
complementary to each other. Simple methods such as sim-
ply changing the number of model parameters are infeasible,
they yield only slight changes in phone lattices. Therefore,
different acoustic features and model training paradigms are
favorable to construct complementary phone recognizers on
the same speech corpus. In this paper, the following tech-
niques are employed to build the acoustic diversified PPR
front-end:

(1) Acoustic features. Usually, MFCC and PLP are
used for phone recognition in the PPRVSM system. In
our previous work, we have presented a time-frequency
cepstrum (TFC) feature for the GMM-based acoustic sys-
tem [13], which utilizes a temporal discrete cosine transform
(DCT) on the cepstrum matrix and outperforms the widely
used shifted delta cesptrum (SDC) feature. We will extend
this work for phone recognition in the PPRVSM system.

(2) Model training methods. Recently, discrimina-
tive training has become an attractive technique as it out-
performs the conventional ML training approach in speech
recognition, such as Minimum Phone Error (MPE) [14] and
fMPE [9]. In application, all techniques are performed on
acoustic models except fMPE, which applies to the acoustic
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features. We will adopt the fMPE technique for discrimina-
tive training of phone models.

Six phone recognizers are developed by using the tech-
niques stated above: (1) MA-MFCC-ML; (2) MA-MFCC-
fMPE; (3) MA-PLP-ML; (4) MA-PLP-fMPE; (5) MA-
TFC-ML; (6) MA-TFC-fMPE. They are all trained on
Mandarin speech data and modeled using Gaussian Mix-
ture Model/Hidden Markov Model (GMM/HMM). But dif-
ferent acoustic features (MFCC, PLP, TFC) and model train-
ing methods (ML, fMPE) are adopted. For example, MA-
MFCC-ML means the GMM/HMM structured Mandarin
phone recognizer uses MFCC as the acoustic feature and
ML as the training method. The fundamentals of the TFC
feature and fMPE training will be introduced next.

3.2 TFC Feature Extraction

In our previous work, we have proposed the TFC feature
in the GMM-based acoustic system for language recogni-
tion [13]. The extraction is performed as follows: several
successive frames of basic feature vectors within a context
width are first extracted to form a cepstrum matrix. A tem-
poral DCT is then performed on the cepstrum matrix to re-
move the correlation in the temporal direction. Finally, the
elements in the upper-left triangular area are selected in a
zigzag scan order.

The procedure of TFC feature extraction is equiva-
lent to performing a two dimensional (2D) DCT on the
spectrum-time matrix. The 2D DCT approach can be in-
terpreted as a compression of the information by a DCT
truncation. The truncation of the higher order vectors helps
to reduce the variability due to small scale acoustic events.
Also, the elements can be selected with a greater variability
for the TFC feature.

In the GMM-based acoustic systems, the context width
is about 20 frames. The normalized variances of the cep-
strum matrix after a horizontal DCT is nearly triangular,
thus we can perform a zigzag scan to select elements in this
area to form the TFC feature. But for phone recognition,
the optimal configuration will not be the same as that for
the GMM system. To show this, the variance of each ele-
ment in the cepstrum matrix (using successive 9 frames of
20-dimensional MFCC basic feature vector) after a tempo-
ral DCT was computed on the data corpus used for training
phone models. The normalized variances (normalized by
the maximum elements) are plotted in Fig. 2. We can see
that there are other effective configurations besides the tri-
angle adopted in TFC, such as a rectangle.

3.3 fMPE

The fMPE discriminative training method employs the same
objective function as MPE, which can be written as:

F(λ) =
R∑

r=1

∑
s

Pk
λ(s|Or)A(s, sr)

where Pk
λ(s|Or) is the scaled posterior probability of hypoth-

Fig. 2 The normalized variances of each element in the cepstrum matrix
after a horizontal DCT.

esis s given the r’th observation Or, k is the acoustic scal-
ing factor and λ is the current model vector. The A(s, sr) is
the raw phone accuracy between hypothesis s and reference
transcription sr. This criterion is an average of the transcrip-
tion accuracies of all possible sentences s.

The implementation of fMPE is carried out by trans-
forming the acoustic feature with a kernel-like method,
where offsets to the features are obtained by training a pro-
jection from a high-dimension feature space based on pos-
teriors of Gaussians [9]. Let xt be the original features and
yt be the transformed features. The transformation is:

yt = xt + Mht

where ht is the expanded high dimensional feature derived
from posteriors of Gaussians. M is the transform matrix
that needs to be estimated to optimize the MPE objective
function. The detailed calculation method of ht and M can
be found in [9].

As with normal fMPE training in speech recognition,
we need to generate lattices by decoding the training data
with a weak language model [15], which are used to produce
the MPE statistics. For experiments, we use the more robust
and effective offset features described in [16] to obtain the
high dimension vector ht. In this study, 1000 Gaussians are
used to calculate the offset features with context width 5.
Typically, we run 3-4 iterations of fMPE optimization.

4. Fusion and Selection of the Acoustic Diversified
Phone Recognizers

Generally, the PPRVSM system comprises multiple parallel
subsystems, where each subsystem employs a phone rec-
ognizer to extract phonotactic attributes from the speech to
characterize a language. Each phone recognizer extracts
complementary information from the speech so that im-
provements can be attained when fusing the subsystems.
Usually, score fusion is adopted because it doesn’t require
detailed knowledge of the structure of the subsystems for
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Fig. 3 The PPRVSM system based on feature fusion.

fusion and is easy to implement. Actually, the fusion can
also be performed at the feature or model level. From an in-
formation theoretic perspective, the amount of information
will decrease with each operation in a system. Then Fusion
at the feature or model level can theoretically retain more
information compared to fusion at the score level. In this
paper, we will adopt feature fusion for the acoustic diversi-
fied phone recognizers. Figure 3 shows the structure of the
PPRVSM system using the feature fusion method.

4.1 Fusion of Phonotactic Features

In the PPRVSM system, the classical method of feature fu-
sion is to group several sets of phonotactic feature vectors
resulting from the PPRs into a large composite supervec-
tor [6]. However, this increases the dimension so more train-
ing data is required to ensure robust estimation of model
parameters. In this paper, we propose a novel strategy for
phonotactic feature fusion. The idea is to map multiple fea-
ture vectors of different phone recognizers into one through
a predefined transformation.

Suppose �X1, . . . , �Xm are the different phonotactic fea-
tures for an input utterance x. The concatenated feature vec-

tor �X can be represented as �X =
(
�XT

1 , . . . ,
�XT

m

)T
. Denoting

each vector �Xm as dm-dimensional, the concatenated feature
�X is (d1 + · · · + dm)-dimensional. Here, we intend to trans-
form these vectors into one, rather than concatenate them.
The mapping is defined by

�X = f
(
�X1, . . . , �Xm

)
The transformation function can be linear or non-linear, just
as with score fusion. There are already a variety of score fu-
sion techniques, including SVM, linear discriminate analy-
sis followed by Gaussian mixture models (LDA+GMM) and
linear fusion [17]. One recent experiment [18] has shown
that the linear fusion method is not only simple to achieve
but also yields good results in practice. Although other
methods have been able to give a more detailed portrait of
the scores, they come at the expense of the robustness of
system in complex conditions. Therefore, we will adopt the
linear fusion method to fuse the phonotactic features from
different phone recognizers.

Let �m denote the phone lattice decoded using the m-th
phone recognizer. Then the phonotactic feature vector of x
estimated from the m-th phone recognizer can be defined as

�Xm = {p(d1|�m), . . . , p(dF |�m)}. The goal of linear fusion is
to find a set of weighting coefficients {w1, w2, . . . , wM} such
that the fusion of M phone recognizers

�X =
M∑

i=1

wi �Xi (3)

has the maximum discriminative ability. For simplicity, the
average weighting method can be adopted, where the weight
coefficients are equal. However, this is not the optimal
method when the phone recognizers have different contri-
butions to fusion. A weighting optimization method is fa-
vorable.

Recently, researchers have proposed an optimization
criterion for linear score fusion based on the cost of log-
likelihood rate (CLLR) and implemented using logistic re-
gression [19]. Because of its superior performance, this
method has gradually become the primary method of lin-
ear fusion. It can be formulated as follows. For the trial x,
the scores of K target languages produced by the m-th sub-
system can be denoted as �sm(x) = [sm1(x), . . . , smK(x)]. A
transformation function is then defined in the following:

�s(x) =
M∑

i=1

w
′
i�si(x) (4)

where w
′
m is a scalar, {w′1, w

′
2, . . . , w

′
M} constitutes a set of

transformation parameters which are estimated using a con-
jugate gradient descent algorithm to minimize a linear re-
gression function [20], which we use here. The fusion factor
w
′
m implies the role of the subsystem in classification. The

larger w
′
m is, the more important the subsystem is and the

more discriminative the feature is.
Although w

′
m reflects the role of the phonotactic fea-

tures indirectly, we can’t use it to replace wm in Eq. (3).
There exists a relationship between the score fusion weights
{w′1, w

′
2, . . . , w

′
M} and the phonotactic feature fusion weights

{w1, w2, . . . , wM}. Expanding Eq. (2):

sk(x) =
∑
t
αktK(�X, �Xkt) + d

=
∑
t
αkt

[(
M∑

i=1
wib(�Xi)

)
∗
(

M∑
i=1
wib(�Xkti)

)]
+ d

(5)

where the αkt and Xkt are the parameters of the k-th lan-
guage model. We assume that the phonotactic features ex-
tracted using different phone recognizers are complemen-
tary to each other, then the inner products of them are ap-
proximately zero. Also, the bias d is constrained to be zero
during SVM training. Then we get the following expression
from Eq. (5):

sk(x) =
∑
t
αkt

[
M∑

i=1
w2

i b(�Xi)b(�Xkti)

]

=
M∑

i=1
w2

i

∑
t
αktb(�Xi)b(�Xkti) =

M∑
i=1
w2

i sik(x)

(6)

Combining Eqs. (4) and (6) leads to the approximation:
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wi ≈
√
w
′
i (7)

To implement the logistic regression optimized weight-
ing method, we first estimate the score transformation pa-
rameters {w′1, w

′
2, . . . , w

′
M} using the logistic regression in the

score domain on the development set. Then we map the
{w′1, w

′
2, . . . , w

′
M} back to the feature domain using Eq. (7).

This kind of score fusion aims at optimizing the mixture-of-
experts system by calibrating the parameter set. For score
fusion using logistic regression, we can see from Eq. (4)
that the fusion factor w

′
m should be approximately 0 if the

m-th subsystem is a nuisance factor and greater than 0 oth-
erwise. Thus useless subsystems are filtered out automati-
cally. However, empirical results show that limited training
data generally results in non-zero fusion factors for all clas-
sifiers, increasing system complexity and potentially hurt-
ing results. This can be addressed through the use of a pre-
fusion subsystem selection process [21]. Next, we will in-
vestigate into selecting acoustic diversified phone recogniz-
ers.

4.2 Selection Strategy for the Acoustic Diversified Phone
Recognizers

While more phone recognizers might not harm the system,
we may not wish to use all the phone recognizers in the
front-end. First, the phone sets of these acoustic diversi-
fied phone recognizers are the same. The phone lattices are
often highly overlapped even if different acoustic features or
model training techniques are used, resulting in highly cor-
related language recognition scores. Second, more phone
recognizers mean higher computational cost. In view of this,
our strategy is to select phone recognizers that have high
discriminative ability for target languages and have little re-
dundancy.

Of course, we can select m complementary phone rec-
ognizers from M phone recognizers for fusion using a com-
binatorial method, with a total number of combinations
equal to Cm

M . However, it is laborious to examine through all
combinations to find the global optimum solution. In this
paper, we adopt a criterion to measure the merit of differ-
ent acoustic diversified phone recognizers similarly to [22],
which is based on the discriminative ability and distinctive-
ness of a phone recognizer. We will discuss the criterion.

1. Discriminative ability of phone recognizers: In the
PPRVSM framework, the phone recognizers are used
to convert the speech into a set of phone lattices, from
which the phonetic N-gram statistics are estimated to
model the languages. Then the entropy of the N-
gram statistics can be used to evaluate the discrimi-
native ability of the phone lattices in language recog-
nition [23], [24]. The conditional entropy of N-gram
statistics relative to K target languages can be calcu-
lated as

H(�Xm|L) = −
K∑

k=1

Fm∑
i=1

p(di, lk) log p(di|lk) (8)

where L denotes a set of target languages L =

{l1, l2, . . . , lK} and K is the number of target languages.
di are the phonetic N-grams and Fm is the number of
different N-grams. From Eq. (8), we can see that lower
conditional entropy means less uncertainty about the
language identity. Phone recognizers with lower con-
ditional entropy will have higher discriminative ability
for language recognition.

2. Distinctiveness of phone recognizers: The pair-wise
hamming distance of phone sequences based on binary
code is employed to measure the distinctiveness of dif-
ferent tokenizers derived from the same phone recog-
nizers in [22]. In this paper, we use phone lattice in-
stead of sequence. Then we adopt the Euclidean dis-
tance between the “seen” phonetic N-gram statistics to
evaluate the distinctiveness of different phone recog-
nizers, which is defined below:

Dm =
1

(M − 1) ∗ Fm

M∑
j�m

Fm∑
i=1

√
(cm(di) − c j(di))2

where c(di) are the expected counts of the N-gram
statistics which has been defined in Sect. 2.1 and M is
the number of phone recognizers. The greater Dm is,
the more distinctive the phone recognizer is from oth-
ers.

A good phone recognizer should have high distinctive-
ness value and low conditional entropy. Therefore, the final
evaluation of different phone recognizers can be formulated
as follows:

Em =
Dm

H(�Xm|L)

We rank the acoustic diversified phone recognizers accord-
ing to the evaluation results. The phone recognizers with
the largest values are selected to form the PPR front-end in
PPRVSM language recognition system.

5. Experiments

5.1 Experimental Setup

The experiments are performed on the NIST 2007 LRE eval-
uation database under both closed-set and open-set test con-
dition. For each trial, if the set of non-target languages will
be the set of LRE 2007 target languages, minus the tar-
get language, this is the “closed-set” test condition. If the
set of non-target languages also includes other “unknown”
languages whose identities will not be disclosed, this is the
“open-set” test condition. The task of LRE 2007 is to recog-
nize 14 languages: Arabic, Bengali, Chinese, English, Farsi,
German, Hindustani, Japanese, Korean, Russian, Spanish,
Tamil, Thai and Vietnamese. There are 7530 utterances
in total, spanning the 3, 10 and 30 second conditions [25].
As the evaluation corpus include some out-of-set languages,
only 6474 utterances are used for the closed-set test condi-
tion and all 7530 utterances are used for the open-set test
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condition. The training data comes from different sources
including Callfriend, the development and evaluation data
provided by NIST in the previous LRE. The Callfriend cor-
pus and the development data of previous LRE are employed
to select phonotactic features and train VSM. The evalua-
tion data from previous LRE are used for score fusion and
estimating the weighting coefficients of LROW. Indeed, it
will be better to use different data for creating the VSM and
selecting phonotactic feature. But there are not enough data
for some languages such as Bengali. So we use all data for
both VSM modeling and feature selection. As the speech is
relatively long, we use voice activity detection to segment
each speech utterance into segments, which are about 30
seconds in length.

In the PPRVSM language recognition, several phone
recognizers are used in parallel to decode the speech into
phone lattices for analysis. The Mandarin phone recogniz-
ers employed in our experiments are developed using the
GMM/HMM architecture and trained on about 30 hours of
conversational telephone data. There are 64 phone models
for the phone recognizer, each of which is a tied-state left-to-
right context-dependent GMM/HMM with 32 Gaussians per
state. For acoustic feature extraction, 12 MFCC coefficients
are extracted every 10 ms over a 25 ms hamming window.
These features are augmented by their first and second order
deltas, resulting in a 39 dimension feature vector (including
energy). To remove channel variability, cepstral mean sub-
traction and variance normalization are both applied. In ad-
dition to the MFCC, the PLP feature is also extracted to pro-
vide additional acoustic diversification. The parameters and
configuration for PLP extraction are similar to the MFCC
feature except that c0 is used instead of energy. For TFC fea-
ture extraction, the optimal configuration is determined em-
pirically to be complementary to MFCC and PLP features,
as described in the next section. For phonotactic feature se-
lection, the top 20% of the low-order N-grams are selected
based on mutual information [12].

5.2 Experimental Results

We demonstrate the effectiveness of our approaches under
3, 10 and 30 second conditions. Both pooled equal error
rate (EER) and detection cost function (DCF, Cavg*100)
are used to summarize the results, which are obtained by
pooling the scores of all target (or non-target) languages to-
gether.

The first experiment is to find the optimal configuration
of the reserved area for TFC feature extraction. The context
width is fixed to 9. In this work, we adopt a rectangular
shape and test three TFC feature configurations where static
cepstral coefficients are concatenated with the elements of
a cepstrum matrix obtained by a temporal DCT. Settings
referred to as TFC N × O defines a TFC feature where a
temporal DCT of order O is performed on a context window
of 9 frames successive N-dimension MFCCs (c0 to cN−1).
Besides the TFC, N-dimension static MFCC parameters are
also appended. The language recognition results are given

in Tables 1 and 2. When the EER and the Cavg*100 are not
consistent, we consider the Cavg*100 as the primary met-
ric. From these tables, we can see that we will get the best
performance using 52 dimensions (39 + 13 static parame-
ters). We adopt the 52 dimension TFC to serve as an alter-
native feature for phone recognition as the dimension and
the derivation of the elements are complementary to both
MFCC and PLP.

Our second experiment is to show the performance of
the acoustic diversified phone recognizers. Tables 3 and 4
summarize the language recognition results using different
phone recognizers in the front-end. The abbreviation for
each phone recognizer is defined in Sect. 3.1. From Tables 3
and 4, we can see that these phone recognizers are compa-
rable in performance. Since they use different acoustic fea-
tures and model training paradigms, a complementary effect
is expected when fusion is performed.

The third experiment is implemented to compare dif-
ferent methods of fusing multiple acoustic diversified phone

Table 1 Comparison of TFC with different rectangular area under the
closed-set test condition.

EER / Cavg*100 30 second 10 second 3 second

TFC 13 × 2 + 13 3.09 / 2.83 9.67 / 9.38 21.14 / 20.53

TFC 13 × 3 + 13 2.60 / 2.43 8.61 / 8.22 20.10 / 19.73

TFC 13 × 4 + 13 2.54 / 2.45 8.58 / 8.34 20.74 / 20.10

Table 2 Comparison of TFC with different rectangular area under the
open-set test condition.

EER / Cavg*100 30 second 10 second 3 second

TFC 13 × 2 + 13 4.33 / 5.23 10.85 / 11.87 21.60 / 21.86

TFC 13 × 3 + 13 3.67 / 4.72 9.59 / 10.89 20.47 / 21.25

TFC 13 × 4 + 13 3.64 / 4.62 9.74 / 10.76 21.35 / 21.40

Table 3 Performance of different acoustic diversified phone recognizers
under the closed-set test condition.

EER / Cavg*100 30 second 10 second 3 second

MA-MFCC-ML 2.93 / 2.63 9.60 / 8.88 21.34 / 21.01

MA-MFCC-fMPE 2.65 / 2.38 8.90 / 8.41 20.25 / 20.24

MA-PLP-ML 2.69 / 2.64 8.76 / 8.48 20.63 / 20.18

MA-PLP-fMPE 2.42 / 2.35 8.64 / 8.24 19.82 / 19.28

MA-TFC-ML 2.60 / 2.43 8.61 / 8.22 20.10 / 19.73

MA-TFC-fMPE 2.45 / 2.35 8.24 / 8.07 20.56 / 19.77

Table 4 Performance of different acoustic diversified phone recognizers
under the open-set test condition.

EER / Cavg*100 30 second 10 second 3 second

MA-MFCC-ML 3.84 / 4.80 10.37 / 11.34 21.89 / 22.42

MA-MFCC-fMPE 3.71 / 4.53 9.93 / 11.08 20.87 / 21.38

MA-PLP-ML 3.74 / 4.77 9.82 / 11.08 21.81 / 20.18

MA-PLP-fMPE 3.41 / 4.45 9.71 / 10.68 20.65 / 20.72

MA-TFC-ML 3.67 / 4.72 9.59 / 10.89 20.47 / 21.25

MA-TFC-fMPE 3.52 / 4.36 9.24 / 10.40 21.17 / 21.30
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Table 5 Comparison of different methods of fusing multiple acoustic
diversified phone recognizers under the closed-set test condition.

EER / Cavg*100 30 second 10 second 3 second

Score fusion 2.09 / 2.04 7.18 / 6.89 19.28 / 18.83

Feature fusion (AW) 1.93 / 1.86 6.92 / 6.62 17.67 / 17.40

Feature fusion (LROW) 1.62 / 1.53 6.89 / 6.52 17.69 / 17.28

Table 6 Comparison of different methods of fusing multiple acoustic
diversified phone recognizers under the open-set test condition.

EER / Cavg*100 30 second 10 second 3 second

Score fusion 3.01 / 4.11 8.15 / 9.67 19.88 / 20.49

Feature fusion (AW) 3.03 / 3.80 7.98 / 9.29 18.28 / 19.02

Feature fusion (LROW) 2.69 / 3.52 7.99 / 8.95 18.64 / 18.93

recognizers. The results are summarized in Tables 5 and 6.
The AW and LROW in these tables mean average weighting
and logistic regression optimized weighting respectively.
The LDA+GMM is used for score fusion. From Tables 5
and 6, we can see that improvements can be attained when
fusing different phone recognizers. Moreover, fusing fea-
tures is more effective than fusing scores, which is consis-
tent with our assumption proposed in Sect. 4: more infor-
mation can be utilized if we fuse at the feature or model
level rather than at the score level. Since the LROW method
focuses on minimizing the CLLR, better weighting coeffi-
cients can be obtained compared with AW. This can also be
observed from Tables 5 and 6. However, the performance
improvements are more significant for the 30 second test set
compared with the 10 second and 3 second test set. That is
because the LROW method is performed on the 30 second
development set. More improvements can be attained for
the 10 second and 3 second test set if we optimize the coef-
ficients on the 10 second and 3 second development set re-
spectively. In comparison with the score fusion method, the
LROW based feature fusion method achieves a relative de-
crease of 22.49%, 4.04% and 8.25% in EER for the 30 sec-
ond, 10 second and 3 second closed-set test conditions sep-
arately.

Next, we carried out experiments to examine the opti-
mal number of acoustic diversified phone recognizers for a
PPR front-end. As discussed in Sect. 4.2, we calculated the
conditional entropy and the distance of each phone recog-
nizer for evaluation. The normalized values (normalized by
the maximum elements) are plotted in Fig. 4, where the two
dotted lines show the discriminative ability and distinctive-
ness of each phone recognizer and the solid curve is used for
overall evaluation. Although some phone recognizers have
high discriminative abilities, their evaluation scores are low
due to low distinctiveness. Our strategy was to select phone
recognizers with the largest evaluation values to build the
PPRVSM front-end, which will maintain the best discrimi-
native ability with reduced redundancy. We first ranked and
short-listed the phone recognizers by their evaluation values
to form the PPR front-end. Figures 5–10 show the perfor-
mance achieved by using different number of phone recog-

Fig. 4 Different evaluation criteria for the acoustic diversified phone
recognizers.

Fig. 5 Performance as a function of the number of phone recognizers
(30 second, closed-set).

Fig. 6 Performance as a function of the number of phone recognizers
(10 second, closed-set).

nizers on the 30 second, 10 second and 3 second test set. The
x-axis of each figure indicates the number of phone recog-
nizers used to form a fused system using the LROW based
feature fusion method. One can observe that, as the num-
ber of phone recognizers increases, the language recogni-
tion performance is improved and saturates after three phone
recognizers is employed. Our proposed PPRVSM system
will be built by fusing the selected three acoustic diversified
phone recognizers at the feature level. The EERs of the sys-
tem achieves 1.79%, 7.02% and 18.02% for the 30 second,
10 second and 3 second closed-set test conditions respec-
tively, which are comparable with the results in the last row
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Fig. 7 Performance as a function of the number of phone recognizers
(3 second, closed-set).

Fig. 8 Performance as a function of the number of phone recognizers
(30 second, open-set).

Fig. 9 Performance as a function of the number of phone recognizers
(10 second, open-set).

Fig. 10 Performance as a function of the number of phone recognizers
(3 second, open-set).

of Table 5.
Finally, we compare the proposed PPRVSM system

with a traditional one. In the traditional PPRVSM sys-
tem, three phone recognizers with phonetic diversification
are employed, which are developed by the Faculty of In-

Table 7 Comparison and fusion of different PPRVSM systems under the
closed-set test condition.

EER / Cavg*100 30 second 10 second 3 second

The proposed PPRVSM (a) 1.79 / 1.59 7.02 / 6.77 18.06 / 17.63

The traditional PPRVSM (b) 2.59 / 2.29 7.41 / 7.63 19.07 / 17.99

a+b 1.24 / 1.13 4.98 / 4.92 14.96 / 14.75

Table 8 Comparison and fusion of different PPRVSM systems under the
open-set test condition.

EER / Cavg*100 30 second 10 second 3 second

The proposed PPRVSM (a) 2.85 / 3.74 7.96 / 9.16 18.69 / 19.27

The traditional PPRVSM (b) 3.67 / 4.73 8.50 / 9.79 19.70 / 19.56

a+b 2.17 / 2.95 6.07 / 7.39 15.68 / 16.59

formation Technology of the Brno University of Technol-
ogy [26]. They are trained on different languages: Czech,
Hungarian and Russian. For each language, about 10 hours
of speech are used in training. They all adopt the Artifi-
cial Neural Network/Hidden Markov Model (ANN/HMM)
structure. The number of each phone set is: 42 for the
Czech, 58 for the Hungarian and 49 for the Russian. In Ta-
bles 7 and 8, the proposed PPRVSM (a) is composed of three
selected acoustic diversified phone recognizers stated above,
which are fused at the feature level using LROW. The tradi-
tional PPRVSM (b) is built by fusing the Czech, Hungarian
and Russian phone recognizers at the score level. The re-
sults in Tables 7 and 8 show that our proposed PPRVSM (a)
is competitive with the traditional one (b) for the three test
conditions. The results are significantly better for the 30 sec-
ond test set. This fact illustrates that the LROW method per-
forms better using a matched length of speech for optimiza-
tion. We also conduct a score fusion experiment using the
two systems (a+b). The LDA+GMM method is adopted for
score fusion. The further improvement indicates that the two
systems with different diversifications are complementary to
each other. This is likely because the Czech, Hungarian
and Russian phone recognizers use the ANN/HMM archi-
tecture while the Mandarin phone recognizer adopts a differ-
ent GMM/HMM architecture. The EERs of the fused sys-
tem achieve 1.24%, 4.98% and 14.96% for the 30 second, 10
second and 3 second closed-set test conditions respectively.

6. Conclusions

We investigate a strategy to build a PPRVSM system for lan-
guage recognition based on parallel phone recognizers that
are acoustically diversified and fused at the feature level. A
variety of acoustic features and model training methods are
employed to develop the diversified recognizers. Features
include MFCC and PLP along with a novel time-frequency
feature are studied to provide complementary acoustic em-
phasis. We propose a new technique based on LROW for
effective fusion of different phonotactic features. We also
introduce a method to study how each diversified phone rec-
ognizer contributes to the language recognition task, which
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helps determine the number of phone recognizers to include.
There are two main advantages of the proposed sys-

tem: (1) additional phone recognizers can be built without
the need for additional annotated speech samples; (2) fus-
ing at the feature level retains more information than fusion
at the score level. Experimental results on the NIST 2007
LRE evaluation set show that the proposed system is com-
parable and complementary to an established PPRVSM sys-
tem for phonotactic language recognition. When we fuse
the two systems at the score level for further improvements,
the EERs achieve 1.24%, 4.98% and 14.96% for the 30 s,
10 s and 3 s closed-set test conditions respectively.
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