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PAPER

AMT-PSO: An Adaptive Magnification Transformation Based
Particle Swarm Optimizer

Junqi ZHANG†a), Lina NI††,†, Chen XIE†, Ying TAN†††, Nonmembers, and Zheng TANG†,††††∗b), Member

SUMMARY This paper presents an adaptive magnification transforma-
tion based particle swarm optimizer (AMT-PSO) that provides an adaptive
search strategy for each particle along the search process. Magnification
transformation is a simple but very powerful mechanism, which is inspired
by using a convex lens to see things much clearer. The essence of this
transformation is to set a magnifier around an area we are interested in, so
that we could inspect the area of interest more carefully and precisely. An
evolutionary factor, which utilizes the information of population distribu-
tion in particle swarm, is used as an index to adaptively tune the magni-
fication scale factor for each particle in each dimension. Furthermore, a
perturbation-based elitist learning strategy is utilized to help the swarm’s
best particle to escape the local optimum and explore the potential better
space. The AMT-PSO is evaluated on 15 unimodal and multimodal bench-
mark functions. The effects of the adaptive magnification transformation
mechanism and the elitist learning strategy in AMT-PSO are studied. Re-
sults show that the adaptive magnification transformation mechanism pro-
vides the main contribution to the proposed AMT-PSO in terms of conver-
gence speed and solution accuracy on four categories of benchmark test
functions.
key words: particle swarm optimizer, magnification transformation, ex-
ploitation, exploration, search strategy, adaptive

1. Introduction

Metaheuristics have been proven to be highly useful for
approximately solving hard optimization problems in prac-
tice [1]–[4]. The class of the metaheuristics includes sim-
ulated annealing, tabu search, evolutionary algorithms like
genetic algorithms and evolution strategies, ant colony op-
timization, particle swarm optimization, estimation of dis-
tribution algorithms, scatter search, the greedy randomized
adaptive search, multi-start and iterated local search, guided
local search, etc. Over the last years, a large number of al-
gorithms combined with various algorithms ideas, such as
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selection, crossover, mutation, local search, reset, reinitial-
ization, etc., sometimes also from outside of the traditional
metaheuristics field, were reported as the hybrid metaheuris-
tics [4].

Particle swarm optimizer (PSO) is a stochastic global
optimization technique based on a social interaction
metaphor [5], [6], and has been demonstrated to perform
well in many practical engineering fields such as function
optimization, artificial neural network training, fuzzy sys-
tem control, blind source separation as well as machine
learning [7]. Furthermore, the PSO has also been found to
be robust and fast in solving nonlinear, non-differentiable
and multimodal problems [8]. The progress of PSO research
and the recent achievements for applications to large-scale
optimization problems are reviewed in [9].

A suitable adaptive balance between exploitation and
exploration searches is the key to the success of the
PSO [10]. Exploration is the ability to test various regions in
the problem space in order to locate a good optimum, hope-
fully the global one. Exploitation is the ability to concen-
trate the search around a promising candidate solution in or-
der to locate the optimum precisely [11]. Generally, the “ex-
ploitation search” and “exploration search” mean the local
search and global search, respectively. However, because of
the complexity, dynamics and randomness involved in the
particle swarm optimizer, it was not trivial to adaptively bal-
ance exploitation and exploration along the search process
directly by parameter selection. The empirical and theoret-
ical analyses of the dynamics of particle swarms have pro-
vided some insights into PSO over the last decade [12]–[23].
A linearly decreasing inertia weight was applied over the
course of the search by Shi and Eberhart in [24] to enlarge
the global search. A constriction factor [16], [25] was intro-
duced to control the dynamic characteristics of the particle
swarm, including its exploration versus exploitation propen-
sities.

In [26], we have proposed a novel idea of using a mag-
nifier to reinforce the exploitation search of particles. In this
paper, we extend this idea with the definition of the magnifi-
cation transformation area, adaptive magnification scale fac-
tor, extensive analysis of the adaptive magnification trans-
formation effects and substantial experimental results com-
pared with other improved PSOs on fifteen benchmark test
functions, resulting in an adaptive magnification transfor-
mation mechanism based particle swarm optimizer (AMT-
PSO).

To avoid possible local optima in the convergence state,
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combinations with auxiliary techniques have been devel-
oped elsewhere by introducing operators such as selection,
crossover, mutation, local search, reset, reinitialization, etc.,
into PSO [27]. These hybrid operations are usually imple-
mented in every generation or at a prefixed interval or are
controlled by adaptive strategies as a trigger. While these
methods have brought improvements in PSO, the perfor-
mance may be further enhanced if a finer division of the
swarm labor is obtained. Magnification transformation is a
simple but very powerful mechanism, which is inspired by
the use of a convex lens to see things much clearer. The
ranges around the best positions among the particle’s neigh-
bors are defined as the area of interest to be magnified for
much more careful and precise inspection. An evolutionary
factor proposed in [27] which utilizes the information of the
population distribution in particle swarm, is combined as an
index to adaptively tune the magnification scale factor so
that the magnification transformation degree for each parti-
cle could be dynamically determined along the search pro-
cess. The particles far away from the swarm’s center keep
looking for new potential region, while the particles around
the swarm center focus on the refinement of the current best
solution. Furthermore, a perturbation-based elitist learning
strategy, as a commonly used mechanism to avoid prematu-
rity convergence in PSO, is utilized to help the swarm’s best
particle to escape the local optimum and explore the poten-
tial better space. If the swarm’s best particle finds a better
solution, all other particles would follow the new best po-
sition to jump out and converge to the new region. In this
way, a finer division of the swarm labor is obtained.

Moreover, tests are carried out to verify the effective-
ness of the AMT-PSO, and to compare with other improved
PSO algorithms on 15 unimodal and multimodal benchmark
functions comprehensively. The effects of the adaptive mag-
nification transformation and the elitist learning strategy in
AMT-PSO are also studied. Results show that the proposed
AMT-PSO substantially enhances the performance of the
PSO paradigm in terms of convergence speed and solution
accuracy on four categories of benchmark functions mainly
due to the power of the adaptive magnification transforma-
tion mechanism.

The remainder of this paper is organized as follows.
Section 2 reviews the PSO paradigm briefly. Section 3 elab-
orates the proposed AMT-PSO. Section 4 gives extensive
experimental results to illustrate the effectiveness and effi-
ciency of the proposed method. Finally, concluding remarks
are made in Sect. 5.

2. Particle Swarm Optimizer

PSO uses a particle swarm to search for the optimal solution
and defines each particle as a potential solution to a problem
in N-dimensional space with a memory of its previous best
position and the best position among its neighbors, in addi-
tion to a velocity component. The canonical PSO formula
with inertia weight is controlled by the Eqs. (1) and (2):

Vd
i (t + 1) = wVd

i (t) + c1r1(Pd
iB(t) − Xd

i (t))

+c2r2(Pd
nB(t) − Xd

i (t)) (1)

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (2)

where V is the velocity and X is the position of particle i.
t is the iteration number. i = 1, 2, · · · ,N, N is the number
of particles in the swarm, d = 1, 2, · · · ,D, and D is the di-
mension of the solution space. w is the inertia weight [24].
The nonnegative acceleration constants c1 and c2 reflect the
weighting of stochastic acceleration terms, r1 and r2 are
random numbers uniformly drawn from the interval [0, 1],
which are all scalar quantities for each particle i in each di-
mension d. Pd

iB is the position with the best fitness found
so far for the ith particle in the dth dimension. Pd

nB is the
best position in the neighborhood in the dth dimension. In
some literature, instead of using Pd

nB, gBestd may be used in
the global-version PSO whereas lBestd may be used in the
local-version PSO.

In the constricted version suggested by Clerc and
Kennedy [16], Eqs. (1) and (2) are modified to

Vd
i (t + 1) = χ(Vd

i (t) + c1r1(Pd
iB(t) − Xd

i (t))

+c2r2(Pd
nB(t) − Xd

i (t))) (3)

Xd
i (t + 1) = Xd

i (t) + Vd
i (t + 1) (4)

where the constriction coefficient χ is defined in Eq. (5) as
follows:

χ =
2

|2 − ϕ − √ϕ2 − 4ϕ|
, ϕ = c1 + c2. (5)

Clerc and Kennedy suggested that the values of the
constants should be set as: c1 = c2 = 2.05, ϕ = 4.1 and
χ ≈ 0.72984, so that the convergence of the model can be
ensured. The position of every particle in each dimension is
independently updated. The only link between the dimen-
sions in the problem space is introduced by the objective
function, via Pd

iB and Pd
nB [11].

3. AMT-PSO

Magnification transformation is a simple but very useful
mechanism, which is inspired by using a convex lens to see
things much clearer. The essence of this transformation is
to set a magnifier around a point we are interested in, so
that we could inspect the range around the point more care-
fully and precisely. There are many widely used transforma-
tion strategies, such as Linear Transformations, Non-Linear
Transformations which include Fisheye Zoom, Hyperbolic,
3D Pliable Surfaces [28]. For example, the magnification
transformation is well used in building screen magnifiers to
enlarge the information presented on a visual display in a
computer system [29]. However, this magnification trans-
formation technique remains vacant in PSO.

We introduce two factors that are magnification trans-
formation area and magnification scale factor into magni-
fication transformation mechanism to improve the perfor-
mance of PSO. The magnification transformation area de-
notes the range to be magnified and is defined as the area just
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(a) Sketch map of our AMT-PSO on a composition test function. (b) Magnification transformation area.

Fig. 1 Magnification transformation mechanism and magnification transformation area.

around the best positions among its neighbors in the follow-
ing. The magnification scale factor adaptively determines
the degree of magnification transformation. Figure 1 (a) il-
lustrates the sketch map of the magnification transformation
mechanism.

3.1 Magnification Transformation Area

The magnification transformation area (MT Ad
i (t)) in PSO is

defined in Definition 1, which considers both the personal
position Pd

iB and the swarm’s best position Pd
nB in each di-

mension d in the t-th iteration. Figure 1 (b) illustrates the
MT Ad

i (t) defined in Definition 1 when the particle position
Xd

i (t) is in the middle of the Pd
iB and Pd

nB.
Definition 1 (Magnification Transformation Area

(MT Ad
i (t))): The MT Ad

i (t) for particle i in each dimension
d and at the t-th iteration is defined as

MT Ad
i (t) = [(Pd

iB(t) − |d1|), (Pd
iB(t) + |d1|)]⋃

[(Pd
nB(t) − |d2|), (Pd

nB(t) + |d2|)] (6)

where d1 = Pd
iB(t) − Xd

i (t), d2 = Pd
nB(t) − Xd

i (t).
Let AL and AR denote the left and right boundaries of

MT Ad
i (t). AL and AR can be derived according to Eq. (6) in

the following six situations shown in Fig. 2. For example,
when Xd

i (t) = 1, Pd
nB(t) = 2 and Pd

iB(t) = 3 in Situation 1,
AL = Xd

i (t) = 1, AR = Pd
iB(t) + |d1| = 3 + |d1| = 3 + (Pd

iB(t) −
Xd

i (t)) = 3 + (3 − 1) = 5. The magnification transformation
area (MT Ad

i (t)) is therefore [1, 5].

3.1.1 Situation 1: Xd
i (t) ≤ Pd

nB(t) ≤ Pd
iB(t)

AL = Xd
i (t), AR = Pd

iB(t) + |d1|.

3.1.2 Situation 2: Xd
i (t) ≤ Pd

iB(t) ≤ Pd
nB(t)

AL = Xd
i (t), AR = Pd

nB(t) + |d2|.

3.1.3 Situation 3: Pd
nB(t) ≤ Pd

iB(t) ≤ Xd
i (t)

AL = Pd
nB(t) − |d2|, AR = Xd

i (t).

3.1.4 Situation 4: Pd
iB(t) ≤ Pd

nB(t) ≤ Xd
i (t).

AL = Pd
iB(t) − |d1|, AR = Xd

i (t).

3.1.5 Situation 5: Pd
nB(t) ≤ Xd

i (t) ≤ Pd
iB(t)

AL = Pd
nB(t) − |d2|, AR = Pd

iB(t) + |d1|.

3.1.6 Situation 6: Pd
iB(t) ≤ Xd

i (t) ≤ Pd
nB(t)

AL = Pd
iB(t) − |d1|, AR = Pd

nB(t) + |d2|.

3.2 Magnification Transformation Conditions

The conditions of the magnification transformation on parti-
cles depend on the status of the particle positions in the next
generation. Whenever particles are going to pass through
the magnification transformation area in the next generation,
the magnification transformation mechanism would mag-
nify the MT Ad

i (t). In this way, the particles would have a
better chance of landing in MT Ad

i (t) and search it in detail.
At the same time, the velocities of particles remain constant
so that the particles preserve the capability to fly out and
continue the exploration search.

Since the particles which will not cross the MT Ad
i (t) in

the next generation are busy doing their exploration search,
the magnification transformation mechanism will not apply
to them.

In this way, the exploration capability of the swarm is
maintained while the efficiency of the exploitation search
is promoted, which profits from the explicit labor division
between the exploration and exploitation searches in AMT-
PSO.
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(a) Xd
i (t) ≤ Pd

nB(t) ≤ Pd
iB(t). (b) Xd

i (t) ≤ Pd
iB(t) ≤ Pd

nB(t). (c) Pd
nB(t) ≤ Pd

iB(t) ≤ Xd
i (t).

(d) Pd
iB(t) ≤ Pd

nB(t) ≤ Xd
i (t). (e) Pd

nB(t) ≤ Xd
i (t) ≤ Pd

iB(t). (f) Pd
iB(t) ≤ Xd

i (t) ≤ Pd
nB(t).

Fig. 2 Situation 1 - 6: The MT Ad
i (t) of particle i in dimension d.

3.3 Adaptive Magnification Scale Factor

The magnification scale factor s is the unique parameter to
dynamically tune the search strategy along the search pro-
cess in AMT-PSO. Every particle i has its own magnifica-
tion scale factor si defined as follows according to all the
particles’ distribution in the swarm.

Definition 2 (Adaptive Magnification Scale Factor):
The adaptive magnification scale factor si of particle i is de-
fined according to the particle’s distribution in the swarm
as

si = smax − fi · (smax − smin) (7)

where smax and smin are respectively the upper and lower
bounds of the magnification scale factor, which will be de-
termined in the experiment part. fi is the “evolutionary fac-
tor” introduced in [27] and computed by

fi =
di − dmin

dmax − dmin
∈ [0, 1] (8)

where di is the mean distance from particle i to other parti-
cles, which is given by

di =
1
N

N∑
j=1, j�i

√√√ D∑
k=1

(xk
i − xk

j)
2 (9)

where N and D are the population size and the number of
dimensions, respectively. dmax and dmin are the maximum
and minimum distances of the mean distances of particles.

Equation (9) computes the mean distance from each
particle to all the other particles. It is reasonable to ex-
pect that the mean distance from the globally best parti-
cle to other particles would be minimal in the convergence
state since the global best tends to be surrounded by the
swarm [27]. When a new better optimal region is found, new
leaders quickly emerge somewhat far away from the current
clustering swarm. This leads the swarm to jump out of the
previous optima region to the new region, forming a second
convergence. In this way, the search process of the swarm is
composed of multiple convergences. The transformation be-
tween two successive convergences results from the explo-
ration ability of the swarm and leads the swarm to jump from

the local optimum. During each convergence, the swarm ex-
ploits the history information and refines the current optimal
region for a more accurate solution. Equation (8) computes
the distribution information of each particle in the swarm.
Bigger fi means the particle i is far away from the swarm
center and explores the space out of the current optimal re-
gion. Smaller fi means the particle i surrounds the swarm
center and refines the current optimal region for a more ac-
curate solution. Equation (7) computes the adaptive magni-
fication scale factor si of particle i. Small fi leads to large
si. Large si enhances the exploitation ability of the swarm.
In this way, a finer division of the swarm labor is obtained.
The particles surrounding the swarm center can pay more
attention to refining the current optimal region, while the
particles far away from the swarm center can jump out and
enhance their abilities to explore the unknown space.

As shown in Fig. 3, according to Eqs. (7) - (9), the par-
ticles that converge around the swarm center have bigger
magnification scale factor and therefore perform finer search
around the current known optimal region due to their smaller
evolutionary factor. On the contrary, the particles that are
far away from the swarm center have smaller magnification
scale factor and therefore jump out to explore the unknown
space due to their bigger evolutionary factor.

3.4 Adaptive Magnification Transformation Mechanism

The magnification transformation is elaborated as follows.
Let Xd

i (t) be the position of particle i in the current t-th gen-
eration, Xd

i (t+ 1) be the position of particle i supposed to be
in the next generation without the magnification transforma-
tion, which can be fixed by the generation of the two random
numbers r1 and r2. The magnification transformation of par-
ticle i’s position Xd

i from the t-th to the (t + 1)-th iteration
in each dimension can be calculated by Eqs. (10) - (17) in
eight cases and schematically illustrated in Figs. 4 (a)- 4 (h),
respectively.

The magnification transformation takes effect only in
the MT Ad

i (t) and directly magnifies the exploitation by
pulling the particles back when the particle flies in the
course of the MT Ad

i (t). For example, when Xd
i (t) = AL = 1,

AR − AL = 4, Xd
i (t + 1) = 7 and si = 2 in Case 1,
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(a) Value of evolutionary factor. (b) Value of adaptive magnification scale factor.

Fig. 3 Evolutionary state information revealed by f and s at run time on multimodal function F10

listed in Table 1.

(a) Case 1 (b) Case 2

(c) Case 3 (d) Case 4

(e) Case 5 (f) Case 6

(g) Case 7 (h) Case 8

Fig. 4 Case 1 - 8: The position transition of particle i passed through the
MT Ad

i (t) along left and right directions.

((Xd
i (t + 1) − Xd

i (t))/si) = 3 ≤ (AR − AL) = 4, Xd
i (t + 1)

is pulled back into the the MT Ad
i (t) at Xd

i (t + 1) = AL +

(Xd
i (t + 1) − Xd

i (t))/si) = 4. When Xd
i (t + 1) = 11 as in

Case 2, Xd
i (t + 1) is pulled back but out of the MT Ad

i (t) at
Xd

i (t + 1) = Xd
i (t + 1) − (AR − AL) ∗ (si − 1) = 7. Be-

fore the magnification, Xd
i (t + 1) = 11. After the magnifi-

cation, the magnification area [AR − AL] is magnified si = 2
times so that the particle has to fly one more magnification
area (AR − AL) ∗ (si − 1) = (AR − AL) ∗ (2 − 1). When
si = 3, the particle has to fly two more magnification area
(AR − AL) ∗ (si − 1) = (AR − AL) ∗ (3 − 1). Therefore,
Xd

i (t + 1) = Xd
i (t + 1) − (AR − AL) ∗ (si − 1) in Case 2. In

Cases 7 and 8, (si − 1) is also used in the same way.

3.4.1 Case 1:Xd
i (t) = AL and

((Xd
i (t + 1) − Xd

i (t))/si) ≤ (AR − AL)

Xd
i (t + 1) = AL + (Xd

i (t + 1) − Xd
i (t))/si). (10)

3.4.2 Case 2: Xd
i (t) = AL and

((Xd
i (t + 1) − Xd

i (t))/si) > (AR − AL)

Xd
i (t + 1) = Xd

i (t + 1) − (AR − AL) ∗ (si − 1). (11)

3.4.3 Case 3: Xd
i (t) = AR and

((Xd
i (t) − Xd

i (t + 1))/si) ≤ (AR − AL)

Xd
i (t + 1) = AL + (Xd

i (t) − Xd
i (t + 1))/si). (12)

3.4.4 Case 4: Xd
i (t) = AR and

((Xd
i (t) − Xd

i (t + 1))/si) > (AR − AL)

Xd
i (t + 1) = AL + (Xd

i (t + 1) − Xd
i (t))/si). (13)

3.4.5 Case 5: AL < Xd
i (t) < AR and

(Xd
i (t) + (Xd

i (t + 1) − Xd
i (t))/si ≤ AR

Xd
i (t + 1) = Xd

i (t) + (Xd
i (t + 1) − Xd

i (t))/si. (14)

3.4.6 Case 6: AL < Xd
i (t) < AR and

(Xd
i (t) + (Xd

i (t) − Xd
i (t + 1))/si ≥ AL

Xd
i (t + 1) = Xd

i (t) + (Xd
i (t + 1) − Xd

i (t))/si. (15)
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3.4.7 Case 7: AL < Xd
i (t) < AR and

(Xd
i (t) + (Xd

i (t + 1) − Xd
i (t))/si > AR

Xd
i (t + 1) = Xd

i (t + 1) − (AR − Xd
i (t)) ∗ (si − 1). (16)

3.4.8 Case 8: AL < Xd
i (t) < AR and

(Xd
i (t) + (Xd

i (t) − Xd
i (t + 1))/si < AL

Xd
i (t + 1) = Xd

i (t + 1) + (Xd
i (t) − AL) ∗ (si − 1). (17)

3.5 Elitist Learning Strategy

PSO emulates the swarm behavior of insects, animals herd-
ing, birds flocking, and fish schooling where these swarms
search for food in a collaborative manner. Each member in
the swarm adapts its search patterns by learning from its own
experience and other members’ experience [30]. When the
swarm can not find the better positions, the swarm’s best po-
sition may lead the swarm to a local optimum. The swarm’s
best particle, unlike other particles, has no exemplar to fol-
low and only search around the swarm’s best position, which
would speed up the premature of the swarm. Therefore,
we employ a perturbation-based Elitist Learning Strategy
(ELS), as a commonly used mechanism to avoid the pre-
maturity in PSO [27], to help the swarm best particle escape
the local optimum and explore the potential better space. If
the swarm finds a better solution, all other particles would
jump out to follow the best position and converge to the new
region.

The ELS randomly chooses one dimension of the
swarm’s best position, which is denoted as gBd for the dth
dimension. gBd is perturbed through a Gaussian perturba-
tion

gBd = gBd + (Xd
max − Xd

min) ·Gaussian(μ, σ2) (18)

where Xd
max and Xd

min are respectively the upper and lower
bounds of the search range. Gaussian(μ, σ2) is a random
number from a Gaussian distribution with a zero mean μ
and a standard deviation σ2.
σ is linearly decreased with the iteration number,

which is given by

σ = σmax − (σmax − σmin)
t
T

(19)

where σmax and σmin are respectively the upper and lower
bounds of σ, which are suggested in [27] that σmax = 1
and σmin = 0.1. t is the current iteration number, T is the
maximum iteration number.

3.6 AMT-PSO Algorithm

Figure 5 shows the flow diagram of the proposed AMT-
PSO. In the initialization, the initial positions and velocities
of particles in the swarm are initialized. Let χ ≈ 0.72984

Fig. 5 The flow diagram of the AMT-PSO Algorithm.

and c1 = c2 = 2.05. The particles fly in the search space
according to the Eqs. (3) and (4). The evolutionary states
of particles are computed as indexes to adaptively tune the
magnification scale factors. At the same time, the elitist
learning strategy is also used to help the best particle escape
from the local optima. Whenever particles pass through the
MT Ad

i (t), the magnification transformation mechanism will
be applied to them. In the next step, the personal best po-
sitions of particles, the neighbors best positions, the veloci-
ties and positions of particles are all updated. The algorithm
can be terminated by a given maximum number G of fitness
evaluations (FEs) or a preset solution accuracy. In our ex-
periments, we adopt the former stop criterion.

An important feature to classify the metaheuristics is
the use they make of the search history, that is, whether they
use memory or not and how much they use memory [1]. The
use of memory is nowadays recognized as one of the funda-
mental elements of a powerful metaheuristic. The magnifi-
cation transformation is a metaheuristic that belongs to the
memory usage vs. memory-less methods because the usage
of the memory, i.e., the known best regions of the swarm,
is exploited more finely in the magnification transformation
mechanism.

The MT Ad
i (t) contains the history information, that is,
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Table 1 List of the benchmark functions and their parameters from CEC’05.

Function Name Equation Search Space fbias Type

Shifted Sphere F1 =
∑D

i=1 z2
i + fbias, z = x − o [−100, 100]D −450 UniM

Shifted Schwefel’s Problem 1.2 F2 =
∑D

i=1(
∑i

j=1 z j)2 + fbias, z = x − o [−100, 100]D −450 UniM

Shifted Rotated High Conditioned Elliptic F3 =
∑D

i=1(106)
i−1
D−1 z2

i + fbias, z = (x − o) ∗ M, M: orthogonal matrix [−100, 100]D −450 UniM

Shifted Schwefel’s Problem 1.2
with Noise in Fitness F4 =

∑D
i=1(
∑i

j=1 z j)2 ∗ (1 + 0.4|N(0, 1)|) + fbias, z = x − o [−100, 100]D −450 UniM

Schwefel’s Problem 2.6
with Global Optimum on Bounds F5 = max|Ai x − Bi | + fbias, A is a D ∗ D matrix, Bi = Ai ∗ o, o is a D ∗ 1 vector [−100, 100]D −310 UniM

Shifted Rosenbrock F6 =
∑D−1

i=1 (100(z2
i − zi+1)2 + (zi − 1)2) + fbias, z = x − o + 1 [−100, 100]D 390 BMultiM

Shifted Rotated Griewanks F7 =
∑D

i=1

z2
i

4000 −
∏D

i=1 cos(
zi√

i
) + 1 + fbias, z = (x − o) ∗ M,

Function without Bounds M = M′(1 + 0.3|N(0, 1)|), M′: linear transformation matrix, condition number=3 [0, 600]D −180 BMultiM

Shifted Rotated Ackleys Function F8 = −20exp(−0.2
√

1
D

∑D
i=1 z2

i ) − exp( 1
D

∑D
i=1 cos(2πzi)) + 20 + e + fbias,

with Global Optimum on Bounds M: linear transformation matrix, z = (x − o) ∗ M, condition number=100 [−32, 32]D −140 BMultiM

Shifted Rastrigin’s Function F9 =
∑D

i=1(z2
i − 10cos(2πzi) + 10) + fbias, z = x − o [−5, 5]D −330 BMultiM

F10 =
∑D

i=1(z2
i − 10cos(2πzi) + 10) + fbias, M: linear transformation matrix,

Shifted Rotated Rastrigin z = (x − o) ∗ M, condition number=2 [−5, 5]D −330 BMultiM

F11 =
∑D

i=1(Σkmax
k=0 [αkcos(2πbk(zi + 0.5))]) − DΣkmax

k=0 [αkcos(2πbk · 0.5)] + fbias,
Shifted Rotated Weierstrass α = 0.5, b = 3, kmax = 20, z = (x − o) ∗ M, M: linear transformation matrix, condition number=5 [−0.5, 0.5]D 90 BMultiM

F12 = Σ
D
i=1(Ai − Bi(x))2 + fbias,Ai = Σ

D
i=1(αi j sinα j + bi jcosα j),

Schwefel’s Problem 2.13 Bi(x) = ΣD
i=1(αi j sinx j + bi jcosx j) [−π, π]D −460 BMultiM

F13 = F8(F2(z1 , z2)) + F8(F2(z2 , z3)) + . . . + F8(F2(zD−1, zD) + F8(F2(zD1, z1))

Expanded Extended Griewanks + fbias, z = x − o + 1, F8(x) = ΣD
i=1

x2
i

4000 −
∏D

i=1 cos(
xi√

i
) + 1,

plus Rosenbrocks Function (F8F2) F2(x) =
∑D−1

i=1 (100(x2
i − xi+1)2 + (xi − 1)2) [−3, 1]D −130 EMultiM

F14 = F(z1, z2) + F(z2, z3) + . . . + F(zD−1, zD) + F(zD, z1) + fbias,

Shifted Rotated Expanded z = (x − o) ∗ M, F(x, y) = 0.5 + (sin2(
√

x2+y2)−0.5)

(1+0.001(x2+y2))2
,

Scaffers F6 M: linear transformation matrix, condition number=3 [−100, 100]D −300 EMultiM

F15 = Σ
n
i=1wi ∗ f ′i ((x − oi)/λi ∗ Mi) + biasi + fbias, f ′i is composed by five functions,

Hybrid Composition Function wi = exp(−
∑D

k=1(xk−oik )2)

2Dσ2
i

, σi = 1 for i = 1, 2, . . . ,D, Mi are all identity matrices [−5, 5]D 120 HC

the personal best position and the neighbors’ best position.
The magnification scale factor (si) decides the probability
that particles search the MT Ad

i (t). By applying the mag-
nification transformation mechanism, the degree of the his-
tory information exploitation increases with the growth of
the magnification scale factor. On the contrary, the explo-
ration of the unknown space increases with the decrease of
the magnification scale factor (si). Therefore, the magnifi-
cation scale factor (si) can be directly used to adaptively bal-
ance between the exploitation and the exploration searches
along the search process. In this way, the proposed AMT-
PSO provides an easy way to balance exploitation and ex-
ploration for PSO due to the adaptive and clearer labor divi-
sion between exploiting the history information and explor-
ing the unknown space.

4. Experimental Results

4.1 Benchmark Functions and Algorithm Configuration

Fifteen benchmark functions from the CEC′05 test func-
tions [31] listed in Table 1 are used as the objective func-
tions. o denotes the shifted global optimum. These bench-
mark functions are unimodal, basic multimodal, extended
multimodal and hybrid composition, respectively. In Ta-
ble 1, UniM, BMultiM, EMultiM and HC denote the uni-
modal, basic multimodal, expanded multimodal and hybrid

composition, respectively.
Three improved PSO algorithms have been compared

with the AMT-PSO listed in Table 2. The first is GPSO [24],
which uses the linear decreasing weight from 0.9 to 0.4,
global star topology and c1 = c2 = 2.0. GPSO is a clas-
sical PSO proposed by Yuhui Shi and Eberhart to be com-
pared. The second is LPSO [32], which uses the constricted
factors c1 = c2 = 2.05, ϕ = 4.1 and χ ≈ 0.72984, and the
local ring topology. LPSO is regarded as the standard PSO
and has been widely used in PSO applications. The third
is MPSO [26], which is a simple idea of using a magnifier
to reinforce the exploitation search of particles. MPSO is
our first proposed PSO without the definitions of the magni-
fication transformation area and the adaptive magnification
scale factor. The magnification transformation area r and the
magnification scale factor s are set as r = 0.3 and s = 0.5 as
the same in [26].

For a fair comparison among all the algorithms, these
contenders are tested using the standard features of PSO
introduced by Daniel Bratton and James Kennedy [33] in
the experiments, which use thirty dimensions, non-uniform
swarm initialization, and boundary conditions wherein a
particle will not be evaluated when it exits the feasible
search space. Furthermore, the same population size of 20
that is commonly adopted in PSO [7] is used for compar-
isons, and all the contenders use the same maximum num-
ber of fitness evaluations (FEs) 1.0 × 105 for each test func-
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Table 2 PSO algorithms used in the comparison.

Algorithm Year Topology Parameter Setting Reference
GPSO 1998 Global Star w : 0.9 − 0.4, c1 = c2 = 2.0 [24]
LPSO 2002 Local Ring w ≈ 0.72984 and c1 = c2 ≈ 1.496172 [16]
MPSO 2008 Global Ring w ≈ 0.72984 and c1 = c2 ≈ 1.496172, r = 0.3 and s = 0.5 [26]
AMT-PSO - Local Ring w ≈ 0.72984 and c1 = c2 ≈ 1.496172, smin = 1 and smax = 3 -

(a) P(ita) sequence on F3. (b) P(ita) sequence on F5. (c) P(ita) sequence on F9. (d) P(ita) sequence on F12.

Fig. 6 The averaged P(ita) sequences of the AMT-PSO with five particles in five dimensions when
optimizing four benchmark functions over 30 independent runs. The swarm evolves for 1000 iterations
in each run.

Table 3 Effects of the magnification scale factor on global search quality.

Value of s F2 F4 F6 F8 F10 F12 F14

Fixed at 0.8 6.32×104 9.00×104 7.28×109 −118.69 −8.83×101 2.00×106 −286.01

Fixed at 1 2.57×104 3.27×104 4.58×109 −118.90 −1.93×102 1.12×106 −286.32

Fixed at 3 −2.26×102 8.21×103 4.93×102 −119.02 −1.91×102 6.64×105 −286.83

smin = 0.8, smax = 1.0 3.68×104 5.62×104 1.27×109 −118.86 −2.18×102 1.52×106 −286.31

smin = 1.0, smax = 3.0 −3.12×102 1.30×104 4.61×1029 −119.01 −2.10×102 4.86×105 −286.96

smin = 0.8, smax = 3.0 −4.6×101 9.49×103 2.32×108 −118.95 −2.11×102 5.76×106 −286.85

tion [31]. All the experiments are conducted on the same
machine with a Intel (R) Pentium (R) Dual 1.80-GHz CPU,
3-GB memory, and Windows XP2 operating system. For
the purpose of statistical errors reduction, each benchmark
test function is independently simulated 30 times, and their
mean results are used for the comparisons.

4.2 Comparisons on the Solution Accuracy

The performances on the solution accuracy of GPSO, LSPO
and MPSO are compared with AMT-PSO. The results are
shown in Table 4 in terms of the mean and SD (standard
deviation) of the solutions obtained in the 30 independent
runs by each algorithm. Boldface in the table indicates the
best result among these four contenders.

Table 4 reveals that, when solving unimodal problems,
the AMT-PSO achieves the best performance on all the test
functions. When solving the basic multimodal problems,
the AMT-PSO achieves the highest accuracy on most func-
tions F8, F9, F10, F11 and F12, and ranks third on F6 and
F7. The AMT-PSO also achieves the highest accuracy on
extended multimodal and hybid composition functions F14

and F15, and ranks second on the extended multimodal func-
tion F13, which means that the AMT-PSO can successfully
jump out of the local optima and surpass all the other algo-
rithms on the complex multimodal problems. The abilities
of achieving the highest accurate solutions and avoiding be-
ing trapped into the local optima suggest that the AMT-PSO

can indeed benefit from the adaptive magnification transfor-
mation and the ELS.

4.3 Comparisons on the Convergence Speed

The other salient yardstick for measuring the algorithm per-
formance is the convergence speed in the global optimum
achievement. Figure 7 graphically illustrates the compar-
isons in terms of convergence characteristics of the evolu-
tionary process in solving the 15 different problems. It can
be shown that the AMT-PSO generally offers a much higher
speed, which suggests the power of the magnification trans-
formation mechanism in refining the solutions.

It can be concluded from Fig. 7 and Table 4 that the
AMT-PSO outperforms other contenders both in 12 out of
15 test functions on the solution accuracy, and in 9 out of 15
test functions on the convergence speed. The CPU time is
important to measure the computational load, as many ex-
isting PSO variants have added extra operations that cost
computational time. Because the topology of global ring
only computes the global best particle of the swarm while
the topology of local ring needs to compute the best particle
of the neighbors for every particle, the GPSO and the MPSO
cost less CPU time than the LPSO and the AMT-PSO. Al-
though the AMT-PSO needs to calculate the mean distance
between every pair of particles in the swarm, the calcula-
tion costs negligible CPU time (0.015) compared with the
averaged CPU time of the LPSO (0.0145).
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(a) F1. (b) F2. (c) F3.

(d) F4. (e) F5. (f) F6.

(g) F7. (h) F8. (i) F9.

(j) F10. (k) F11. (l) F12.

(m) F13. (n) F14. (o) F15.

Fig. 7 Convergence curves of the four different PSOs on the benchmark test functions F1 - F15.

In solving the real-world problems, the fitness evalua-
tion time overwhelms the algorithm’s overhead due to the
uncertainty of the complexity of them. The mean number of

FEs needed to reach acceptable accuracy would be much
more interesting than the CPU time. The mean FEs are
therefore explicitly presented and compared in Table 4. The
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Table 4 Search results of comparisons among four PSOs on the test
functions.

Func. Statistic GPSO LPSO MPSO AMT-PSO

Mean 3.15×104 −4.50×102 −4.50×102 −4.50×102

F1 Std.Dev 5.45×104 5.38×10−14 9.47×10−12 4.44×10−10

Mean 1.99×105 8.62×103 1.31×104 −3.12×102

F2 Std.Dev 1.83×105 3.01×104 2.56×104 7.55×101

Mean 2.38×109 2.92×108 1.93×108 2.76×107

F3 Std.Dev 1.50×109 4.85×108 1.84×108 3.87×107

Mean 2.68×105 1.91×104 3.24×104 1.30×104

F4 Std.Dev 1.83×105 1.23×104 1.05×104 1.82×104

Mean 4.19×104 1.82×104 1.78×104 1.21×104

F5 Std.Dev 1.20×104 9.22×103 6.07×103 4.08×103

Mean 3.31×1010 4.57×102 8.08×108 4.61×102

F6 Std.Dev 5.16×1010 1.36×102 1.40×109 2.59×102

Mean −179.98 −179.97 −179.97 −179.88
F7 Std.Dev 1.69×10−2 1.48×10−2 1.61×10−2 5.90×10−2

Mean −1.18×102 −1.18×102 −1.18×102 −1.19×102

F8 Std.Dev 0.09 0.15 0.14 0.27

Mean −3.4×101 −2.34×102 −1.69×102 −3.14×102

F9 Std.Dev 2.13×102 2.73×101 5.31×101 4.19×101

Mean 6.7×101 −2.05×102 −1.44×102 −2.10×102

F10 Std.Dev 3.47×102 5.31×101 5.70×101 3.36×101

Mean 1.40×102 1.32×102 1.28×102 1.24×102

F11 Std.Dev 1.86 5.95 3.82 6.50

Mean 2.35×106 1.23×106 8.05×105 4.86×105

F12 Std.Dev 4.19×105 7.96×105 6.01×105 6.22×105

Mean 5.24×104 5.49×104 4.29×104 4.55×104

F13 Std.Dev 3.20×104 3.04×104 3.08×104 2.72×104

Mean −28.55×101 −28.63×101 −28.66×101 −28.69×101

F14 Std.Dev 4.02×10−1 6.16×10−1 4.06 ×10−1 5.23×10−1

Mean 1.39×103 1.12×103 1.01×103 9.07×102

F15 Std.Dev 1.10×102 1.58×102 2.26×102 3.22×102

Accuracy Total 1 2 2 12

Speed Total 0 0 6 9

Time (sec) Mean 0.0045 0.0145 0.0054 0.015

FEs Mean 8940 5201 6506 3562

“acceptance” values are set as {−400,−1000,−3 × 108, 3 ×
104, 3×104, 800,−179.8,−118,−170,−150, 130, 8×105, 4×
104,−286, 1000} for the fifteen functions, respectively, to
gauge whether a solution found by the non deterministic
PSO would be acceptable or not. Noticeably, the AMT-PSO
uses the least FEs to reach the acceptable solutions.

4.4 Merits of the Magnification Transformation

Here, the AMT-PSO is tested again to see how it can directly
speed up the exploitation of particles. The search behavior
of the AMT-PSO is investigated on F3, F5, F9 and F12 listed
in Table 1. To compare the exploitation capabilities of differ-
ent magnification scale factors, an “exploitation probability
P(ita)” proposed in [34], [35] is used here as a yard stick and
is denoted by P(ita) as:

P(ita) =
∫

A(ita)
fX(x)dx (20)

where A(ita) is defined as the exploitation area and is the
same as MT Ad

i (t) in definition 1. The exploitation area is
the union of two areas, which are centered around Pd

iB(t)
and Pd

nB(t). The complementary set is defined as the explo-

ration area. f (x) is the density of the probability distribu-
tion of the particle’s position X in the next iteration. f (x)
can be integrated according to the derived density function
fX(x) of the hybrid uniform distribution of the PSO formula.
The concrete computational formula of f (x) can be found in
[34]. P(ita) represents the exploitation probability of each
particle in each dimension based on the accurate theoretical
analysis on the sampling distribution in PSO [35].

As can be seen from Fig. 6, the P(ita) of the swarm ap-
proximately increases with the growth of the magnification
scale factor s. This indicates that the magnification trans-
formation mechanism could directly change the exploitation
probability in the swarm. At the same time, due to the Eli-
tist Learning Strategy, the swarm possesses the capability of
jumping out the local optima and then converging to another
region.

4.5 Sensitivity of the Adaptive Magnification Scale Factor
Boundary

The boundaries of magnification scale factor smin and smax

may influence the performance of AMT-PSO. To assess the
sensitivity of the boundaries of magnification scale factor
si, six strategies for setting the value of s are tested here
using three fixed values (0.8, 1.0, and 3.0) and three adaptive
boundaries ({smin = 0.8, smax = 1.0}, {smin = 1.0, smax =

3.0}, {smin = 0.8, smax = 3.0}). The mean results of 30
independent trials are presented in Table 3.

Results show that if s is less than 1.0 (0.8 here), the
learning rate is not big enough to help the swarm to refine
its solutions, but help the the swarm move away from its
known optimal regions so as to jump out of the local optima,
which is evident in the performance on all the test functions.
However, all other settings, which permits a larger s (e.g.
s = 3), have delivered the excellent performance, particu-
larly the strategy with a distance-varying s increasing from
1 to 3. This outstanding performance confirms the intuition
in AMT-PSO that the outside particles should explore the
unknown space and the inner particles should concentrate
on refining the current optimal region.

4.6 Merits of the Magnification Transformation Adapta-
tion and Elitist Learning

To quantify the significance of these two mechanisms, the
performance of AMT-PSO without adaptation (s=3) or eli-
tist learning is tested under the same running conditions. Re-
sults of the mean value and standard deviance on 30 inde-
pendent trials are presented in Table 5.

It is clear from the results that with the adaptive magni-
fication transformation alone, the AMT-PSO performs best
on the unimodal functions. Unfortunately, the AMT-PSO
suffers from being trapped into the local optima at the mean-
while. The benchmark functions have various sizes of the
search domain, a large number of local optima, global opti-
mum far away from any of the local optima or surrounded
by a large local optima, slow or sharp slope, shifted global
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Table 5 Merits of magnification transformation adaptation and elitist
learning on search quality.

AMT-PSO With AMT-PSO With AMT-PSO LPSO Without
Func. Statistic ELS & Adaptation only Adaptation With ELS ELS & Adaptation

Mean -3.12×102 -3.34×102 2.57×104 8.62×103

F2 Std.Dev 7.55×102 4.64×102 6.38×104 3.01×104

Mean 1.30×104 1.02×104 3.27×104 1.91×104

F4 Std.Dev 1.82×104 5.95×103 5.93×104 1.23×104

Mean 4.61×102 4.23×102 4.58×109 4.57×102

F6 Std.Dev 2.59×102 5.71×102 1.45×109 1.36×102

Mean -11.90×101 -11.88×101 -11.89×101 -11.88×101

F8 Std.Dev 27.04×10−2 15.75×10−2 29.40×10−2 15.78×10−2

Mean -2.10×102 -2.02×102 -1.93×102 -2.05×102

F10 Std.Dev 3.36×101 2.98×101 9.94×101 5.31×101

Mean 4.86×105 4.54×105 1.12×106 1.23×106

F12 Std.Dev 6.22×105 5.45×105 8.22×105 7.96×105

Mean -289.96 -289.85 -289.32 -289.39
F14 Std.Dev 5.23×10−1 5.03×10−1 5.67 ×10−1 6.16×10−1

optimum, etc. The statistical results indicate that the Elitist
Learning Strategy improves the ability of PSOs to avoid be-
ing trapped into the local optima. However, the PSOs with-
out adaptive magnification perform the worst on all the test
functions, which indicates that the adaptive magnification
transformation is the main reason for promoting the perfor-
mance of AMT-PSO.

5. Conclusion

In this paper, PSO has been extended to AMT-PSO. This
process in AMT-PSO has been made possible by the adap-
tive magnification transformation mechanism, which uti-
lizes the information of population distribution in particle
swarm. First, the magnification transformation area has
been defined as the ranges around the best positions among
the particle’s neighbors. Then, an evolutionary factor has
been used as an index to adaptively tune the magnification
scale factor for each particle in each dimension. In this way,
the particles far away from the swarm center keep look-
ing for new potential region, while the particles around the
swarm center focus on refining current best solution. Fur-
thermore, an Elitist Learning Strategy enables the swarm to
jump out of any possible local optima. Thus, the success
of AMT-PSO highly profits from the more effective labor
division between the exploration and exploitation searches
in the swarm. As shown in the benchmark tests, the adap-
tive control of the magnification transformation mechanism
makes the AMT-PSO algorithm much more efficient, offer-
ing a substantially improved convergence speed and solu-
tion accuracy compared with other improved algorithms on
fifteen benchmark test functions.
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