
798
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

PAPER

An H.264/AVC Decoder with Reduced External Memory Access for
Motion Compensation

Jaesun KIM†, Younghoon KIM†, Nonmembers, and Hyuk-Jae LEE†a), Member

SUMMARY The excessive memory access required to perform motion
compensation when decoding compressed video is one of the main limita-
tions in improving the performance of an H.264/AVC decoder. This paper
proposes an H.264/AVC decoder that employs three techniques to reduce
external memory access events: efficient distribution of reference frame
data, on-chip cache memory, and frame memory recompression. The dis-
tribution of reference frame data is optimized to reduce the number of row
activations during SDRAM access. The novel cache organization is pro-
posed to simplify tag comparisons and ease the access to consecutive 4x4
blocks. A recompression algorithm is modified to improve compression ef-
ficiency by using unused storage space in neighboring blocks as well as the
correlation with the neighboring pixels stored in the cache. Experimental
results show that the three techniques together reduce external memory ac-
cess time by an average of 90%, which is 16% better than the improvements
achieved by previous work. Efficiency of the frame memory recompression
algorithm is improved with a 32x32 cache, resulting in a PSNR improve-
ment of 0.371 dB. The H.264/AVC decoder with the three techniques is
fabricated and implemented as an ASIC using 0.18 µm technology.
key words: H.264/AVC decoder, motion compensation, external memory
bandwidth, frame recompression

1. Introduction

H.264/AVC is a video compression standard that employs
strong compression techniques such as variable block size
and quarter-sample accurate motion compensation [1], [2].
In order to support H.264/AVC motion compensation, an
H.264/AVC decoder must access large amounts of data from
a reference frame memory. As a result, motion compensa-
tion accounts for about 75% of the reference memory band-
width required by an H.264/AVC decoder. This excessive
memory access requirement for motion compensation is one
of the main limitations in improving the performance of an
H.264/AVC decoder [3].

A number of efficient techniques have been proposed
to reduce the memory bandwidth required when accessing
reference frames during motion compensation. A popular
technique is to store data read from an external memory in
on-chip buffers and reuse the data multiple times [3]–[6].
This data-reuse scheme is effective because common data
are used multiple times by motion compensation of differ-
ent blocks. In [3]–[5], adjacent reference blocks are fetched
together when they have the same motion vectors. These
techniques achieve a significant reduction in memory access

Manuscript received March 4, 2010.
Manuscript revised November 21, 2010.
†The authors are with the Inter-university Semiconductor Re-

search Center, Department of Electrical Engineering, Seoul Na-
tional University, Seoul, Korea.

a) E-mail: hyuk jae lee@capp.snu.ac.kr
DOI: 10.1587/transinf.E94.D.798

by avoiding the repetitive access of data shared by adjacent
blocks. In [6], a circular line cache is used to store the ref-
erence frame, achieving an improvement even for relatively
large motion vectors.

Another approach to reducing memory access require-
ment is to adjust the order of data access events and thus
minimize the overhead for memory access. Every time
when data is accessed from a different row within an
SDRAM, a row activation time is required. Therefore, a
burst memory access with a large number of data is required
to minimize the overhead from row activation. This can be
achieved by adjusting the memory access order to increase
burst data transfers [7]–[9]. The storage pattern of reference
frame data can also be modified to allow a single burst to
transfer the necessary data without unnecessary row activa-
tion overhead.

Another approach is known as frame memory recom-
pression (also called embedded compression), which re-
duces the amount of data stored in memory at the expense
of sacrificing image quality [10]–[16]. In this approach, the
reference frame is slightly compressed before it is stored in
an external memory. A number of frame memory recom-
pression techniques have been proposed, and a popular one
employs a transform-based approach in which a frame is de-
composed into small blocks that are transformed into a fre-
quency domain using a simple transform such as the discrete
cosine transform (DCT), Hadamard transform or one of its
variations [11]. The frequency domain coefficients are then
compressed by quantization followed by variable length en-
coding, such as Golomb-Rice coding. Downsampling-based
recompression requires a relatively small amount of compu-
tation [12]; however, image quality may be degraded due
to edge pattern loss during downsampling for compression.
Spatial domain compression based on differential pulse code
modulation (DPCM) has been proposed in [13], [16]. An
adaptive vector quantization scheme [14] and a differential
Huffman coding based compression scheme [15] have been
proposed for the compression of display systems.

This paper presents an H.264/AVC decoder that em-
ploys all three of the approaches discussed above in order
to reduce the burden of motion compensation on external
memory bandwidth. To this end, an efficient method for
data mapping during motion compensation with the use of
cache memory is investigated. In addition, an efficient orga-
nization of cache memory is proposed for motion compensa-
tion, and the frame memory recompression method in [16] is
modified for use in an H.264/AVC decoder with cache mem-

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



KIM et al.: AN H.264/AVC DECODER WITH REDUCED EXTERNAL MEMORY ACCESS FOR MOTION COMPENSATION
799

ory. Use of all three techniques is found to reduce memory
access time by 90%, which is 16% better than the reduction
achieved by previous work. The H.264/AVC decoder em-
ploying the three techniques is fabricated using the Dongbu
1P6M 0.18 µm CMOS technology and consists of 168,000
hardware logic gates and 1.6 kilobytes of internal SRAM
buffer.

The rest of this paper is organized as follows. Section 2
presents the data mapping scheme used to reduce the over-
head involved in accessing an SDRAM during H.264/AVC
motion compensation. Section 3 proposes a novel cache
organization that improves the efficiency of motion com-
pensation, and Sect. 4 presents modifications to an exist-
ing recompression technique optimized for H.264/AVC mo-
tion compensation. Section 5 evaluates the proposed tech-
niques and Sect. 6 presents the implementation of the pro-
posed H.264/AVC decoder. Conclusions are presented in
Sect. 7.

2. Reference Frame Storage Pattern

An SDRAM is a widely used type of memory to store the
reference frames used by an H.264/AVC decoder. Access to
reference frames from an SDRAM requires activation of the
addressed row. If two consecutive pieces of data are stored
in the same row, only the action of accessing the first piece
involves row activation latency. Therefore, memory access
time can be reduced if consecutive memory accesses occur
in the same row. An efficient distribution scheme to reduce
row activation time has been proposed in [7]. This section
briefly explains the background of a previous frame distri-
bution scheme and proposes a modification that makes the
distribution suitable for use in the cached architecture pro-
posed in Sect. 3 as well as the data recompression method
proposed in Sect. 4.

For the generation of the pixel at the half-pel posi-
tion, motion compensation requires 6-tap filtering operation
which needs 2 pixels in the left and 3 pixels in the right of
the current pixel at an integer position. As a result, mo-
tion compensation of a 4x4 block in an H.264/AVC decoder
may need to access at most a 9x9 block from a reference
frame [17]. Figure 1 (a) shows the conventional data distri-
bution for a single 16x16 macroblock. In the conventional
data distribution, image pixels are stored along the raster-
scan order. Each small square in the figure represents a
single image pixel and arrows in the figure show the di-
rection along which addresses of the pixels increase. This
raster-scan order distribution is not an efficient method for
an SDRAM access because numerous row changes are re-
quired.

In order to reduce the number of row activations, the
memory controller in [7] stores the reference frame in an
SDRAM in such a way that the entire macroblock is stored
in the same row. This data distribution method is presented
in Fig. 2. For a 32-bit SDRAM where each row can store
256 words, the storage capacity of each row is 1024 bytes.
Thus, four adjacent 2x2 macroblocks can be stored in the

Fig. 1 Reference frame.

Fig. 2 Memory distribution for a reference frame with 4 adjacent mac-
roblocks stored in the same row of an SDRAM.

same row, as shown in Fig. 2, so that all the data in these
macroblocks can be accessed with only a single row activa-
tion event.

If, however, a 9x9 block overlaps with the boundary of
the 2x2 macroblocks stored in the same row, then part of the
9x9 block are stored on a different row and multiple rows
have to be activated to access this 9x9 block. A bank inter-
leaving scheme can be adopted to avoid the additional row
activations caused by such a situation [7]. The bank inter-
leaving scheme stores the adjacent 2x2 macroblocks in the
same row but in different banks. In an SDRAM, data stored
in different banks but in the same row of each bank can be
accessed without incurring the penalties for activating addi-
tional rows. Thus, all the data in 4x4 macroblocks can be
stored in the same row and accessed without additional row
activation.

This paper adopts the frame memory distribution with
bank interleaving scheme presented in [7]. In addition, a
new data distribution scheme for data within a single mac-
roblock is proposed as indicated by the arrows, which show
the direction along which column addresses increase, in
Fig. 1 (b). This method of data distribution simplifies the
process of addressing a 4x4 block because the address is
simply increased incrementally with each successive access
to subsequent data within the block. This is an efficient ad-
dressing scheme for use in an H.264/AVC decoder that in-
cludes many operations using a 4x4 block as the basic pro-
cessing unit. Examples of such operations include entropy
coding, transform, deblocking filtering, and intra prediction.
More importantly, the caching and recompression schemes



800
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

proposed in the later sections of this paper also make use of
4x4 blocks as the basic data transfer unit, so the proposed
addressing scheme is well suited for these schemes.

Figure 3 shows how addresses are identified when a
reference frame is accessed using 4x4 blocks as shown in
Fig. 1 (b). In Fig. 3 (a), each square represents a 4x4 block.
Assuming that the image size is 512x512, the number of
4x4 blocks in the image is 128x128. The pair of numbers
in the parenthesis in each square represents the vertical and
horizontal indices of each block, respectively. Figure 3 (b)
shows the partitioning of the address bits for the proposed
data distribution. Assigning an address to a single frame
for this image requires 18 address bits. Let A[m:n] denote
the portion of the address from the mth to nth bits and A[k]
denote the kth address bit. Then, A[3:0] represents the ad-
dress of a piece of data in a single 4x4 block and A[17:4]
represents the index of the 4x4 block.

Both the horizontal and vertical indices of a 4x4 block
require 7 bits each because a frame consists of 128x128
blocks. A[17:15], A[11] and A[9:7] correspond to the hor-
izontal index, which is denoted by H7, H6, . . . , H0 in
Fig. 3 (b), whereas A[14:12], A[10], and A[6:4] correspond
to the vertical index, which is denoted by V7, V6, . . . , V0.
A single row within an SDRAM chip stores 4 macroblocks
(64 4x4 blocks) consisting of 256 words (assuming 1 word =
4 bytes). Thus, A[9:2] represents the column address within
a single row and A[1:0] represents the byte address within
a word. A[11:10] represents a bank address and A[17:12]

Fig. 3 Address format of a reference frame.

represents a row address. With 4 banks, 16 macroblocks
can be stored in the same row. For Chroma (chrominance)
components, the amount of data required is one quarter of
that required for Luma (luminance) components. Thus, the
number of address bits is reduced by two bits as shown in
Fig. 3 (c).

The address format shown in Fig. 3 (b) is designed
to access a single frame of an image. In general, an
H.264/AVC decoder requires multiple reference frames.
Thus, an additional field is necessary to indicate the refer-
ence frame number. In general, the position of the addi-
tional field is at the most significant bits, and the number of
required bits depends on the number of reference frames.

3. Cache Organization for Reference Frame Access

One way to reduce the amount of memory access required
for motion compensation is to use a small on-chip cache
that stores data for one block temporarily and reuses the
data for adjacent blocks. The cache proposed in previous
work such as [6] employs a line-based cache organization
in which image data in the same row are stored in the same
cache line. As an H.264 decoder accesses block-by-block,
the line-based organization often requires excessive row ac-
tivations in SDRAM access, thereby, increasing memory ac-
cess time. Furthermore, the line-based cache organization is
not suitable for the block-based data distribution presented
in the previous section. This section proposes a new cache
organization that avoids abundant SDRAM access and is
suitable for the data distribution proposed in Sect. 2.

3.1 Cache Organization

Figure 4 shows the cache organization proposed in this sec-
tion. For Luma data, the cache size is 16x16 bytes, which
can store a single macroblock. For Chroma data, the cache
size is 8x8 bytes for each of the Cb and Cr components. The
Luma cache consists of four lines, each of which stores four
4x4 blocks. A 4x4 block is the minimum transfer unit for
each data access to this cache. It is not necessary to read (or
write) the entire four 4x4 blocks in a single cache line. A
single tag is associated with each cache line, indicating the
address of the data stored in that line. All four 4x4 blocks
in a single line are not always required to store valid data;

Fig. 4 Cache memory organization with associated tags.



KIM et al.: AN H.264/AVC DECODER WITH REDUCED EXTERNAL MEMORY ACCESS FOR MOTION COMPENSATION
801

therefore, additional information noting the valid block in a
cache line is also given in the tag. This information consists
of the starting index and valid length. The details of this in-
formation are explained in the next paragraph. The Chroma
cache consists of two cache lines, each of which stores two
4x4 blocks. As both Cb and Cr components always have
a common motion vector, tags are shared by both compo-
nents.

Figure 5 shows how data are mapped from external
memory to the cache. Only Luma data are considered in this
figure in order to simplify the example. Each square repre-
sents a 4x4 block that is mapped to a single 4x4 block in the
cache. The numbers in each block denote the horizontal and
vertical indices, respectively. All blocks in the first column
(i.e. data for the four leftmost pixels) are mapped into cache
line 0. Blocks in the next column to the right are mapped
into cache line 1 whereas blocks from the third and fourth
columns are mapped into cache lines 2 and 3, respectively.
Blocks in the fifth column are once again mapped into cache
line 0. Figure 5 also shows the position of a given 4x4 block
to be stored within a cache line. All blocks in the first row
are stored in the first block (block 0) of a cache line while
the blocks in the second row are stored next (block 1), and
so on. Note that each 4x4 block from an image has a fixed
position within the cache.

Figure 6 shows the format for a cache tag. An image
size of 512x512 is used once again for this example although

Fig. 5 Mapping of a frame into a cache line.

Fig. 6 Cache tag format.

the proposed scheme is applicable to an image of an arbi-
trary size. Recall that H[6:0] and V[6:0] in Fig. 3 (b) rep-
resent the horizontal and vertical indices, respectively, of a
4x4 block. Among the seven bits of the horizontal index,
the least significant two bits, H[1:0], correspond to the cache
line index. Thus, the remaining bits, H[6:2], form part of the
cache tag (horizontal tag) that is used to detect a cache hit. A
single cache line contains four 4x4 blocks. Thus, V[1:0] in-
dicates the position of a 4x4 block in a single cache line and
the remaining bits for the vertical index, V[6:2], are used as
a tag (vertical tag). As shown in Fig. 6, the horizontal tag,
H[6:2], corresponds to bits 14 down to 10 of the tag whereas
the vertical tag corresponds to bits 9 down to 5 of the tag.

A conventional direct-mapped cache fetches all data in
the same cache block together even though only a part of
the data is needed. This often results in the access of un-
necessary data and wastes external memory bandwidth. To
avoid such bandwidth waste, this paper proposes a cache
organization designed to avoid the storage of unnecessary
data in a cache line. To achieve this, the cache tag stores
additional information to indicate the valid part of the cache
line - the starting index and the length of the valid block in
a cache line. The starting index represents the address of
the first valid block in a cache line whereas the valid length
represents the number of valid blocks in the cache line. All
valid blocks are stored contiguously in a cache line from the
starting index. If the sum of the starting index and the valid
length is larger than the cache line size, blocks are stored
contiguously from the starting index to the bottom of the
cache line and also stored from the top of the same cache
line. Bits 4 and 3 in the tag indicate the starting index while
the least significant three bits indicate the valid length.

For Chroma cache, each cache line stores only two 4x4
blocks. Thus, only one bit is necessary for the starting index
and two bits for the valid length. The tag format for Chroma
cache is shown in Fig. 6 (b). If multiple reference frames are
required, the additional address bits indicating the reference
number need to be included in the most significant bits of
the cache tag.

Using the above cache organization, the number of tag
matching operations is minimized. The mapping of a 4x4
block into a single cache line allows just a single tag match-
ing operation to be performed to access the entire block.
Thus, this block-oriented cache line organization is effec-
tive for H.264/AVC motion compensation, which often uses
a 4x4 block as the basic transfer unit. The sharing of a tag
with four 4x4 blocks further reduces tag matching opera-
tions because four 4x4 blocks can be accessed with a sin-
gle tag matching operation. This sharing is possible be-
cause H.264/AVC decoding involves a high probability of
accessing adjacent 4x4 blocks together. A drawback of this
block-based cache organization is that more data are often
accessed than necessary. For example, if a 9x9 block of data
is necessary, a 12x12 block of data is accessed. However,
the increase in data access is not significant because a 32-bit
wide SDRAM requires at least 4 bytes of data to be trans-
mitted. Therefore, it is impossible to access only 9 bytes



802
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

Fig. 7 The processing order for motion compensation of a 16x16 mac-
roblock.

of horizontally-adjacent data. In the vertical direction, the
memory access time for the additional data is not signifi-
cantly increased because the additional data accesses are in
the same row when using the data distribution described in
Fig. 1 (b). Furthermore, the additional fetched data are often
used by the next block.

Figure 7 shows the processing order of data for motion
compensation. This figure shows that the four 4x4 blocks
in the upper left are grouped and processed first, then the
four 4x4 blocks in the upper right are processed, and so on.
Therefore, it is desirable to have the cache store all the nec-
essary data for processing the four 4x4 blocks in the same
group. As a 4x4 block requires at most 9x9 pixels, four 4x4
blocks may require 13x13 pixels if they have identical sub-
pel motion vectors. Thus, a cache size of 16x16 is chosen,
providing a slightly larger size than the 13x13 requirement.
Experimental results show that this size achieves a reason-
ably large hit ratio. The Chroma cache is designed to be one
fourth the size of the Luma cache as the Chroma data is one
fourth as many as Luma data.

Figure 8 shows an example that illustrates how Luma
data blocks are mapped from external memory to cache
memory with the proposed organization. Figure 8 (a) shows
a reference image with two shaded squares in the figure,
which are to be stored in the cache. The number at the top
of the image represents the horizontal index of a 4x4 block
whereas the number at the left shows the vertical index. For
the upper shaded square, which is 12x12 in pixels in size,
the address of the top left pixel is 0x00240 while the lower
shaded square, also 12x12 pixels in size, has an address for
its top left pixel of 0x002e0. In the figure, the two pixels are
indicated by arrows. Suppose that the upper shaded square
is fetched into the cache first. Figure 8 (b) shows the cache
contents when this shaded square is stored in the cache. The
first three cache lines are filled with three 4x4 blocks each.
The numbers in each block represent the corresponding in-
dices for each block. Figure 8 (c) shows the contents of the
cache tags. For cache tag 0, H[6:2] and V[6:2] are stored
as the horizontal and vertical tags, respectively. The start-
ing index is 0 because the valid block begins with the first
block. The valid length is 3 because three blocks are valid.
The second and third line tags store the same contents as the
first line while the fourth cache line remains in the empty
state.

Suppose that the lower shaded square is fetched next.
This square overlaps partly with the first square, specifically
the block indexed (5,6) and (6,6), and it is not necessary

Fig. 8 Cache mapping example; (a) reference image; (b) cache contents
after the first data fetch; (c) cache tag contents after the first data fetch; (d)
cache contents after the second data fetch; (e) cache tag contents after the
second data fetch.

to fetch this overlapped data again. Figure 8 (d) shows the
contents of the cache after the second square is fetched. For
cache line 1, two new blocks, (5,7) and (5,8), are loaded into
the last and first block positions, respectively. Thus, all four
blocks in this cache line are valid, and the valid length is 4.
Note that the four 4x4 blocks stored in this cache line are
(5,5), (5,6), (5,7) and (5,8) and that the first block, (5,5), is
stored in the second block position of this cache line. There-
fore, the starting index is 1. Cache line 2 also stores two new
blocks and the cache tag information is the same as that of
cache line 1. For cache line 3, three blocks (7,6), (7,7) and
(7,8) are stored as shown in Fig. 8 (d) and the corresponding
cache tag is shown in Fig. 8 (e).

The horizontal and vertical tags point to the valid data
with the lowest address in a cache line and data in the same
cache line may have different values for the vertical tag. For
example, blocks indexed (7,6), (7,7) and (7,8) in Fig. 8 (d)
are stored in the same cache line. Note that the vertical tag
for these three blocks is 1. On the other hand, if only block
(7,8) is stored, then its vertical tag would be 2. This implies
that the same block may be associated with two different
tags. Therefore, to check a cache hit, it is necessary to com-
pare not only the cache tag but also the starting index with
the valid length.

3.2 Cache Prefetching Scheme

This subsection presents the cache prefetching scheme effi-
cient for data access in motion compensation. When a mo-
tion vector points to a sub-pel position, 9x9 data are neces-
sary from a reference frame memory. In the proposed cache,



KIM et al.: AN H.264/AVC DECODER WITH REDUCED EXTERNAL MEMORY ACCESS FOR MOTION COMPENSATION
803

Fig. 9 Prefetching direction represented by arrows; (a) current block: 0,
4, 8, and 12; (b) current block: 1, 5, 9, and 13; (c) current block: 2, 6, 10,
and 14; (c) current block: 3, 7, 11, and 15.

a 12x12 block of data is fetched from the reference memory
as this cache always fetches a 4x4 block at a time. If the
prefetching option is activated, additional 4x4 blocks to the
right and/or lower side of the current block are also fetched.

These prefetched blocks are selected according to the
position of the current 4x4 block in a macroblock, as shown
in Fig. 9. In this figure, a large square represents a 16x16
macroblock and small squares represent 4x4 blocks. The
number inside each small square shows the processing or-
der of the 4x4 blocks. Figure 9 (a) shows the case when
one of the blocks numbered 0, 4, 8 and 12 are accessed. In
this case, the blocks to the right (1, 5, 9, 13) are to be pro-
cessed next. The blocks to the lower side (2, 6, 10, 14) are to
be processed next followed by the blocks to the lower right
(3, 7, 11, 15). Therefore, all the blocks to the right, lower
and lower right sides are prefetched because these blocks
are likely to be used in the near future. This prefetching
is shown by the arrows in the figure. Figure 9 (b) shows
the case when blocks 1, 5, 9 and 13 are currently fetched.
In this case, the blocks to the lower side (3, 7, 11, 15)
are prefetched because they are likely to be processed next.
Likewise, blocks 3, 7, 11, and 15 are prefetched with blocks
2, 6, 10 and 14 being currently processed (Fig. 9 (c)). For
blocks 3, 7, 11 and 15, no data are prefetched (Fig. 9 (d)).

For the Chroma component, the maximum size of the
block of data to be fetched is 3x3. Note that the data transfer
unit (i.e., cache block size) is 4x4 so each cache block ac-
cess transfers a larger block than necessary, resulting in the
same effect as prefetching. Additional prefetching leads to
excessive cache replacement. Thus, the prefetching scheme
is not applied to the Chroma cache.

4. Frame Memory Recompression

Frame memory recompression is a technique used to reduce
frame memory size and bandwidth requirements by com-
pressing the data to be stored in frame memory. When a
reference frame is transferred from the video processor to
off-chip memory the recompression encoder compresses the
data. When the video processor requires access to the stored
reference frame, the recompression decoder decompresses
and restores the original data as it is fetched from off-chip
memory. Several recompression algorithms have been de-
veloped to reduce the size and bandwidth requirements of
frame memory [10]–[16]. Among these, Lee in [16] pro-
poses an algorithm in which an input image is decomposed
into 4x4 blocks. As a 4x4 block is used as the basic transfer

Fig. 10 Recompression algorithm integrated into the H.264/AVC de-
coder.

unit for data distribution and for the cache organization pro-
posed in this paper, this algorithm is most suitable for the
H.264/AVC decoder presented here. This section briefly in-
troduces the recompression algorithm proposed in [16] and
then proposes an efficient integration of the recompression
algorithm into the cache architecture presented in the previ-
ous section.

4.1 Recompression Algorithm

The recompression algorithm in [16] decomposes an im-
age frame into 4x4 blocks and then compresses each block
independently, achieving a 50% compression ratio. The
flowchart in Fig. 10 (a) gives an outline of the recompression
algorithm. DPCM is performed along a predefined scan or-
der for each 4x4 block. Eight DPCM scans, with different
scan orders as shown in Fig. 10 (c), are performed and the
best scan order is selected by comparing the results from all
eight scan orders. Then, the DPCM results are further com-
pressed using Golomb-Rice coding. If the compression ratio
does not reach the target of 50%, the 4x4 block pixel data
are quantized by a 1-bit right shift, processed by DPCM and
entropy coding again. This process of quantization, DPCM
and entropy coding are repeated until the target compression
ratio is achieved.

4.2 Integration of the Recompression Algorithm

In encoded stream by DPCM, the number of the bits en-



804
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

coding the first pixel is often much larger than that of any
other pixel because the first pixel is the only pixel of which
its value itself is encoded. For all the other pixels, the dif-
ference of adjacent pixels along the scan order shown in
Fig. 10 (c) is encoded. Note that the difference of pixels is
often much smaller than the value itself of a pixel. One way
to improve the compression efficiency is that the first pixel
is subtracted from another pixel in and the difference is en-
coded for the first pixel, too. As the first pixel cannot be
subtracted from any pixel in the same block, it should be
subtracted from a pixel in another block. Therefore, this
differential coding of the first pixel requires multiple blocks
to be compressed together so that a pixel from another block
is available for an encoder as well as a decoder. The simulta-
neous compression of multiple blocks gives another advan-
tage for improving compression efficiency. If a relatively
simple block among multiple blocks does not require all the
assigned bits, then the surplus bits for this block can be used
by another block which may require bits larger than the pre-
assigned bits. Although the compression of multiple blocks
improves compression efficiency, the data transfer unit in-
creases, thereby, also increasing the memory access time.

The use of cache memory can avoid the increase of
memory access time as it holds multiple blocks to be en-
coded together in the cache. This paper proposes the recom-
pression algorithm that compresses four adjacent 4x4 blocks
together. As the cache in this research can store multiple 4x4
blocks, it can be used to recompress multiple 4x4 blocks to-
gether. Without the presence of the cache, additional storage
space may be required. The modified recompression that si-
multaneously recompresses multiple 4x4 blocks is referred
to as grouped recompression hereafter whereas the original
recompression algorithm is called non-grouped recompres-
sion. One side-effect of the grouped recompression algo-
rithm is that it requires a 8x8 block to be stored in cache
simultaneously, and thereby, increasing the cache size.

Figure 11 (a) shows how the adjacent 4x4 blocks are
used to improve the compression efficiency. In this figure,
the small squares represent 4x4 blocks and the thick and
large square represents a macroblock. The number inside
each small square shows the processing order when four
4x4 blocks are compressed by the recompression encoder.
Figure 10 (b) shows a flowchart for the grouped recompres-
sion algorithm. The upper-left 4x4 block (numbered 1) is
compressed first in exactly the same manner as the original
recompression algorithm. If the length of the compressed
block is less than 64 bits, the remaining bits are used for
the compression of the next block (numbered 2). In such
cases the second block can achieve a compression ratio of
less than 50%, resulting in improved quality of the com-
pressed image. Bits remaining after compression of the sec-
ond block can also be used for the third block and, likewise,
the last block can use bits remaining after compression of
the third block.

The modified recompression algorithm takes advantage
of another aspect of having neighboring blocks in the cache.
In the original recompression algorithm, the first pixel re-

Fig. 11 Processing order and pixel selection for DPCM in the grouped
recompression algorithm.

Table 1 The pixel used for DPCM of the first pixel of a 4x4 block.

quires (8-QP) bits for a given quantization parameter, QP.
This is a large number of bits for the first pixel compared
to the number of bits assigned for the remaining pixels that
have already been compressed by DPCM. The modified re-
compression algorithm makes the neighboring pixels avail-
able for the second, third and fourth 4x4 blocks so the first
pixels of these blocks can be compressed by DPCM us-
ing adjacent pixels from the previous blocks. Figure 11 (b)
shows the pixels used for the DPCM operations on the sec-
ond, third and fourth blocks. In this figure, each small
square represents a pixel. Suppose that the block numbered
2 is to be processed and that the best scan mode for this
block is mode 1, which begins data scanning from the upper-
leftmost pixel of the block (see Fig. 10). Then, the adjacent
pixel, labeled A in Fig. 11 (b), is used to perform DPCM
and obtain the first codeword for the second block. If other
scan modes are selected, the first pixel of the scan mode is
subtracted from the closest pixel in the first block. Table 1
shows the closest pixel from which the first pixel is sub-
tracted to obtain the codeword. For example, when the best
scan mode of block 2 is found to be mode 8, the first pixel
of block 2 is subtracted from pixel B for DPCM.

5. Experimental Results

Table 2 shows the memory access time for motion compen-
sation with various data access schemes. A CIF-sized Stefan
sequence with 300 frames is encoded as the baseline profile
and used as the test video. The number of reference frames
is 3, QP is 28, I frame period is 10, and the full search al-
gorithm with the search range of ±16 is used for motion
estimation. The specification of the used SDRAM is given
in Table 3. The “raster-scan” column shows the results us-
ing the conventional data distribution with a raster scan or-
der. The “block-based” column shows the results from using
the proposed data distribution presented in Sect. 2, and the
“cache” column shows the results from using a cache pro-
posed in Sect. 3. The cache size is 16x16 for Luma data and



KIM et al.: AN H.264/AVC DECODER WITH REDUCED EXTERNAL MEMORY ACCESS FOR MOTION COMPENSATION
805

Table 2 Comparison of memory access time.

Table 3 SDRAM parameters.

8x8 for Chroma data. The “prefetch” column shows the re-
sults from using the prefetching scheme and the last column
denoted by “recompress” shows the results from using the
non-grouped recompression scheme presented in Sect. 4.1.
The “amount of data” row shows the total number of bytes
transferred from external memory. The “number of row ac-
tivations” shows the number of access events that require a
row change whereas the “time” shows the total memory ac-
cess time, taking into consideration the initial latency from
row activation and time required for column addressing to-
gether with the actual data transfer time. The latency for
an addressing operation is modeled to be six cycles which
are normal in SDRAM access. Results using the raster-scan
order for data distribution are used as a reference, and the
results for the other scenarios are represented as their ratio
relative to the reference result in this table.

The block-based data distribution increases the amount
of data accessed from memory because this method may ac-
cess unnecessary data. However, the number of row acti-
vations significantly decreases using the block distribution,
resulting in memory access time of less than a half of that
required by the raster-scan distribution. With the presence
of cache, both the amount of data and the number of row
activations are significantly reduced. As a result, the mem-
ory access time is reduced only to 19% of the conventional
raster-scan distribution. With the prefetching scheme, the
cache hit ratio increases up to 80% and the memory access
time is further reduced to 16%. Recompression further con-
tributes to an additional decrease in memory access time.
When using all the proposed schemes combined, memory
access time is reduced to only 10% of the raster scan method
access time.

Table 4 shows experimental results using three addi-
tional test sequences: Akiyo, Foreman and Mobile. These
sequences are also encoded as the baseline profile. The
numbers given in the table show the percent reduction of the
proposed scheme compared to the conventional raster-scan

Table 4 Reduction in memory access by combining all three techniques.

Fig. 12 Comparison of various motion estimation algorithms.

order of data distribution. On average, the amount of data
accessed is reduced by 77% while the number of row acti-
vations is reduced by 95%. The overall result is a reduction
in memory access time of 90%.

In order to evaluate effect of motion estimation algo-
rithm, the test video is encoded with three additional algo-
rithms in addition to the full search algorithm used in the
previous experiment. Figure 12 shows the results of various
motion estimation algorithms. The graph labeled “Full” rep-
resent the full search algorithm whereas the graphs labeled
“EPZS”, “Hex” and “Log” represent the enhanced predic-
tive zonal search, hexagon-based search, and logarithmic
search algorithms, respectively. To evaluate the effect of
the block size, the experiments enforce constraints on the
block size of motion estimation. The graph labeled “4x4” in
Fig. 12 represents the case when motion estimation is per-
formed for only the 4x4 block size. On the other hand,
“8x8” represents the motion estimation with its block size
larger than or equal to 8x8 (i.e., 8x8, 8x16, 16x8 and 16x16).
The graph “4x4+8x8” represents the motion estimation of
the block size, 4x4, 8x8, 16x8, 8x16, and 16x16. As shown
in these results, the effect of the motion estimation algorithm
on the result is ignorable. The search range and I-frame pe-
riod are also adjusted to find their effect, but experimental
results also show that their effects are negligible.

In Table 5, the proposed scheme with the original
recompression is compared with two other approaches,
[5] and [6], which also reduce memory access time for
H.264/AVC motion compensation. Results from [6] are
given in Table 5. However, [5] only presents results on
the amount of accessed data and does not present results on
memory access time. The memory access time for [5] is de-
rived with the assumption that the number of row activations
decreases proportionally with the reduction in the amount of



806
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

Table 5 Comparison of memory access time with previous work.

Fig. 13 Comparison of various cache organizations for the grouped re-
compression algorithm.

accessed data. The reduction in memory access time for the
proposed method is, on average, about 16% better than that
for [6] and 23% better than that for [5]. The next column
shows the PSNR drop caused by recompression. The aver-
age PSNR drop is 1.71 dB. If this PSNR drop is too large,
the recompression algorithm can be turned off and the mem-
ory access time without recompression is shown in the last
column. On average, the proposed scheme without recom-
pression still achieves 17% and 10% better results than those
obtained in [5] and [6], respectively.

In order find the appropriate cache size, experiments
with various cache sizes are performed. Furthermore, the
performance is also compared with two cache organizations:
the direct-mapped cache that allows a data to be mapped
into only a predefined location in a cache and 2-way set
associative cache that allows a data to be mapped to two
predefined locations [18]. Figure 13 (a), (b) and (c) show
the amount of transferred data, the memory access time,
and the cache hit ratio, respectively, with various cache or-
ganizations. The Stefan sequence is used for this experi-
ment. The horizontal axis represents cache sizes and or-
ganizations. Direct-mapped caches with four different sizes
(from 16x16 to 40x40) are used to obtain the left four graphs
while 2-way set-associative cache is used for the rightmost
graph (denoted by 16x32(2)). Results from the original non-

Table 6 Performance of the grouped recompression algorithm.

grouped recompression with a 16x16 direct-mapped cache
are used as the reference and the results in this figure are
shown as relative values. With the 16x16 direct-mapped
cache, the grouped recompression algorithm increases the
amount of transferred data by 32.9% and the memory ac-
cess time by 20.0%. This shows that a cache size of 16x16
is not large enough for the grouped recompression algo-
rithm. With the 24x24 and 32x32 direct-mapped caches,
both the increases in the amount of data and memory access
time by the grouped recompression algorithm are signifi-
cantly reduced. The difference between 32x32 and 40x40
direct-mapped caches is very small. A 16x32 set-associative
cache requires longer SDRAM access time than 24x24 or
32x32 direct-mapped caches. Figure 13 (c) shows that the
32x32 direct-mapped cache gives the second best hit ratio
with only a marginal difference from the best 40x40 direct-
mapped cache. Based on these observations, the 32x32
direct-mapped cache is chosen as the final cache organiza-
tion for the grouped recompression algorithm.

With 32x32 cache, the grouped recompression reduces
the number of row activations from 1,154,211 (non-grouped
recompression) to 1,109,302 averaged over the four test se-
quences. The amount of data is reduced from 6,574,071
words to 6,099,378 words on average and the memory ac-
cess time is reduced from an average of 13,229,887 cycles
to 13,024,644 cycles. The PSNRs of the decoded video is
improved from 36.600 to 36.971 on average. Table 6 shows
the ratios. As shown in the table, the amount of data and
the memory access time increase by averages of 7.07% and
1.46%, respectively, whereas the cache hit ratio decreases
by an average of 2.61%. PSNR increases by an average of
0.371 dB, which is a significant improvement. This result
shows that grouping significantly improves image quality
while causing only a slight increase in memory access time
and 768 bytes of additional cache buffer.

This paper employs the DPCM algorithm for frame
memory recompression. Other algorithm can also be inte-
grated into the H.264 decoder with the cache presented in
this paper. Although the grouped recompression algorithm
proposed in 4.2 is aimed for the DPCM algorithm, the cache
can also be used for other recompression algorithm because,
in general, the use of cache can increase the block size of
a recompression algorithm, which often improves the com-
pression efficiency.



KIM et al.: AN H.264/AVC DECODER WITH REDUCED EXTERNAL MEMORY ACCESS FOR MOTION COMPENSATION
807

6. H.264/AVC Decoder Implementation

The proposed memory access scheme is integrated into an
H.264/AVC decoder, which is represented by the block di-
agram in Fig. 14. The motion compensation (MC), de-
blocking filter (DB), intra prediction (IP), inverse quan-
tization/inverse transform (IQ/IT) and variable length de-
coder (VLD) are implemented in hardware and the remain-
ing computation is processed by the ARM7TDMI processor.
The recompression module is inserted between the DMA
controller (DMAC) and SDRAM controller to perform com-
pression/decompression on data moving to and from the ex-
ternal memory.

Figure 15 shows the layout and the photograph of the
H.264/AVC decoder chip from Fig. 14. This decoder im-
plements all the schemes except for the grouped recompres-
sion algorithm presented in Sect. 4.2. The die area of the
H.264/AVC decoder chip is 4.5 mm x 4.5 mm and is fab-
ricated using the Dongbu 1P6M 0.18 µm CMOS process.
The chip is composed of 168,000 hardware logic gates and
1.6 kilobytes of internal SRAM buffer. Table 7 shows the
gate count and SRAM buffer size of each hardware module.
About 10 K gates of logic circuits and 384 bytes of SRAM
are added for cache implementation whereas 11 K gates of
logic circuits and 128 bytes of SRAM are added for the im-
plementation of the recompression algorithm. Although the

Fig. 14 Block diagram of the H.264/AVC decoder.

Fig. 15 H.264/AVC decoder chip layout and photograph.

Table 7 Gate count and internal buffer size of H.264/AVC decoder mod-
ules.

grouped recompression algorithm is not integrated into the
chip, it is implemented and verified with a Verilog program
model. The size of logic circuits added for the grouped re-
compression is 3.6 K gates.

7. Conclusion

This paper proposes an H.264/AVC decoder that reduces the
external memory access time incurred during motion com-
pensation by combining three techniques: efficient distribu-
tion of reference frame data, on-chip cache memory, and
frame memory recompression. The proposed decoder is
successful in reducing the access time to external memory
with a 16x16 cache by 90%, which is 16% better than the
results seen in previous work. If the frame memory recom-
pression algorithm is excluded from the decoder design, the
reduction in external memory access time is 84%, which is
10% better than the results from previous work. The re-
compression algorithm may decrease the image quality and
should only be used when slight degradation to image qual-
ity is acceptable. The grouped recompression algorithm can
be used to reduce the image quality degradation caused by
recompression, as it improves the PSNR value by 0.371 dB.

Acknowledgement

This work was supported by the Korea Science and En-
gineering Foundation (KOSEF) grant funded by the Korea
government (MEST).

References

[1] Joint Video Team, Draft ITU-T Recommendation and Final Draft In-
ternational Standard of Joint Video Specification, ITU-T Rec. H.264
and ISO/IEC 14496-10 AVC, May 2003.

[2] I.E.G. Richardson, H.264 and MPEG-4 Video Compression, John
Wiley & Sons, 2003.

[3] R.G. Wang, J.T. Li, and C. Huang, “Motion compensation memory
access optimization strategies for H.264/AVC decoder,” Proc. Int.
Conf. on Acoustics, Speech, and Signal Processing, vol.5, pp.97–
100, March 2005.

[4] T.-C. Chen, Y.-W. Huang, and L.-G. Chen, “Fully utilized
and reusable architecture for fractional motion estimation of
H.264/AVC,” Proc. Int. Conf. on Acoustics, Speech, and Signal Pro-
cessing, vol.5, pp.9–12, May 2004.

[5] C.-Y. Tsai, T.-C. Chen, T.-W. Chen, and L.-G. Chen, “Bandwidth
optimized motion compensation hardware design for H.264/AVC
HDTV decoder,” Proc. Int. Symp. on Circuits and Systems, vol.2,
pp.273–276, Aug. 2005.

[6] J.-H. Kim, G.-H. Hyun, and H.-J. Lee, “Cache organizations for
H.264/AVC motion compensation,” Proc. Int. Conf. on Embedded
and Real-Time Computing Systems and Applications, pp.534–541,
Aug. 2007.

[7] H. Kim and I.-C. Park, “High-performance and low-power memory-
interface architecture for video processing applications,” IEEE
Trans. Circuits Syst. Video Technol., vol.11, no.11, pp.1160–1170,
Nov. 2001.

[8] J. Zhu, L. Hou, W. Wu, R. Wang, C. Huang, and J.T. Li, “High
performance synchronous DRAMs controller in H.264 HDTV de-
coder,” Proc. Int. Conf. on Solid-State and Integrated Circuits Tech-
nology, vol.3, pp.1621–1624, Oct. 2004.



808
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

[9] G.-S. Yu and T.S. Chang, “Optimal data mapping for motion com-
pensation in H.264 video decoding,” Proc. IEEE Workshop on Sig-
nal Processing Systems, pp.505–508, Oct. 2007.

[10] V.G. Moshnyaga, “Reduction of memory accesses in motion estima-
tion by block-data reuse,” Proc. Int. Conf. on Acoustics, Speech, and
Signal Processing, vol.3, pp.3128–3131, May 2002.

[11] T.Y. Lee, “A new frame recompression algorithm and its hardware
design for MPEG-2 video decoders,” IEEE Trans. Circuits Syst.
Video Technol., vol.13, no.6, pp.529–534, June 2003.

[12] R. Dugad and N. Ahuja, “A fast scheme for image size change in
the compressed domain,” IEEE Trans. Circuits Syst. Video Technol.,
vol.11, no.4, pp.461–474, April 2001.

[13] D. Pau and R. Sannino, “MPEG-2 decoding with a reduced RAM
requisite by ADPCM recompression before storing MPEG decom-
pressed data,” U.S. patent 5838597, Nov. 1998.

[14] R. Bruni, A. Chimienti, M. Lucenteforte, D. Pau, and R. Sannino,
“A novel adaptive vector quantization method for memory reduction
in MPEG-2 HDTV decoders,” Proc. Int. Conf. on Consumer Elec-
tronics, pp.58–59, June 1998.

[15] H. Shim, Y. Cho, and N. Chang, “Frame buffer compression using a
limited-size code book for low-power display systems,” Proc. IEEE
Workshop on Embedded Systems for Real-Time Multimedia, pp.7–
12, Sept. 2005.

[16] Y. Lee, C.-E. Rhee, and H.-J. Lee, “A new frame recompression al-
gorithm integrated with H.264 video compression,” Proc. Int. Symp.
on Circuits and Systems, pp.1621–1624, May 2007.

[17] T. Wiegand, G.J. Sullivan, G. Bjontegaard, and A. Luthra,
“Overview of the H.264/AVC video coding standard,” IEEE Trans.
Circuits Syst. Video Technol., vol.13, no.7, pp.560–576, July 2003.

[18] D. Patterson and J. Hennessy, Computer Organization and Design:
The Hardware/Software Interface, Morgan Kaufmann, 2003.

Jaesun Kim received the B.S. degree in
electrical engineering from Seoul National Uni-
versity, Korea, in 2003. He is currently working
toward the Ph.D. degree in electrical engineer-
ing and computer science at Seoul National Uni-
versity, Korea. His research interests are in the
areas of SoC architecture, multimedia processor
and low power design.

Younghoon Kim received the B.S. degree in
electrical engineering from Seoul National Uni-
versity, Korea, in 2008. He is currently working
toward the M.S. degree in electrical engineering
and computer science at Seoul National Univer-
sity, Korea. His research interests are in the ar-
eas of mobile multimedia applications and low
power design.

Hyuk-Jae Lee received the B.S. and M.S.
degrees in Electronics Engineering from Seoul
National University, Korea, in 1987 and 1989,
respectively, and the Ph.D. degree in Electrical
and Computer Engineering from Purdue Univer-
sity at West Lafayette, Indiana, in 1996. From
1998 to 2001, he worked at the Sever and Work-
station Chipset Division of Intel Corporation in
Hillsboro, Oregon as a senior component design
engineer. From 1996 to 1998, he was on the fac-
ulty of the Department of Computer Science of

Louisiana Tech University at Ruston, Louisiana. In 2001, he joined the
School of Electrical Engineering and Computer Science at Seoul National
University, Korea, where he is currently working as a professor. He is a
founder of Mamurian Design, Inc., a fabless SoC design house for mobile
multimedia applications. His research interests are in the areas of computer
architecture and SoC design for multimedia applications.


