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PAPER

Energy-Aware Task Scheduling for Real-Time Systems with
Discrete Frequencies

Dejun QIAN†a), Zhe ZHANG†, Chen HU†, Nonmembers, and Xincun JI†, Student Member

SUMMARY Power-aware scheduling of periodic tasks in real-time sys-
tems has been extensively studied to save energy while still meeting the
performance requirement. Many previous studies use the probability in-
formation of tasks’ execution cycles to assist the scheduling. However,
most of these approaches adopt heuristic algorithms to cope with realistic
CPU models with discrete frequencies and cannot achieve the globally opti-
mal solution. Sometimes they even show worse results than non-stochastic
DVS schemes. This paper presents an optimal DVS scheme for frame-
based real-time systems under realistic power models in which the proces-
sor provides only a limited number of speeds and no assumption is made
on power/frequency relation. A suboptimal DVS scheme is also presented
in this paper to work out a solution near enough to the optimal one with
only polynomial time expense. Experiment results show that the proposed
algorithm can save at most 40% more energy compared with previous ones.
key words: real-time system, low power design, dynamic voltage scaling,
stochastic speed scheduling

1. Introduction

Energy consumption minimization has become an impor-
tant design issue for modern computing systems. As the
peak performance is not needed all the time, dynamic volt-
age scaling (DVS) is introduced to slow down the processor
to a just enough speed for a required performance and leads
to energy savings.

For systems having real-time requirement, many DVS
schemes have been designed to minimize energy consump-
tion without making any task miss its deadline. Kim et
al. [1] gives a method to classify and evaluate these schemes.
Due to the real-time restriction, all the schemes are designed
based on the assumption that each task executes worst-case
execution cycles (WCEC) when there is no idea about the
exact amount. However, a task might complete earlier than
its worst-case estimation with some unused time (slack)
left. These slacks could be reclaimed and allocated to lat-
ter tasks. Schemes in [2]–[5] focus on these slack recla-
mation techniques to reduce energy consumption. Shin et
al. [6] developed an intra-task scheme which takes advan-
tage of CFG obtained at compilation phase and recalcu-
lates WCEC through the execution path to reduce the en-
ergy further once branches advent. The resulting distribu-
tion information of the execution cycles obtained by pro-
filing the tasks could also be used to help reducing energy
consumption. Gruian [7], [8] or Lorch and Smith [9], [10]
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both derive stochastic intra-task schemes to reduce the ex-
pected energy consumption by executing a task at a lower
frequency at the beginning and at higher frequencies for the
rest. Yuan and Nahrstedt [11] use the accelerating strategy
for soft real-time tasks. Lu et al. [12] applied Lagrange Mul-
tiplier Method to cope with systems with continuous proba-
bility density functions.

This paper focuses on frame-based hard real-time sys-
tems with variable and unpredictable workloads. Frame-
based real-time systems are special cases of periodic real-
time systems, where all tasks release at the same time,
share the same period (also called the frame) and have the
same deadlines which are equal to the end of the period.
Many real-world real-time systems, especially embedded
systems, are frame-based, such as tasks decoding MPEG
video streaming. Decoding MPEG video streaming involves
a series of steps: entropy decoding, IDCT (inverse discrete
cosine transform), motion compensation, and dithering [13].
Many researches [14]–[20] have been done to cut down the
energy bill for frame-based real-time systems. Gruian and
Kuchcinski [16] and Leung et al. [20] develop heuristics for
task ordering to reduce the expected energy consumption.
Zhang et al. [14] and Xu et al. [15] consider distribution in-
formation and slacks concurrently and obtain the optimal
speed schedule on the assumption of continuous proces-
sor frequency tuning. However, processors, now, can only
provide discrete frequencies. Xian and Lu [17] and Xu et
al. [15] deal with this problem by applying the research re-
sult from Ishihara and Yasuura [21] which uses two adjacent
frequencies to execute task. Berten et al. [19] also present
a technique to adapt a continuous-speed-based method to
a discrete-speed system. However, the derived solution is
shown to be not optimal by Chen [18]. Also Chen [18] de-
velops a linear-programming approach to derive optimal so-
lution for frame-based real-time tasks with discrete frequen-
cies, but the solution suffers from exponential time increas-
ing as the number of tasks increases.

This paper derives a new approach to minimize the ex-
pected energy consumption for frame-based real-time tasks
with discrete probability density functions of their work-
load information when there are only limited frequencies
with arbitrary power-speed relationship, which is more re-
alistic. The approach explores the relationship between the
expected energy consumption and the allowed time for the
combination of multiple tasks and solves the problem recur-
sively. Xu et al. [22] give a similar work, but it restricts the
speed tunings to the boundaries of tasks. Differently, we
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get rid of this limitation and present an algorithm to achieve
optimal result when the execution order is specified. A sub-
optimal DVS scheme is also presented to work out a solu-
tion near enough to the optimal one with only polynomial
time expense. Experimental results show that the proposed
algorithms can effectively reduce the expected energy con-
sumption and can save at most 40% of the energy compared
with previous schemes.

The rest of this paper is organized as follows: Sect. 2
provides system model and problem definition. Section 3
gives a motivational example and presents the optimal al-
gorithm. The polynomial time algorithm is introduced in
Sect. 4. Section 5 gives experimental results of the proposed
algorithm. Section 6 is the conclusion.

2. Models and Problem Definition

This section describes the model used in this paper along
with the notations adopted to present the problem and our
approach. The problem of frame-based system is also de-
fined in this section.

2.1 Task Model

The task model used in this paper contains a task set includ-
ing M periodic tasks. A periodic task is an infinite sequence
of task instances, where each instance of a task comes in a
regular period. This research focuses on frame-based task
set in which task instances release at the same time, share
the same period and have the same deadline at the end of
the period. The task set is denoted by Γ = {T1,T2, · · · ,TM}.
Because of the periodic property, we only study the first pe-
riod (also called frame), which starts at time 0 and ends at
time D.

Each task Ti is characterized by its worst-case execu-
tion cycles (WCEC) Wi and the probability function of its
execution cycles pi(x). pi(x) gives the probability that task
Ti execute for x (1 ≤ x ≤ Wi) cycles. Obviously,

∑Wi

x=1 pi(x)
= 1 and pi(Wi) � 0. In practice, a histogram are used to rep-
resent the probability function considering that a task usu-
ally have millions of cycles. For each task Ti, the range (0,
Wi] is divided into Ki bins. The jth bin of task Ti is associ-
ated with its amount of cycle Xi, j and its probability density
function (PDF) pi(j). That is, the probability for task Ti with∑ j

k=1 Xi,k cycles is pi(j). (Traditionally, profiling is done by
using the same bin size to determine the probability. How-
ever, by eliminating the points with 0% probability during
profiling, we can have bins with different sizes to reduce
the input size.) The discrete cumulative density function
(CDF) for task Ti to have cycles no more than

∑ j
k=1 Xi,k is

ψi(j) =
∑ j

k=1 pi(k). By definition, ψi(Ki) = 1. For notational
brevity, we define ψi(0) as 0. Therefore, the probability that
the schedule has to execute the first

∑ j
k=1 Xi,k cycles of task

Ti is 1 − ψi( j − 1), denoted by Ψi(j).
Figure 1 is an example for a task set Γ = {T1, T2} with

K1 = K2 = 2. The PDFs are shown in Fig. 1 (a), where X1,1

= 20, X1,2 = 30, with p1(1) = 0.8, p1(2) = 0.2 and X2,1 = 24,

(a) probability density function (b) cumulative density function

Fig. 1 Workload distribution example.

X2,2 = 36 with p2(1) = 0.6, p2(2) = 0.4. Figure 1 (b) gives
the discrete CDFs. Hence, in this example, Ψ1(1) = Ψ2(1) =
1, Ψ1(2) = 0.2 and Ψ2(2) = 0.4.

2.2 System Model

The tasks are to be executed on a DVS system with N fre-
quencies, denoted by f1, f2, · · · , fN , where f1 < f2 < · · ·
< fN . The power consumption function at frequency fi is
denoted by P( fi) = Pd( fi) + Pi, where Pd( fi) stands for the
dynamic power consumption and Pi, which is assumed to
be a constant, denotes the static power consumption [12].
When the system is idle, we assume the frequency to be 0
and assign Pd(0) = 0. Since the static power consumption is
a constant, the power consumption function P( fi) could be
rescaled by substituting Pi, while not affecting the analysis
results. Distinct from many previous work [8], [10], [14],
[15], [17] which assumes P( fi) = f αi (α > 2), this paper can
cope with P( fi) as an arbitrary function.

The energy consumption in (t1, t2] is
∫ t2

t1
P(f (t))dt,

where f (t) is the processor frequency at time t. Hence, exe-
cuting a cycle at frequency fi requires energy consumption
P( fi)/ fi. According to the results from [12], only frequen-
cies meeting the following conditions are considered,

• P( fi)/ fi < P( fi+1)/ fi+1, ∀1 ≤ i ≤ N − 1, since a schedule
would not use a lower frequency with higher energy
consumption.
• P( fi)/ fi−P( fi−1)/ fi−1

1/ fi−1−1/ fi
≤ P( fi+1)/ fi+1−P( fi)/ fi

1/ fi−1/ fi+1
, ∀2 ≤ i ≤ N − 1,

since P( fi)/ fi−P( fi−1)/ fi−1

1/ fi−1−1/ fi
> P( fi+1)/ fi+1−P( fi)/ fi

1/ fi−1/ fi+1
, indicates that

fi is inefficient.

2.3 Problem Description

A speed schedule function S(·) gives speed for each cycle
of a certain task. For frame-based systems, a DVS scheme
is composed of M sets of speed schedule functions S t

i(·) (i
= 1, 2, · · · , M), each for a task. S t

i(x) denotes the speed to
execute cycle x of task Ti, when Ti is scheduled to execute
and there is time t remaining in the frame. Let e(S, x) and
t(S, x) denote the energy consumption and time for execut-
ing a task using speed schedule S when the actual number
of execution cycles of the task is x. e(S, x) and t(S, x) are
computed by
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e(S, x) =
x∑

y=1

P(S(y))
S(y)

(1)

t(S, x) =
x∑

y=1

1
S(y)

(2)

respectively, where P(S (y))
S (y) and 1

S (y) are the energy and time

consumed by the yth cycle respectively. The expected energy
consumption for executing Ti, Ti+1, · · · , TM , when there is
time t left for execution, can be computed by

Ei(t) =
Ki∑
j=1

pi( j)

⎛⎜⎜⎜⎜⎜⎜⎝e
⎛⎜⎜⎜⎜⎜⎜⎝S t

i,

j∑
k=1

Xi,k

⎞⎟⎟⎟⎟⎟⎟⎠ + Ei+1

⎛⎜⎜⎜⎜⎜⎜⎝t − t

⎛⎜⎜⎜⎜⎜⎜⎝S t
i,

j∑
k=1

Xi,k

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠

(3)

and EM+1(t) = 0. Thus, the problem is to find the speed
schedule functions S t

i that minimize E1(D).
It’s hard to work out a general mathematical solution

to this problem, as the power-speed relationship is arbitrary
and the frequency is not continuous. This paper tries to give
an algorithm for optimal solution and a suboptimal method
with polynomial time expense.

3. Optimal Scheme

3.1 A Motivational Example

Before going into the detail of our solution, we give a mo-
tivational example to help getting a preliminary knowledge
adopting the task set introduced in Fig. 1. Of course, the
tasks have the same period (we take 230 as an example), as
we focus on frame-based systems in this paper. Suppose the
system has three frequencies: 0.2, 0.4 and 1.0, where P( f j) =
f 3

j . Figure 2 (a) to Fig. 2 (d) show the result by applying al-
gorithm M-GREEY proposed by Chen [18] along with slack

(a) Speed schedule when T1 and T2

both execute the whole cycles. The
probability for this case is 0.2 · 0.4
= 0.08. The energy consumed is 20 ·
0.42 + 30 · 12 + 60 · 0.42 = 42.8.

(b) Speed schedule when T1 and T2

execute 40 and 30 cycles respec-
tively. The probability for this case
is 0.2 · 0.6 = 0.12. The energy con-
sumed is 20·0.42+30·12+24·0.42 =

37.04.

(c) Speed schedule when T1 and T2

execute 20 and 60 cycles respec-
tively. The probability for this case
is 0.8 · 0.4 = 0.32. The energy con-
sumed is 20 · 0.42 + 12 · 0.22 + 48 ·
0.42 = 11.36.

(d) Speed schedule when T1 and T2

execute 20 and 24 cycles respec-
tively. The probability for this case
is 0.8 · 0.6=0.48. The energy con-
sumed is 20 · 0.42 + 12 · 0.22 + 12 ·
0.42 = 5.6.

(e) Speed schedule when T1 and T2

both execute the whole cycles. The
probability for this case is 0.2 · 0.4
= 0.08. The energy consumed is 50 ·
0.42 + 30 · 0.42 + 30 · 12 = 42.8.

(f) Speed schedule when T1 and T2

execute 50 and 24 cycles respec-
tively. The probability for this case
is 0.2 · 0.6 = 0.12. The energy con-
sumed is 50 ·0.42+24 ·0.42 = 11.84.

(g) Speed schedule when T1 and T2

execute 20 and 60 cycles respec-
tively. The probability for this case
is 0.8 · 0.4 = 0.32. The energy con-
sumed is 20 · 0.42 + 12 · 0.22 + 48 ·
0.42 = 11.36.

(h) Speed schedule when T1 and T2

execute 20 and 24 cycles respec-
tively. The probability for this case
is 0.8 · 0.6=0.48. The energy con-
sumed is 20 · 0.42 + 12 · 0.22 + 12 ·
0.42 = 5.6.

Fig. 2 A motivational example.

reclamation. Figure 2 (a) gives the schedule result by using
algorithm M-GREEDY. Following this schedule result, the
first 20 cycles of T1 and the whole cycles of T2 are assigned
frequency 0.4, while the rest cycles of T1 are assigned fre-
quency 1. Figure 2 (b) shows the situation in which T2 only
execute 24 cycles. When T1 completes earlier than worst
case situation, slack could be used to lower the energy con-
sumption further. Figure 2 (c) and Fig. 2 (d) are the results
after using the slack, where the first 12 cycles of T2 are low-
ered to frequency 0.2. The expected energy consumption
could be calculated as 0.08 · 42.8 + 0.12 · 37.04 + 0.32 ·
11.36 + 0.48 · 5.6 = 14.192. Although the approach works,
it does not derive an optimal solution which minimizes the
expected energy consumption. When speed scheduling in
Fig. 2 (e) to Fig. 2 (h) are applied, the expected energy con-
sumption will be 0.08 · 42.8 + 0.12 · 11.84 + 0.32 · 11.36
+ 0.48 · 5.6 = 11.168. It gets the same result of the Linear-
Program method [18], which is optimal for frame-based sys-
tems, with less time effort (this will explained later), and
saves energy as much as 21.3% compared to M-GREEDY.
The following text will present how this scheduling result is
calculated.

3.2 Problem Redefinition

In fact, the speed schedule function S t(·) introduced in
Sect. 2.3 is a two-variable function. Its value depends on
both the time t and the cycle x, where t is a positive real and
x is a positive integer. As t is continuous and the domain
of x could be large (usually a task may have millions of cy-
cles), it’s hard to express S t(·) in computer. Fortunately, the
problem could be redefined to an easy form by bringing the
concept of virtually continuous speed introduced in [23].

Virtual continuous frequency extends the discrete fre-
quency set { f1, f2, · · · , fN} to a continuous region (0, fN]
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by simulating a frequency that is not in the set with its
two immediate neighbor frequencies. Using the immediate
neighbor frequencies arrives at minimal energy consump-
tion, though other frequencies may work also [21]. Suppose
to execute a task with X cycles within time t, the frequency
f = X

t ( fi < f < fi+1) could be simulated by executing λX cy-
cles with frequency fi and (1 − λ)·X cycles with frequency
fi+1, where

λ =
1/ f − 1/ fi+1

1/ fi − 1/ fi+1
(4)

1 − λ = 1/ fi − 1/ f
1/ fi − 1/ fi+1

(5)

Applying the virtually continuous frequency, the speed
schedule function S t

i(·) for task Ti could be rewritten as a

Ki-dimension vector function �S i(·), whose elements are de-
noted as S j

i (·) (1 ≤ j ≤ Ki). S j
i (t) gives the speed for the jth

bin when task Ti is scheduled to execute with time t left in
the frame. Instead of formula (1-3), the schedule problem
could then be rewritten as following,

Ei, j(�s) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P( fq)
fq
· Xi, j, s j = fq

P( fq+1)
fq+1
· (1 − λ) · Xi, j

+
P( fq)

fq
· λ · Xi, j, fq < s j < fq+1

P( f1)
f1
· Xi, j, s j < f1

(6)

ti, j(�s) =
Xi, j

s j
(7)

Ei(t) =
Ki∑
j=1

pi( j) ·
⎛⎜⎜⎜⎜⎜⎜⎝

j∑
k=1

Ei,k( �S i(t)) + Ei+1

⎛⎜⎜⎜⎜⎜⎜⎝t −
j∑

k=1

ti,k( �S i(t)

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠
(8)

and EM+1(t) = 0. Ei, j(�s) and ti, j(�s) represent the energy con-
sumption and time for the jth bin of task Ti when schedule
function �s is used. The certain speed scheduling functions
�S i(·) (i = 1, 2, · · · , M) are to be found to minimize the ex-
pected energy consumption E1(D). This form of definition
is used to present our solution in the rest of this paper.

3.3 The Optimal Solution

From the recursive description of the problem in Sect. 3.2,
it is natural to compute Ei(·) and S j

i (·) in reverse order, i.e.,
first compute EM(·) and S j

M(·), then EM−1(·) and S j
M−1(·),

and so on. The computation of Ei(·) and S j
i (·) only depends

on Ei+1(·), as Ei+1(·) has already “summarized” functions
Ek(·) and S j

k(·) where k = i+2, · · · , M. When the compu-
tation is done, all Ei(·) (i = 1, 2, · · · , M) can be discarded
because they are not needed for the operation of the system.

3.3.1 Solution for Bins

This section takes into account the energy consumption of

the bins, which are elements of tasks. Without loss of gener-
ality, we try to find the speed schedule function S j

i (·) for the
jth bin of task Ti, so that Ei, j(t) equals the minimal energy
consumption when time t is available. This is a well-known
problem and has been studied by previous researches. We
continue to explore this problem and examine it much fur-
ther. Finally, some meaningful results will be achieved and
become the basics of our later presented scheme.

Obviously, this is an inter-task schedule problem. The
result could be solved from Eq. (6) and (7) directly,

Ei, j(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

P( fq)
fq
· Xi, j, t = Xi, j

fq
P( fq+1)

fq+1
· (1 − λ) · Xi, j

+
P( fq)

fq
· λ · Xi, j,

Xi, j

fq+1
< t < Xi, j

fq
P( f1)

f1
· Xi, j, t > Xi, j

f1

(9)

S j
i (t) =

Xi, j

t
(10)

where, λ = t/Xi, j−1/ fq+1

1/ fq−1/ fq+1
. No value is defined for both func-

tions, when t <
Xi, j

f1
. From the solution, we could see

that Ei, j(t) is a piecewise line with N line segments (N
is the number of discrete frequencies) and the ith segment
has a slope of P( fi)/ fi−P( fi+1)/ fi+1

1/ fi−1/ fi+1
with the exception of the 0-

valued slope of the Nth segment). 1/S j
i (t) is also a piece-

wise line with N line segments with the same slope 1
Xi, j

and the ith segment shares the starting time and ending time
with the ith segment of Ei, j(t). It is shown in Sect. 2.2 that
P( fi)/ fi−P( fi+1)/ fi+1

1/ fi−1/ fi+1
< 0 and P( fi−1)/ fi−1−P( fi)/ fi

1/ fi−1−1/ fi
≥ P( fi)/ fi−P( fi+1)/ fi+1

1/ fi−1/ fi+1
.

Thus, Ei, j(t) is seemed to be a non-increasing convex curve.
Figure 3 (a) and Fig. 3 (b) illustrate the example for Ei, j(t)
and 1/S j

i (t) respectively using the tasks in Fig. 1. Note that

the graph when t > Xi, j

f1
is ignored as it makes the figure too

confused and provides no more information.
The piecewise linear functions play an important role

in our approach. Thus, being able to represent and manip-
ulate piecewise linear functions effectively is crucial for the
viability of our approach.

Looking into Eq. (9), we could find that each line seg-
ment of Ei, j(t) can be represented by its left end point be-
cause its right end point is the left end point of the line seg-
ment to its immediate right or is constant until infinity when
it is the rightmost line segment of the piecewise line. We for-
mally define piecewise linear function through the following
two definitions.

(a) optimal energy consumption (b) optimal speed scheduling

Fig. 3 Solution for bin.
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Definition 1: A point P is a 2-tuple (e, t), where e and t are
nonnegative reals and denote energy and time respectively.
We write the energy component as P.e and the time compo-
nent as P.t.

Definition 2: A piecewise linear function F(·) is defined as
a point sequence S = [P1,P2, · · · ,Pm] where P1.t < P2.t <
· · · < Pm.t and P1.e > P2.e > · · · > Pm.e. F(t) is undefined
when t < P.t, otherwise

F(t) =

⎧⎪⎪⎨⎪⎪⎩
Pi.e +

Pi+1.e−Pi.e
Pi+1.t−Pi.t

· (t − Pi.t), Pi.t ≤ t < Pi+1.t

Pm.e, t ≥ Pm.t
(11)

In the rest of this paper, we use F and F.Pi to denote
a piecewise linear function F(·) and the ith point of F re-
spectively. The number of the points in F is used to de-
fine the size of F and denoted by |F|. Obviously, computing
F(t) can be done in time O(log|F|) by using binary search.
With this definition, Ei, j(t) could be rewritten by Ei, j =

[( P( fM)
fM
· Xi, j,

Xi, j

fM
), ( P( fM−1)

fM−1
· Xi, j,

Xi, j

fM−1
), · · · , ( P( f1)

f1
· Xi, j,

Xi, j

f1
)].

We now give some operations about the piecewise lin-
ear function.

Definition 3: The operator “·” is defined between a real x
and a piecewise linear function F such that x · F = [(x ·
F.P1.e,F.P1.t), (x ·F.P2.e,F.P2.t), · · · ] (i.e., the result is still
a step function). This operator means to scale the piecewise
linear function by a factor of x.

Operation “·” takes time O(|F|) to complete with the
size of the piecewise linear functions unchanged.

Definition 4: The sum operator “+” is defined between 2
piecewise linear functions, F1 and F2, such that F1 +F2 = F
and F(t) = F1(t)+F2(t) with F.P1.t = max(F1.P1.t,F2.P1.t).

The time component of each point in F comes from ei-
ther F1 or F2. As F.P1.t = max(F1.P1.t,F2.P1.t), the size
of F is |F| ≤ |F1| + |F2|. Because the points in F1 and
F2 are already sorted, the time components of all points in
F can be obtained by a procedure similar to merge sort in
time O(|F1| + |F2|). The energy component of each point in
F is acquired by computing the addition of F1(F.Pi.t) and
F2(F.Pi.t)(1 ≤ i ≤ |F|). It also takes time O(|F1| + |F2|) to
complete. As a result, the time to fulfill the sum operation
between F1 and F2 turns out be to O(|F1| + |F2|).
Definition 5: The merge operator “

⋃
” is defined between 2

piecewise linear functions, F1 and F2, such that F1
⋃

F2 =

F, where F merges all the line segments of both F1 and
F2 by sorting them with their slopes in ascending order
and connecting them into a new piecewise line. The first
point of F is defined by F.P1.e = F1.P1.e + F2.P1.e and
F.P1.t = F1.P1.t + F2.P1.t.

The resulting piecewise linear function F by the merge
operators over 2 piecewise linear functions F1 and F2 have
|F1| + |F2| − 1 points. Computing the emerge operation con-
tains calculating the slopes of all the piecewise segments
and sorting them in an ascending order, which takes time

O(|F1| + |F2|), and computing the time and energy compo-
nents of the new points, which also takes time O(|F1|+ |F2|).
Thus, computing F1

⋃
F2 takes time O(|F1| + |F2|) too.

The piecewise line derived from the solution of bins,
along with the defined operations will be used in the rest of
the paper to introduce our schedule scheme.

3.3.2 Solution for TM

Functions EM(·) and S j
M(·) are examined in this section. In

case of i=M and EM+1(t) = 0, formula (8) turns out to be,

EM(t) =
KM∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝pM( j) ·
j∑

k=1

EM,k( �S M(t))

⎞⎟⎟⎟⎟⎟⎟⎠

=

KM∑
j=1

ΨM( j) · EM, j(S
j
M(t)) (12)

Assume the jth bin spend time t j, when EM(t) is opti-
mal. Using the result achieved in Sect. 3.3.1, we know that
S j

M(t) = XM, j/t j and EM, j(S
j
M(t)) = EM, j(t j). Then, the prob-

lem could be rewritten as,

EM(t) =
KM∑
j=1

ΨM( j) · EM, j(t j) (13)

t =
KM∑
j=1

t j (14)

Lemma 1: The optimal EM(t) is a piecewise linear func-
tion, and could be computed by EM =

⋃KM

j=1(ΨM( j) · EM, j).
Proof: This is an assignment problem. The aim is
to find an low-power assignment of time t to each bin
of task TM so that EM(t) is minimized. Obviously,

dEM(t) =
∑KM

j=1

(
ΨM( j) · dEM, j(t j)

dt j
dt j

)
≥ min{ΨM( j) · dEM, j(t j)

dt j
} ·

∑KM

j=1(dt j) = min{ΨM( j) · dEM, j(t j)
dt j
} · dt. This means that the

increased time dt should be assigned to the bin with lowest
ΨM( j) · dEM, j(t j)

dt j
in order to achieve the largest power con-

sumption decreasing. EM, j is piecewise linear, so EM is
piecewise linear too. Also, it is not difficult to find out that
EM .P1.t =

∑KM

j=1 EM, j.P1.t and EM .P1.e =
∑KM

j=1 EM, j.P1.e.
As a result, The optimal EM(t) is a piecewise linear function
and EM =

⋃KM

j=1(ΨM( j) · EM, j) �

The function 1/S j
M(t) could be obtained following the

process of computing EM(t) easily by merging and rearrang-
ing the segments of 1/S j

M(t) accordingly during the sorting
stage of the merge operation for Ei(t). We will focus on
discussing Ei(t) in the following for its important position.

Applying the result of Lemma 1, we calculate the
speed schedule functions for T2 of the example introduced
in Fig. 1 and obtain the result shown in Fig. 4. EM(·), pre-
sented in Fig. 4 (a), is non-increasing and convex and con-
tains KM · (N − 1) (M=2 and KM · (N − 1) = 4 in this ex-
ample) linear segments. Figure 4 (b) shows the functions of
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(a) optimal energy consumption (b) optimal speed scheduling

Fig. 4 Solution for TM .

1/S j
M(·) (1 ≤ j ≤ KM), which are also piecewise linear. It is

not surprising us that the functions keep non-descending, as
more time leads to lower speed (longer cycle length). There
exists an interesting fact that functions 1/S j

M(·) ascend in a
mutually exclusive manner. The reason is that only the most
energy-efficient bin is chosen to use the remaining time.

3.3.3 Solution for Ti

Now we examine functions Ei(·) and �S i(·) (1 ≤ i ≤ M)
which involve multiple tasks. Similar to Sect. 3.3.2, we
could rewrite formula (8) as,

Ei(t) =
Ki∑
j=1

⎛⎜⎜⎜⎜⎜⎜⎝Ψi( j) · Ei, j(t j) + pi( j) · Ei+1

⎛⎜⎜⎜⎜⎜⎜⎝t −
j∑

k=1

tk

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (15)

Furthermore, we could continue to write Eq. (15) in a
recursive manner as following,

E( j)
i (t) = Ψi( j) · Ei, j(t j) + pi( j) · Ei+1(t − t j)

+E( j+1)
i (t − t j) (16)

and E(Ki+1)
i (t) = 0. When j = 1, E( j)

i (t) becomes E(1)
i (t), and

equals Eq. (15).

Lemma 2: The optimal E( j)
i (t) is a piecewise linear func-

tion, and could be computed by E( j)
i (t) = (Ψi( j) ·

Ei, j)
⋃

(pi( j) · Ei+1 + E( j+1)
i ).

Proof: This could be proved similar to lemma 1. �

Using the formula in Lemma 2 recursively, we could
get the optimal result for Ei(t). Also, the schedule function
�S i(·) could be calculated easily while computing Ei(t). The
algorithm is named GLOBAL and described in Fig. 5.

An example is shown in Fig. 6, where Fig. 6 (a) and
Fig. 6 (b) give Ei(·) and 1/ �S i(·) respectively. Now, we try
to present how we acquire the optimal result in Sect. 3.1.
First, we calculate 1/ �S 1(230) = [2.5, 2.5] by the function in
Fig. 6 (b). Then, we execute task T1 with this schedule re-
sult. If T1 execute 50 cycles, it takes time 50 ·2.5 = 125, and
has time 230 − 125 = 105 left. Finally, we use function in
Fig. 4 (b) to get 1/ �S 2(95) = [2.5, 1.25] for the execution of
T2. As 1/1.25 is not the supported frequency, we simulate it
with frequencies 0.4 and 1.0. The corresponding executing
trace is in Fig. 1 (e) and (f). If T1 execute 20 cycles, we get
result in Fig. 1 (g) and (h) similarly.

Agorithm: GLOBAL
1: for i = 1 to M do
2: for j = 1 to Ki do
3: // compute for each bin
4: compute Ei, j(·)
5: compute S j

i (·)
6: end for
7: end for
8:
9: EM+1 = 0

10: for i = M downto 1 do
11: E(Ki+1)

i = 0
12: // compute for task Ti

13: for j = Ki downto 1 do
14: E( j)

i = (Ψi( j) · Ei, j)
⋃

(pi( j) · Ei+1 + E( j+1)
i )

15: update S j
i (·) correspondingly

16: end for
17: end for

Fig. 5 The optimal algorithm.

(a) optimal energy consumption (b) optimal speed scheduling

Fig. 6 Solution for Ti.

3.4 Space and Time Complexity

We now analyze the time complexity and space complexity
for computing Ei. The key operation in computing E( j)

i is
the merge operation over 2 piecewise linear functions, with
the size of |Ei, j| and |Ei+1| + |E( j+1)

i | respectively. Thus, the

time to compute E( j)
i is O(|Ei, j| + |Ei+1| + |E( j+1)

i |) and the

number of points in E( j)
i is

|E( j)
i | ≤ |Ei, j| + (|Ei+1| + |E( j+1)

i |) (17)

The operation for computing Ei is to compute E( j)
i for

Ki times recursively. Thus, the time to compute Ei is O(Ki ·
(|Ei, j| + |Ei+1|)) and the number of points in Ei is computed
as

|Ei| = |E(1)
i | ≤ Ki · N + Ki · |Ei+1| (18)

Since the base case is |EM+1| = 1, we can ob-
tain the closed forms of the time complexity to be O(N ·
(
∑n

i=1(
∏i

j=1 Kj))) and the number of points in E1 is

|E1| ≤ N ·
⎛⎜⎜⎜⎜⎜⎜⎝

n∑
i=1

⎛⎜⎜⎜⎜⎜⎜⎝
i∏

j=1

Kj

⎞⎟⎟⎟⎟⎟⎟⎠
⎞⎟⎟⎟⎟⎟⎟⎠ (19)

Formula (19) shows that the number of points in E1

is exponential to the number of tasks and polynomial to the
number of discrete frequencies and the number of bins of the
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tasks. The number of points in �S 1, which reflects the space
needed to store the assistance data for scheduling, equals E1.
It should be lowed before the algorithm could be used in an
embedded system especially when the number of tasks is
high. Time overhead is composed of two parts: 1) the time
used to find the scheme for each task before the task is to
be executed, and 2) the time needed to change the frequency
within the execution of a task. The former time is propor-
tional to log(| �S i|) and the latter time is proportional to the
number of discrete frequencies.

4. Suboptimal Scheme

Section 3 introduced the optimal algorithm which could lead
to speed schedule with the minimal expected energy con-
sumption. However, formula (19) has exposed that the num-
ber of line segments in the functions may suffer exponen-
tial growth, so does the time expense. This section presents
an approximate method which brings out an algorithm with
polynomial time complexity and maintains controllable er-
ror compared with the optimal expected energy consump-
tion. The idea behind the technique is to merge the two
points into one if they are close enough to each other.

4.1 Operation

The approximation method is shown in Fig. 7. It’s called
TRIM procedure as it aims at trimming away the less im-
portant points in a piecewise linear function. The procedure
checks every point orderly in line 1. Line 2 examines the
distance between Pi and Pi+1. If the distance is relatively
small, i.e. Pi.e−Pi+1.e

Pi+1.e
< δ (δ is a parameter to quantify the dif-

ference), point Pi+1 will be trimmed away as shown in line
3.

Using this approximation technique could greatly re-
duce the points in the functions, and thus the time and the
space complexity. In fact, the number of turning points is
reduced and upper bounded by a polynomial in 1

δ
.

Figure 8 (a) shows an amplified part of Fig. 6 (a) with
the time region of (250, 340). There are three points in the
figure, (e1, t1), (e2, t2) and (e3, t3), where e1 > e2 > e3 and
t1 < t2 < t3. It’s assumed that e1−e2

e2
< δ. After applying the

TRIM procedure, point (e2, t2) will be eliminated and the
graph changes from the solid line to the dotted line which
contains only two points. Obviously, the resulting func-
tion is only an approximation of the original function (i.e.,
the elimination induces error). This is because when time t
where t1 < t < t3 is available, we use the dotted line instead
of the solid line and result in expected energy greater. How-
ever, because of the way we eliminate the points, the differ-
ence between the resulting function and the original func-
tion is guaranteed to be no more than δ times the original
function. We will explain this in detail in the next section.

This approximation technique could guarantee the
schedulability and meet the real-time demand, as �S i(·) is not
affected by the TRIM procedure. In fact, we could eliminate
some non-end points locating on the line segments to reduce

Procedure: TRIM
1: for i = 1 to |F| − 1 do
2: if |Pi.e − Pi+1.e| < δ · Pi+1.e then
3: eliminate Pi+1

4: end if
5: end for

Fig. 7 The TRIM procedure.

(a) energy consumption (b) speed scheduling

Fig. 8 Aproximation.

the size of �S i(·) further. Figure 8 (b) shows an example of
the result of Fig. 6 (b).

We apply the above function approximation technique
to function Ei(·) before computing Ei−1(·). Thus, the error
accumulates and increases as i decreases. Let the error of
E1(·) be denoted by ε. The expected energy consumption of
the system, E1(D), is within a factor of 1 + ε of the optimal
expected energy consumption. If we let ε be a parameter set
by system designers, we can derive the value of δ to be used
for each function approximation. The technical detail will
be described in the following.

4.2 Details

This section details how to reduce the size of function Ei

within a polynomial bound while maintain a controllable
energy consumption error. The function approximation
achieved by the trimming procedure is similar to the label
elimination technique used in [24]. To do that, we trim (i.e.,
remove some points) function Ei after it is computed after
Line 14 in Fig. 5 using the TRIM procedure introduced in
Fig. 7. A trimming parameter δ (0 < δ < 1) is used to direct
the trimming. After function Ei is trimmed, the distances of
any adjacent points differ by at least a factor of δ. The op-
erations from line 11 to line 16 in Fig. 5 transport the error
without any change. This could be obtained by analyzing
Formula (15).

Let E
′
i (i = 1, 2, · · · ,M) be the piecewise linear func-

tions obtained after the TRIM procedure is applied for Ei.
That is, E

′
i is the functions returned by the approximation

algorithm. By comparing E
′
i and Ei, we have the following

important lemma:

Lemma 3: Ei(t) ≤ E
′
i (t) ≤ (1+ δ)M+1−i · Ei(t) for any value

of t.
Proof: The proof is by induction on i and the base case
for i=M+1 obviously holds from Line 9 in Fig. 5. In the
induction step for E

′
i , we inspect Line 11 to Line 16 in Fig. 5

along with Formula (15). From the hypothesis, E
′
i+1(t) is
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within a factor of (1 + δ)N−i of Ei+1(t). All the operations
at Line 11 to Line 16 will preserve this property. After the
trimming operation, the factor will be only increased by (1+
δ), which will make E

′
i (t) with a factor of (1 + δ)N−i+1 of

Ei(t). �

Using functions E
′
i will lead to expected energy con-

sumption of E
′
1(D) and using functions Ei will lead to ex-

pected energy consumption of E1(D). From Lemma 3, we
have E

′
1(D) ≤ (1 + δ)N · E1(D). If we choose δ to be

N√
1 + ε − 1, we have E

′
1(D) ≤ (1 + ε) · E1(D).

To compute the upper bound of the number of points
in Ei, we note that after the trimming procedure, the en-
ergy components of any adjacent points differ by at least a
factor of δ. Let the leftmost point in Ei be denoted by Pl

(which is upper bounded by the energy consumption when
all tasks use the maximum speed) and the rightmost point
in Ei be denoted Pr (which is lower bounded by the energy
consumption when all tasks use the minimum speed). Thus,
we have

Pl.e > (1 + δ)|Ei |−1 · Pr.e (20)

By some algebraic manipulations, we will obtain |Ei| =
O( logλ

δ
) where λ = Pl.e

Pr .e
≤ P( fN )/ fN

P( f1)/ f1
. Thus, the number of

points in Ei is upper bounded by a polynomial in 1
δ
, so is

the space complexity. The time overhead is proportional to
log(|Ei|) and N, and is neglectable compared to the execu-
tion time of the tasks.

5. Performance Evaluations

This section describes the simulation setup and presents the
simulation results comparing the energy savings from our
method and the existing solutions.

5.1 Simulation Setup

We use the frequency / voltage settings and power consump-
tion of Intel XScale [25] (as shown in Table 1) for finite fre-
quencies. The power consumptions listed in Table 1 are ob-
tained by measuring the processor power when running cer-
tain benchmarks. Using polynomial fitting, we could work
out the idle power to be 78 mW (1.537 × 10−6 · f 3 + 78).

A frame-based real-time system is characterized by the
number of tasks, the WCEC of each task, the probability
distribution of the number of execution cycles of each task,
and the frame length. We simulated systems consisting of
5 and 10 tasks. We only show the results for the systems
with 5 tasks because the results for systems with 10 tasks are
similar. We assume the WCEC for each task is 10,000,000
and the minimum number of cycles is 1,000,000, which is
typical for the real multimedia programs like MPEG video
decoder and H.263 video decoder [11], [18]. We consider
three types of distributions (Gaussian, exponential and uni-
form) for cycle demand as suggested in [14], [25]. The bin
width of the histograms denoting the probability functions

Table 1 XScale speed settings and power consumptions.

Speed (MHz) 150 400 600 800 1000

Voltage (V) 0.75 1.0 1.3 1.6 1.8

Power (mW) 80 170 400 900 1600

(a) normal (b) exponential (c) uniform

Fig. 9 Probability functions.

Fig. 10 Energy with different distribution.

is 1,000,000 cycles. Figure 9 shows the histograms of three
distributions respectively. We experiment with 20 frame
lengths chosen evenly from 5×WCEC

fM
(no slack) to 5×WCEC

f1
.

4 DVS schemes, (1) GRACE with ρ = 0.95 [11], (2) RE-
CURE [17], (3) GREEDY [18] and (4) GLOBAL with δ =
0.5, are evaluated. GRACE and RECURE are two typical
schemes extended from PACE [9] using different methods to
cope with processors with discrete frequencies. GREEDY,
which is better, treats the discrete property directly like our
approach. The energy consumption of all these schemes are
normalized to that of STATIC [2]. When evaluating a DVS
scheme on a simulated system, we performed a run in which
we generated 100,000 frames and computed the average en-
ergy consumption per frame as the energy consumption for
that scheme.

5.2 Energy Savings

Figure 10 shows the normalized energy for different kinds
of task set when frame length is 95 ms. The three groups of
bars show the result for task sets with Gaussian, exponen-
tial and uniform distributions respectively. For each group,
the four bars represent the normalized energy consumption
by the four schemes. As shown in the figure, our approach
GLOBAL always saves more energy then others no matter
which distribution of task set is applied. The energy sav-
ings range from about 30% to 40% (in fact later discussion
will show the maximum saving of 55% when frame length
is 65 ms) compared to STATIC, while GREEDY (which is
the best of the other three) save at most 15% energy than
STATIC. The reason why GLOBAL shows such a great ex-
perience achievement is that GLOBAL considers the whole
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Fig. 11 Energy with different distribution.

tasks globally and uses the slack in a more efficiently way
than others. Figure 10 also shows that tasks with exponential
distribution leads to more energy saving than the ones with
Gaussian or Uniform distribution. Furthermore, the energy
savings decrease following the sequence of tasks with expo-
nential, Gaussian and uniform distributions. This is because
tasks with exponential distribution have more probability to
execute few cycles and produce larger slacks. Tasks with
Gaussian distribution overcome those with Uniform distri-
bution for the same reason. Applying GRACE, the tasks
with distributions of Gaussian and uniform have normalized
energy greater than 1. This is counter-intuitive, as GRACE
uses more information than STATIC and introduces intra-
task technique for a better effect. This is due to the aggres-
sive strategy in which frequencies are rounded up to match
the limited set of frequencies of the processor. The strategy
causes the task to run at an unnecessarily high frequency
which leads to more energy consumption.

The effect of frame length on energy saving is exam-
ined. Figure 11 only shows the result for tasks with Gaus-
sian distribution as others have the similar result. As illus-
trated in the figure, GLOBAL overcomes other algorithms at
any frame length and saves at most 55% of the energy com-
pared to the STATIC at the frame length of 65 ms. When
frame length is bigger than 285 ms, all the algorithms (ex-
cept GRACE) bring out the same effect of energy saving.
This is because processor has an extremely low occupation
in this circumstance and runs at the lowest frequency even
the tasks have the cycles of WCEC. There exists no room
for the sophisticated algorithms to work well and they all
degenerate to STATIC. Figure 11 also shows that GREEDY
and GLOBAL outperform STATIC at any situation, while
RECUR and GRACE are not the case. In fact, when frame
length is larger than 175 ms, RECUR and GRACE both
work no better than STATIC which is simple and easy to
realize. In this experiment, GRACE performs not well. Its
energy consumption is even 4 times the energy consumption
of STATIC when frame length is near 210 ms. As mentioned
before, the reason is the rounding up strategy.

5.3 Impact of δ and Computation Overhead

The value of δ is set to 0.5 in above experiments. This sec-
tion gives the normalized energy and the computation over-
head when δ is assigned with different values. After that, we
explain the reason why we choose the value 0.5 for previous

Fig. 12 Energy with different δ.

Fig. 13 Time and space overhead with different δ.

experiments. To launch the experiments, we change the pa-
rameter δ from 0 (TRIM procedure has no effect) to 4.096
(at most 4 points left after TRIM procedure is used) when
tasks with Gaussian, exponential and uniform distributions
are executed respectively.

The results of the normalized energy are shown in
Fig. 12. Lemma 3 demonstrates that the upper bound of the
energy increases rapidly as δ increases. However, the exper-
iments exhibit that the actual energy increases much slower.
This is because the TRIM procedure only influences parts
of the piece-wise curve while the upper bound is obtained
assuming the biggest differences in all circumstances. For
example, in Fig. 8, the energy equals the optimal one and
far smaller than the upper bound outside the range between
point 1 and point 3. It is shown in the figure that the en-
ergy is near to the optimal one when δ is smaller than 1.
However, when δ is bigger than 1, the energy of the tasks of
Gaussian and uniform distribution is bigger than the result
of static strategy.

As mentioned before, the value of |Ei| is very impor-
tant and a critical parameter to reflect the space and time
complexity. Figure 13 shows the number of points in E1.
The figure presents that the number decreases rapidly as
δ increases. When δ is smaller than 0.001, the number is
over 10,000. But when δ is bigger than 0.5, the number de-
creases to around 100. According to the above experiments,
we choose δ as 0.5 which leads to comparatively low space
and time complexity and energy consumption.

6. Conclusion

This paper presents an optimal stochastic DVS scheme and
a suboptimal (provably close to optimal) stochastic DVS
scheme for frame-based multitasking real-time systems with
uncertain execution time. The probability distributions of
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the cycle demands of tasks are used to help deriving our
DVS scheme under the realistic power model. The exper-
imental result shows that our method outperforms the ex-
isting solutions and can reduce the expected energy more
effectively. For future research, we would like to extend
the approach here to general periodic multitasking real-time
systems.
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