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Linear Detrending Subsequence Matching in Time-Series
Databases∗

Myeong-Seon GIL†, Nonmember, Yang-Sae MOON†a), Member, and Bum-Soo KIM†, Nonmember

SUMMARY Every time-series has its own linear trend, the direction-
ality of a time-series, and removing the linear trend is crucial to get more
intuitive matching results. Supporting the linear detrending in subsequence
matching is a challenging problem due to the huge number of all possible
subsequences. In this paper we define this problem as the linear detrend-
ing subsequence matching and propose its efficient index-based solution.
To this end, we first present a notion of LD-windows (LD means linear
detrending). Using the LD-windows we then present a lower bounding the-
orem for the index-based matching solution and show its correctness. We
next propose the index building and subsequence matching algorithms. We
finally show the superiority of the index-based solution.
key words: data mining, time-series databases, similar sequence matching,
linear detrending, subsequence matching

1. Introduction

Time-series data are of growing importance in data min-
ing [5]. Typical examples of time-series data include stock
prices, music data, moving object trajectories, and biomed-
ical data [1], [3], [9]. Finding data sequences similar to
the given query sequence from the database is called sim-
ilar sequence matching [1], [5]. In many similar sequence
matching models, two sequences X = {X[1], . . . , X[n]}
and Y = {Y[1], . . . ,Y[n]} are said to be similar if the
distance D(X,Y) ≤ ε, where ε is the user-specified tol-
erance. In this paper we use the Euclidean distance (=√∑n

i=1 |X[i] − Y[i]|2) as the distance function of D(X,Y).
Linear trend, a representative distortion of time-series

data [3], shows the directionality of a time-series, and lin-
ear detrending in similar sequence matching is crucial to get
more intuitive matching results. For example, [8] uses the
linear detrending to remove the trend variation for compar-
ison of global temperature changes, and [4] detrends time-
series of stock prices for correlation analysis of stock items.
Figure 1 shows an example of comparing two sequences
before and after linear detrending: Fig. 1 (a) represents the
original sequences Q and S ; Fig. 1 (b) the linear detrended
sequences Q′ and S ′. We obtain Q′ and S ′ by linear de-
trending, i.e., by subtracting the corresponding trend lines
f (Q) and f (S ) from Q and S , respectively. In Fig. 1, there
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Fig. 1 Comparison of two sequences before and after linear detrending.

is a big distance between Q and S , and so these two se-
quences will be determined to be non-similar. In contrast,
the distance between Q′ and S ′ is very small in Fig. 1 (b),
and they will be determined to be similar. This means that
non-similar sequences can be identified as similar ones af-
ter linear detrending, and vice versa. Likewise, linear de-
trending is useful to know similarity of changes which is
hidden by the linear trend of time-series data [3], [8]. Moti-
vated by this example, we attack the problem of linear de-
trending in similar sequence matching, especially in subse-
quence matching [1], [6]. Supporting the linear detrending,
however, is a challenging problem in subsequence matching
because we need to consider a huge number of all possi-
ble data subsequences to be linear detrended. We call this
matching scheme the linear detrending subsequence match-
ing. For its formal definition, readers are referred to [2].

We propose an index-based solution for linear detrend-
ing subsequence matching. To this end, we first present
a novel notion of LD-windows, linear detrending-windows.
Suppose a subsequence S [i : j] includes a window S [a : b]
(i.e., i ≤ a < b ≤ j), then we obtain the LD-window of
S [a : b] by eliminating the linearity of subsequence S [i : j]
rather than that of window S [a : b] itself. This notion en-
ables an LD-window to represent multiple subsequences of
different lengths, and eventually, we can use only one index
in subsequence matching [7]. Using the LD-windows we
next present a lower bounding theorem for the index-based
matching solution and prove its correctness. Based on this
lower bounding theorem, we then propose the index build-
ing and subsequence matching algorithms, respectively. Ex-
perimental results show that, compared with the sequential
scan, our solution improves the matching performance by
one or two orders of magnitude.

2. Linear Detrending Subsequence Matching

For a time-series, its linear trend is a straight line that most
likely reflects its directionality. The least square method is
most widely used to obtain the line of a time-series [8]. For

Copyright c© 2011 The Institute of Electronics, Information and Communication Engineers



918
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

a sequence X = {X[1], . . . , X[n]}, a linear function by the
least square method is given by g(k) = αk + β, where α and
β are obtained by Eq. (1) [8].

α =
n
∑n

k=1 kX[k] −∑n
k=1 k ·∑n

k=1 X[k]

n
∑n

k=1 k2 − (
∑n

k=1 k)2
,

β =

∑n
k=1 X[k]

n
− α
∑n

k=1 k

n
. (1)

Linear detrending is the process of obtaining a new time-
series from an original time-series by removing the corre-
sponding linear trend. The following is the formal definition
of linear detrending.

Definition 1: For a sequence X = {X[1], . . . X[n]} and its
linear trend function g(k), the linear detrending sequence of
X, LD-sequence of X, is defined as X = {X[1], . . . , X[n]},
where X[k] = X[k] − g(k), k = 1, . . . , n. �

Linear detrending is simply solved in whole matching,
but it is a challenging problem in subsequence matching. In
whole matching, the lengths of data and query sequences
are all identical, and we simply use the whole matching so-
lution after linear detrending of all time-series. In contrast,
the solution is not simple in subsequence matching by the
following reasons: (1) data subsequences in different posi-
tions have different linear trend even though they have the
same length; and (2) data subsequences of different lengths
also have different linear trend even though they start from
the same position. Therefore, we need to consider different
linear trend for all possible query lengths and for all possible
positions, and we cannot use the traditional solutions [1], [6]
for linear detrending subsequence matching.

We formally define the problem of linear detrending
subsequence matching as the following two definitions.

Definition 2: For two sequences X and Y of the same
length and their LD-sequences X and Y , we define that X
and Y (or X and Y) are LD-similar if D(X,Y) ≤ ε. �
Definition 3: For a data sequence S , a query sequence Q,
and the tolerance ε, linear detrending subsequence matching
is the problem of finding all subsequences S [i : j] which are
LD-similar to Q, i.e., finding all subsequences S [i : j] such
that D(Q, S [i : j]) ≤ ε. �

A simple solution to linear detrending subsequence
matching is the sequential scan, which accesses every sub-
sequence S [i : j] sequentially and investigates its LD-
similarity by computing D(Q, S [i : j]). Algorithm 1 shows
the sequential scan algorithm, LDSeqScan, which is self-
explanatory. LDSeqScan is simple, but it incurs severe

Algorithm 1 LDSeqScan(S , Q, ε)
1: Compute a line g(k) from Q using the least square method;
2: Obtain Q from Q and g(k) through linear detrending;
3: for each subsequence S [i : j] of length Len(Q) do;
4: Compute a line g′(k) from S [i : j] using the least square method;
5: Obtain S [i : j] from S [i : j] and g′(k) through linear detrending;
6: Return the subsequence S [i : j] if D(Q, S [i : j]) ≤ ε; // LD-similar
7: end-for

CPU and I/O overhead due to accessing entire data se-
quences.

3. Proposed Index-Based Solution

As in the traditional subsequence matching [1], [3], [6], we
use the window construction mechanism that divides data
and query sequences into disjoint/sliding windows of the
fixed size. However, our solution quite differs from the
traditional ones in constructing windows due to use of lin-
ear detrending. Each window should be mapped to multi-
ple windows in the linear detrending subsequence matching
while it does not in the traditional subsequence matching.
This is because, in linear detrending subsequence matching,
each window has multiple trend lines by different lengths
and different positions of subsequences that include the win-
dow. Formally speaking, for a given window S [a : b],
there are many different subsequences S [i : j]’s that include
S [a : b]; their trend lines are also different from each other;
and the window S [a : b] is mapped to multiple windows
due to different trend lines. We call this complex property
the multiple mapping property, which was already presented
in the normalization-transformed subsequence matching [7].
The traditional solutions [1], [3], [6] do not have the multi-
ple mapping property, but we need to support this property
in linear detrending subsequence matching.

To support the multiple mapping property, for a given
window, we do not remove the linear trend of the window it-
self, but we instead remove the linear trend of a subsequence
including that window. To this end, we present a notion of
LD-windows as follows:

Definition 4: Suppose S [i : j] be a subsequence of a se-
quence S , g(k) be a linear function of S [i : j], and S [a : b]
be a window included in S [i : j], then LD-windows of
S [a : b] against S [i : j], denoted by S {i, j}[a : b], is defined
as a new window whose entry S {i, j}[k] (k = a, a + 1, . . . , b)
is set to S [k] − g(k). �

Definition 4 means that a window S [a : b] is mapped to an
LD-window S {i, j}[a : b] by the trend line of a subsequence
S [i : j] which includes S [a : b]. Because of the multiple
mapping property, there are many subsequences S [i : j]’s
that include S [a : b], and thus, each window S [a : b] is
mapped to multiple LD-windows S {i, j}[a : b]’s for different
subsequences S [i : j]’s.

Like the traditional subsequence matching algo-
rithms [1], [3], [6], our index-based solution first transforms
each high-dimensional window to a low-dimensional point
and then stores the point into the multidimensional index.
Unlike the traditional algorithms, however, our solution
maps each high-dimensional window to a low-dimensional
MBR† (minimum bounding rectangle) that bounds multiple
low-dimensional points. This is due to the multiple map-
ping property that a window is mapped to multiple LD-

†An MBR is defined as the smallest rectangle parallel with the
axis that completely encloses a time-series [1], [7].
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windows. Constructing an MBR from a window is per-
formed as follows: (1) the given window is mapped to
multiple LD-windows; (2) LD-windows are transformed to
low-dimensional points by the lower-dimensional transfor-
mation; and (3) a low-dimensional MBR is constructed by
bounding the transformed points. We call this MBR LD-
MBR and define it as follows:

Definition 5: Suppose s be a window of a sequence S , S be
{s | s is an LD window of s}, and T (·) be a function of lower-
dimensional transformation, then LD-MBR of s, denoted by
M(T (S)), is defined as a low-dimensional MBR that bounds
all low-dimensional points T (s) for all s ∈ S. �

Our index-based solution is developed from the follow-
ing Theorem 1.

Theorem 1: For a query sequence Q, a data subsequence
S [i : j], a tolerance ε, a function T (·) of lower-dimensional
transformation, if Q and S [i : j] are LD-similar, that is, if
D(Q, S [i : j]) ≤ ε, the distance between T (qk) andM(T (Sk))
≤ ε/√p, where s1, . . . , sp and q1, . . . , qp are p disjoint win-
dows of Q and S [i : j], respectively, and Sk is the set of LD-
windows of sk. That is, the following Eq. (2) holds:

D(Q, S [i : j]) ≤ ε ⇒
p∨

k=1

D(T (qk),M(T (Sk))) ≤ ε/√p.

(2)

Proof: The proof is similar to that of normalization-
transformed subsequence matching in the previous work [7].
Refer to [7] for the detailed proof. �

Theorem 1 guarantees correctness of our index-based so-
lution to linear detrending subsequence matching. Like the
traditional subsequence matching solutions, our index-based
solution, called LDIndexMatch, also consists of two algo-
rithms: (1) the index-building algorithm and (2) the subse-
quence matching algorithm.

Algorithm 2 shows the index-building algorithm. In
Line 2 we divide the given data sequence into sliding or dis-
joint windows of size ω. For the first subsequence match-
ing solution of [1], we use the sliding window; in contrast,
for the recent Dual Match [6], we use the disjoint window.
In Lines 4 to 14, we build a multidimensional index by re-
peating the following three steps for each window S [a : b]:
(1) compute trend lines of all possible subsequences (Line
8); (2) obtain LD-windows using those trend lines (Line 9);
and (3) map those LD-windows to an LD-MBR (Line 10).
After obtaining an LD-MBR from a window, we store it into
the index with its starting offset a (Line 13). Once we build
an index by Algorithm 2, we use it repeatedly in the sub-
sequence matching algorithm. However, we here note that
the index building process will take much time if we han-
dle a large time-series database. Thus, we leave the detailed
analysis on the index building complexity and an efficient
solution of constructing the index as the future work.

Algorithm 3 shows the subsequence matching algo-
rithm. In Line 2 we first eliminate the linear trend from

Algorithm 2 LDIndexMatch-BuildIndex (data sequence S )
1: Let the window size be ω and the max/min query lengths be lmin, lmax;
2: Divide S into windows of size ω;
3: // sliding windows for [1]; disjoint windows for Dual Match [6].
4: for each window S [a : b] in S do
5: Make an f -dimensional MBRM which is initially empty;
6: for each query length l ∈ [lmin, lmax] do
7: for each subsequence S [i : j] of length l that includes S [a : b] do
8: Compute a line of S [i : j] based on the least square method;
9: Obtain the LD-window S {i, j}[a : b]; // linear detrending

10: Transform S {i, j}[a : b] to an f -dimensional point and
include it intoM;

11: end-for
12: end-for
13: Make a record <M, a> for S [a : b], and store it into the index;
14: end-for

Algorithm 3 LDIndexMatch-Matching (Q, S , ε)
1: Let the window size be ω; // ω is the same one used in Algorithm 2.
2: Obtain Q from Q by eliminating the linear trend;
3: Divide Q into windows of size ω;
4: // disjoint windows for [1]; sliding windows for Dual Match [6].
5: for each window q do
6: Transform q to an f -dimensional point;
7: Construct a range query using that point and ε/

√
p;

8: // p is the number of included windows in Q [6].
9: Evaluate the query on the index and find the record <M, a>;

10: Include in the candidate set S [i : j] obtained from <M, a>;
11: end-for
12: Perform the post-processing step [1], [3], [6] to eliminate false alarms;

the query sequence Q. In Line 3 we divide the LD sequence
Q into disjoint or sliding windows q of size ω. For the first
solution of [1], we use the disjoint window; in contrast, for
Dual Match [6], we use the sliding window. In Lines 5 to
11, we find candidate subsequences by repeating the fol-
lowing steps for each query window q: (1) transform a high-
dimensional window q to a low-dimensional point (Line 6);
(2) make a range query using that point and the given toler-
ance (Line 7); and (3) find candidate subsequences by evalu-
ating the range query on the index (Lines 8 and 9). After ob-
taining the candidate subsequences, we finally perform the
post-processing step [1], [3], [6] to identify true LD-similar
subsequences by accessing actual subsequences and elimi-
nating false alarms.

4. Experimental Evaluation

We have performed experiments using three real data
sets [3]. The first data set, ECG-DATA, contains electro-
cadiogram data; the second data set, TAX-DATA, contains
data for tax growth rates; the third data set, EXCH-DATA,
contains exchange rate data. The length of each data set is
100,000, i.e., each data set consists of 100,000 entries.

In the experiments we have compared two matching
solutions: LDSeqScan and LDIndexMatch. For LDIndex-
Match, we have adopted the first subsequence matching so-
lution of [1]. In the first experiment we set the window size
and the selectivity [1], [6] to 256 and 10−3, respectively, and



920
IEICE TRANS. INF. & SYST., VOL.E94–D, NO.4 APRIL 2011

Fig. 2 Experimental results by varying the query sequence length.

vary the query sequence length from 256 to 1024. In the
second experiment we set the window size and the query
sequence length to 256 and 512, respectively, and vary the
selectivity from 10−1 to 10−4. As the metric of efficiency, we
measure the elapsed time of each solution. To avoid effects
of noise, we experiment with 20 different query sequences
of the same length and use their average as the result. In
LDIndexMatch, we used PAA [3] as the lower-dimensional
transformation and extracted eight features from an window
of size 256; we used the R∗-tree [1], [6] as the multidimen-
sional index. Refer to [2] for the detailed hardware and soft-
ware environments.

Figure 2 shows the results of the first experiment that
uses different lengths of query sequences. We first note
that, in Fig. 2 (a) of ECG-DATA, LDIndexMatch signifi-
cantly outperforms LDSeqScan. This means that the no-
tion of LD-windows works properly, and it prunes many un-
necessary accesses on subsequences at the index level. As
shown in Fig. 2 (a), as the query sequence length decreases,
the performance difference between two solutions becomes
larger. For example, compared with LDSeqScan, LDIndex-
Match reduces the elapsed time by 38.0 times for the query
sequence of length 256; in contrast, it reduces the elapsed
time by 1.60 times only for the query sequence of length
1024. This is explained by the window size effect [6] that
the performance of index-based solutions decreases as the
query sequence length on the given window size increases.
We can solve this problem by using the index interpolation
technique [5] which uses multiple indexes (for multiple win-
dow sizes) to obtain the better performance. Figures 2 (b)
and 2 (c) of TAX-DATA and EXCH-DATA show the very
similar trend with Fig. 2 (a) of ECG-DATA. It means that
the proposed LDIndexMatch exploits the pruning effect ef-
ficiently, regardless of data types.

Figure 3 shows the result of the second experiment on
ECG-DATA that uses different selectivities (i.e., different
tolerances). We omit the results of TAX-DATA and EXCH-
DATA since they show very similar trend with ECG-DATA.
As in Fig. 2, Fig. 3 also demonstrates that LDIndexMatch

Fig. 3 Experimental result of ECG-DATA by varying the selectivity.

beats LDSeqScan in all selectivity ranges. This means that
LDIndexMatch does not much depend on the selectivity val-
ues and shows better performance than LDSeqScan.

5. Conclusions

In this paper we formally defined the linear detrending sub-
sequence matching first. We then presented a novel notion
of LD-windows, and using LD-windows we next proposed
an index-based solution. We provided a formal theorem that
guaranteed correctness of our index-based solution. We also
described the index-building and subsequence matching al-
gorithms of the index-based solution. We finally showcased
that, compared with the straightforward sequential scan, our
index-based solution significantly improved the matching
performance by one or two orders of magnitude. We be-
lieve that the linear detrending subsequence matching and
its index-based solution will be very helpful to find mean-
ingful time-series patterns hidden by the linear trend.

References

[1] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos, “Fast subse-
quence matching in time-series databases,” Proc. Int’l Conf. on Man-
agement of Data, pp.419–429, ACM SIGMOD, Minneapolis, Min-
nesota, May 1994.

[2] M.-S. Gil, Y.-S. Moon, and B.-S. Kim, “Linear detrending sub-
sequence matching in time-series databases,” Computing Research
Repository (CoRR), 1006.5273, June 2010.

[3] E.J. Keogh, “A decade of progress in indexing and mining large time
series databases,” Proc. 32nd Int’l Conf. on Very Large Data Bases,
p.1268, Seoul, Korea, Sept. 2006.

[4] Y. Liu, P. Cizeau, M. Meyer, C.-K. Peng, and H.E. Stanley, “Corre-
lations in economic time series,” Physica A, vol.245, no.3-4, pp.437–
440, Nov. 1997.

[5] W.-K. Loh, Y.-S. Moon, and J. Srivastava, “Distortion-free predictive
streaming time-series matching,” Inf. Sci., vol.180, no.8, pp.1458–
1476, April 2010.

[6] Y.-S. Moon, K.-Y. Whang, and W.-S. Han, “General match: A sub-
sequence matching method in time-series databases based on gener-
alized windows,” Proc. Int’l Conf. on Management of Data, ACM
SIGMOD, pp.382–393, Madison, Wisconsin, June 2002.

[7] Y.-S. Moon and J. Kim, “Fast normalization-transformed subse-
quence matching in time-series databases,” IEICE Trans. Inf. & Syst.,
vol.E90-D, no.12, pp.2007–2018, Dec. 2007.

[8] R.H. Shumway and D.S. Stoffer, Time Series Analysis and Its Appli-
cations: With R Examples, 2nd ed., Springer Texts in Statistics, 2006.

[9] L. Singh and M. Sayal, “Privately detecting bursts in streaming, dis-
tributed time series data,” Data and Knowledge Engineering, vol.68,
no.6, pp.509–530, June 2009.


