
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012
1021

PAPER Special Section on Knowledge-Based Software Engineering

Toward the Decision Tree for Inferring Requirements Maturation
Types

Takako NAKATANI†a), Member, Narihito KONDO††, Nonmember, Junko SHIROGANE†††, Member,
Haruhiko KAIYA††††, Shozo HORI†††††,††††††, Nonmembers, and Keiichi KATAMINE†††††, Member

SUMMARY Requirements are elicited step by step during the require-
ments engineering (RE) process. However, some types of requirements
are elicited completely after the scheduled requirements elicitation process
is finished. Such a situation is regarded as problematic situation. In our
study, the difficulties of eliciting various kinds of requirements is observed
by components. We refer to the components as observation targets (OTs)
and introduce the word “Requirements maturation.” It means when and
how requirements are elicited completely in the project. The requirements
maturation is discussed on physical and logical OTs. OTs Viewed from a
logical viewpoint are called logical OTs, e.g. quality requirements. The re-
quirements of physical OTs, e.g., modules, components, subsystems, etc.,
includes functional and non-functional requirements. They are influenced
by their requesters’ environmental changes, as well as developers’ techni-
cal changes. In order to infer the requirements maturation period of each
OT, we need to know how much these factors influence the OTs’ require-
ments maturation. According to the observation of actual past projects,
we defined the PRINCE (Pre Requirements Intelligence Net Consideration
and Evaluation) model. It aims to guide developers in their observation of
the requirements maturation of OTs. We quantitatively analyzed the actual
cases with their requirements elicitation process and extracted essential fac-
tors that influence the requirements maturation. The results of interviews
of project managers are analyzed by WEKA, a data mining system, from
which the decision tree was derived. This paper introduces the PRINCE
model and the category of logical OTs to be observed. The decision tree
that helps developers infer the maturation type of an OT is also described.
We evaluate the tree through real projects and discuss its ability to infer the
requirements maturation types.
key words: requirements elicitation, requirements process, requirements
changes, requirements maturation, project management

1. Introduction

This paper focuses on the requirements elicitation process
during the development of software.

Inaccurate, incomplete, or vague requirements are the
risks to a project [1]. There was popular research done on

Manuscript received July 1, 2011.
Manuscript revised October 31, 2011.
†The author is with University of Tsukuba, Tokyo, 112–0012

Japan.
††The author is with Nagoya Management Junior College,

Owariasahi-shi, 488–8711 Japan.
†††The author is with School of Arts and Sciences, Tokyo

Woman’s Christian University, Tokyo, 167–8585 Japan.
††††The author is with Shinshu University, Matsumoto-shi, 390–

0802 Japan.
†††††The authors are with Kyushu Institute of Technology, Iizuka-

shi, 820–8502 Japan.
††††††The author is with Yaskawa Information Systems Corpora-
tion, Kawasaki-shi, 215–0004 Japan.

a) E-mail: nakatani@gssm.otsuka.tsukuba.ac.jp
DOI: 10.1587/transinf.E95.D.1021

requirements correction [2] and a risk management method
for requirements changes [3]. Software requirements should
be fixed not only by correcting errors in the requirements
phase, but also through requirements elicitation in the other
phases [4]. For example, during the development, the de-
velopers have meetings with their customers. In the meet-
ings, the developers can deepen their understanding of the
requirements [5] and their customers may also deepen their
own understanding of their requirements. As a result, inac-
curate and/or incomplete requirements are added and modi-
fied after the early phase of the development.

Requirements volatility can also present risks to a
project [6], [7]. There are many causes of requirements
volatility. Vague requirements are volatile. Ambiguity
in software requirements specifications (SRSs) sometimes
mandates requirements elicitation during the software de-
velopment. Unambiguity stated in IEEE Std. 830-1998 [8]
is one of the recommended qualities of SRSs. Since most
SRSs are written in natural language [9], it is difficult to
avoid changes for the sake of completion and/or correction
of ambiguity. External and internal environmental changes
can cause requirements volatility. Requirements analysts
(RAs) need to manage such requirements volatility.

Our way of coping with the risks inherent in require-
ments volatility is to provide a method for managing their
elicitation process over the entirety of the development of
software. To prevent project failures due to requirements
volatility, we must clearly understand the actual processes of
requirements elicitation. The PRINCE (Pre Requirements
Intelligence Net Consideration and Evaluation) project was
undertaken to learn the history of requirements elicitation
from past projects and forecast the requirements elicita-
tion process in future projects. In this context, we in-
troduce the word “Requirements maturation.” It means
when and how requirements in a project are elicited com-
pletely. The name “PRINCE” comes from “Il Principe” by
N. Machiavelli [10]. He told us that we should learn the past
history and prepare for the future problems and/or troubles.
We can adopt and apply his concept to requirements engi-
neering. Thus, learning the requirements maturation pro-
cess from past projects and knowing what causes late and/or
early maturation is expected to help us prepare the require-
ments elicitation, and plan the development process.

The PRINCE model was developed by observing re-
quirements elicitation processes of actual past projects. In
our study, the maturation is observed by components. We

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



1022
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

refer to the components as observation targets (OTs). Thus,
RAs need to identify OTs in their project and understand the
requirements elicitation process of each OT. The purpose of
this paper is to answer the following questions.

• What requirements can be grouped into OTs?
An OT is identified as the category of a component, in
order to observe its problems with regard to its require-
ments elicitation. When the categories are provided,
the RAs can identify concrete OTs in their projects.
• What determines the requirements maturation type?

The requirements are influenced by requesters’ envi-
ronmental changes, as well as developers’ technical
changes. In order to infer the requirements matura-
tion period of each OT, we need to know what kinds
of factors influence the OTs’ requirements maturation.
A decision tree can provide a systematic analysis with
those factors to determine the maturation type of the
OT.

The OT needs a key to be distinguished from others in
the project and to be compared with the same OTs of other
projects. The categories should be applicable to embedded
systems, information systems, and command and control
systems. We define the categories of OTs in order to identify
the OTs in every project.

The requirements of every OT have a proper time to
be elicited. A decision tree is developed in order to help
RAs infer the requirements maturation type of OT. The re-
sult of our case studies provides us quantitative requirements
elicitation processes. After we interviewed the project man-
agers, we extracted essential factors that influence the re-
quirements maturation. The results of the interviews are an-
alyzed by WEKA, a data mining system, from which the
decision tree was derived.

This paper’s structure is organized as follows. In the
next section, we introduce the related work. Section 3 gives
an overview of the PRINCE model. Section 4 defines the
category of OT. Section 5 presents a decision tree derived
from the data of three projects with WEKA: a data min-
ing tool [11], [12]. In the last section, we discuss the results
of our research and conclude the paper by outlining future
work.

2. Related Work

Requirements traceability is important for managing re-
quirements changes. Arkley and his colleagues [13] de-
scribed an application of traceability. They classified the
project requirements into the following categories.

• New requirements
• Unchanged requirements
• Requirements which required a minor modification
• Requirements with unresolved issues

In order to plan and manage the requirements process, we
need categories of OTs for monitoring their requirements
elicitation process. In this paper, “requirements process”

denotes requirements elicitation, observation, and managing
processes. Arkley’s categories did not satisfy our goal.

Sankar and Venkat focused on a way to control require-
ments. They showed the percentage of requirements frozen
in the development process. According to their article, 70%
of all requirements were frozen during requirements gather-
ing [14]. If most requirements could be frozen in the early
development phase, we would be happy. As in an agile or
unified process, RAs require their customers to participate
in their projects [15]. Further, RAs should prepare to ac-
cept requirements changes during ant given project and, re-
lease the system on time. In our study, we assume that a
project manager can manage his/her project with require-
ments changes if the RA can infer the requirements matura-
tion period. Therefore, the RAs need a method to infer the
requirements maturation period. We developed a decision
tree to infer the time when the requirements are matured.

There is research based on observing requirements
stability: Bush and Finkelstein introduced a method for
observing initial requirements stability by the stability of
goals [16]. In their goal model, goal changes are propagated
to requirements changes. However, requirements without
goals are not the only requirements that will be changed.
As we mentioned in the previous section, there are vari-
ous reasons that cause requirements changes. When we
regard these changes as the products of requirements elic-
itation, we can discuss them in the context of the require-
ments elicitation process. If an RA accepts requirements
changes after the early stage of a project, he/she needs to
estimate the period of the completion of requirements elic-
itation rather than the requirements elicitation methods in-
troduced in [17]–[20].

Nurmuliani et al. [21] proposed the measure of require-
ments volatility with respect to the total number of require-
ments and the total number of changes. There are other met-
rics for requirements changes. Requirements stability [22] is
defined by the number of initial requirements divided by the
total number of requirements. It does not take into account
historical information about changes. Requirements Matu-
rity Index (RMI) is also a metric of requirements stability.
RMI is defined by Anderson et al. [23] with the second im-
plementation of the Software Maturity Index (S MI) [24]. In
their implementation, the change and addition of require-
ments is tracked. In our study, however, we do not focus the
traceability of each requirement, but trace the outcomes of
requirements elicitation on each OT. In order to observe the
changing history of requirements, we represent the ratio of
requirements maturation as, “at a time t”.

Nakatani et al. defined RMR(t): the requirements mat-
uration ratio at time t [25]. RMR(t) represents how much the
requirements of an OT have matured at a specific period t.
It is represented by the following expression.

RMR(t) =
RT (t)
RE
∗ 100 (1)

In this expression, RE is the total number of requirements of
the OT at the end of a project, and RT (t) stands for the total



NAKATANI et al.: TOWARD THE DECISION TREE FOR INFERRING REQUIREMENTS MATURATION TYPES
1023

number of requirements at the time t. When the project is
started, the RMR0 of every OT is equal to 0%, and when
the project is completed, their RMRE is equal to 100%.
Thus, RMR can represent historical information about re-
quirements elicitation activities on OTs, though it cannot be
used before the end of the project. To solve this problem, we
introduce the decision tree in order to infer the requirements
maturation.

3. The PRINCE Model

Observations of actual requirements elicitation processes
revealed that each requirement had its own reason to be
elicited within a certain stage (i.e. early, middle, or later)
of the development [25]. The OTs can be categorized into
the following four maturation types on requirements:–as E-
type, M-type, L-type, and U-type [26]. Note that in the
PRINCE model described below, the requirements are pre-
sented in terms of OTs.

The E-type reaches maturation at the early stage of
the project. The requirements of an E-typed OT are com-
pletely elicited in the early stage of the project and are stable
enough. This is the ideal maturation type of OTs for every
project. The second type, named an M-type, reaches ma-
turity in the middle stage of the project. The requirements
of an M-typed OT cannot be completely elicited until the
middle stage of the project starts, but they may mature be-
fore the later stage of the project. The third maturation type,
named an L-type, cannot be matured until the later stage of
the project. The last maturation type, named a U-type, refers
to unexpected elicitations at any stage of the project.

Figure 1 shows the PRINCE model with the elicitation
process of each type [26]. The x-axis represents the duration
of the project, and the y-axis represents RMR. Each curve
shows a typical maturation process of requirements. For ex-
ample, E-type requirements are elicited completely before
the internal design phase starts and are never changed after
this phase.

We provide the PRINCE model for project managers
and RAs as a basic guide for planning and managing the
requirements process. This model implies that requirements
should be elicited not in the early stage of the project, but
the scheduled stage.

Fig. 1 The PRINCE model: a guide for requirements elicitation.

First of all, when an RA applies the PRINCE model to
his/her project, he/she is expected to identify OTs and plan
the requirements elicitation process for each OT. However,
the model has two problems. The model does not provide
RAs with the basic ideas for identifying each OT. After
he/she identifies the OT, he/she has to map the maturation
type to each OT and schedule the meetings for requirements
elicitation with their stakeholders according to the matura-
tion type. Thus, the PRINCE model cannot be applied any
projects in which the stakeholders do not participate the re-
quirements elicitation process. Even though the stakehold-
ers participate the requirements elicitation process well, the
second problem of the model arises. There are no ratio-
nales to determine the maturation type of each OT. In order
to solve these two problems, we provide OT categories to
monitor their requirements maturation and a decision tree to
infer the maturation type of each OT. In the next section, we
provide OT categories.

4. Category of Observation Targets

4.1 Concept and the Structure

The categories of OTs are defined in order to observe the
process of requirements elicitation.

There are physical and logical viewpoints to identify
the OTs. Systems, including embedded systems, informa-
tion systems, and their subsystems are identifiable as physi-
cal OTs from the physical viewpoint. Every requirement of
each physical OT can be mapped into multiple logical cate-
gories, because a requirement has multiple aspects. For ex-
ample, when a requirement of a physical OT named “opera-
tion on books” says “retrieve information of a book from the
database within three seconds,” the requirement belongs to
functional, design constraints, and performance OTs. Then,
RAs can observe and count the number of requirements in
each logical OT, as well as in each physical OT.

We define logical categories based on known character-
istics of physical OTs, which are organized in three levels.
The first level is a purpose level. If the purpose of a phys-
ical OT depends on the external business environment: e.g.
market situation, competitors’ products, etc., the changes
in those requirements cannot be negotiable. It implies that
there is a possibility of the OT to be the U-type maturation.
On the other hand, when the purpose of an OT depends on
the internal business organization of the project, the require-
ments on the purpose can be the subjects of triage within the
organization, thus it is possible to avoid the OT falling under
the U-type maturation. The OT of the first level helps RAs
ascertain the possibility of a U-type on the OT. In the second
level, requirements are viewed from basic categories of re-
quirements engineering, i.e. functional and non-functional.
All requirements can be categorized into functional and non-
functional requirements. The third level of the categories is
the detailed level under the second level.

Figure 2 presents the name and abbreviation of logi-
cal OTs. In the first level, OTs are put into two categories



1024
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 2 Categories of observation targets.

according to their purpose: a strategic purpose (St) or a busi-
ness support purpose (Bz).

• St: The requirements in this category are affected by
the external business organization of the project.
Business strategic requirements are defined to win the
business and should be evolved to adapt to the external
environment. Such a requirement arises from external
environmental changes at any time.
• Bz: The requirements in this category are given from

the internal business organization of the project.
This category relates to supporting objectives. For ex-
ample, OTs for improving business productivity belong
to this category.

The requirements in Bz must be controllable and negotiable
by the project constraints. This is one of the differences be-
tween St and Bz and the difference impacts the requirements
volatility.

The second level consists of functional and non-
functional requirements. Functional requirements are im-
plemented in modules, while some non-functional require-
ments are implemented within the software architecture.
Hence, focusing on these kinds of requirements and their
maturation is inevitable in order to manage the time and rea-
sons of requirements elicitation in avoiding re-development
caused by the late elicitation of these requirements.

The third level is the detailed level. The functional re-
quirements consist of components by Jacobson: i.e. bound-
ary, control, and entity components [27]. There are two cat-
egories in boundary components according to the connected
objects: external components and people. Determining the
requirements of the external interface entails cooperation
with vendor companies that provide the external compo-
nents. End-user cooperation is also indispensable for set-
ting the requirements of the user interfaces. In general, the
interface components are more fragile than the entity com-
ponents. Thus, focusing on these OTs is important for ob-
servation of requirements maturation. The non-functional
requirements are composed of quality-related characteristics
defined in ISO/IEC 25030 [28]. The requirements elicitation

Table 1 Category of OT and its source examples.

Sources
OT Developer’s Requester’s External

organization organization organization

St business goals market,
competitors

Bz user’s organization,
operators

Ui feasibility end users market,
competitors

Xi vendor company
En solution domain
Ctl end users market,

competitors
Cm, Rel, technical budget constraints, agreement,
Sec, Eff limitations social responsibil-

ity
rules, laws,
standard

Mnt, Prt productivity budget constraints,
constraints competitors

Dc, OEc feasibility, budget constraints
technical trend

Rc, Rp technical budget constraints
limitations

Etc

processes of these categories are candidates to be managed.
When we refer to the categories, we combine the

names which represent the OT’s characteristics. For ex-
ample, BzNF Dc is related to business support by the non-
functional requirements of design constraints.

The PRINCE project developed a guideline for observ-
ing requirements elicitation history. The guideline will be
introduced shortly.

It is possible to know the source of requirements in the
early stage of a project. “Stakeholder” is an example of a
source of requirements. The project manager and RAs of
any project are responsible to identify the sources of OTs in
the early stage of a project. The volatility of OT is influ-
enced by the source of requirements [29].

Table 1 presents the examples of the sources of require-
ments in the categories. The table will help the project man-
agers and RAs determine the source of OT. For example,
if an OT is related to various sources, the requirements can
be in conflict with each other, and these conflicts should be
resolved through negotiations among the sources. We con-
sider that the maturation type of such OTs may become the
M-type or L-type, since they need time to negotiation. If
an OT is related to highly performed services, its efficiency
requirements should be important.

The source of categories is not enough to determine the
maturation type of an OT. The decision tree was developed
in order to help RAs infer the maturation type of an OT.

4.2 Guideline for the Observation

In this section, we briefly introduce the guideline that was
developed to observe the requirements process of the com-
pleted projects. The observation conventions are as follows.

• Regard the requirements specified in the first version of



NAKATANI et al.: TOWARD THE DECISION TREE FOR INFERRING REQUIREMENTS MATURATION TYPES
1025

the requirements specification as the baseline require-
ments.
• Do not distinguish added, modified and deleted re-

quirements. All of them are treated as elicited require-
ments throughout the project.
• If it is possible, ignore requirements for the future ver-

sion of the software.

All the requirements are categorized into OTs by the obser-
vation process in six steps.

1. Gather materials: requirements specifications, use
cases, display images, output sheets, records with
added, modified, and deleted requirements, change
management reports, issue reports, error/failure re-
ports, review reports, minutes of meetings or e-mails,
Q&A reports, etc.

2. If it is possible, define physical OTs.
3. Identify requirements statements.
4. Map the requirements to the physical OTs and the logi-

cal OTs provided in the OT categories. If a requirement
belongs to multiple OTs, add one to all corresponding
OTs.

5. Interview the manager and customers of the project and
clarify the situation, causes, and background of the re-
quirements elicitation process.

6. Analyze each OT’s maturation period with RMR and
the result of interviews for future projects.

The detailed guideline is in [30].
Anderson and Felici showed that there was a linear re-

lationship between the number of changes occurring in a
requirements specification and its size [31]. It means that
small OTs tend to receive a small number of requirements.
According to our previous study [32], the RA needs to col-
lect a certain amount of requirements. “A certain amount”
means that if the number of requirements in an OT is one or
two, RAs cannot evaluate the maturation period of the OT
adequately. Thus, use cases that manipulate the same object
are recommended to be categorized into the same OT. Such
an OT comes to have enough granularity for the purpose of
our observation of requirements maturation.

4.3 Evaluation of the Categories and Guidelines

We evaluated the categories and guidelines as to whether
engineers can identify the categories or not. The evaluators
were the engineers of three companies, two university stu-
dents and a teacher. After we explained the categories and
guidelines to them, the evaluators applied the categories to
the same project and observed the requirements elicitation
process for evaluating the applicability of the guidelines.
The specifications were written by professional engineers,
and all the requirements changing processes were recorded
in the version controlled specifications. The various results
of the evaluation did not contradict each other. As a result,
we concluded that the categories and guidelines are appli-

cable to identify OTs. When engineers apply the guide-
lines and categories of OTs, they need to understand what
is Bz and St are, as well the basic requirements engineering
terms, i.e. functional and non-functional requirements, and
software qualities in ISO/IEC 25030.

The OTs identified from the physical view need the
architectural design specification. In our future work, our
evaluation process will be supported by the work of Kaiya
et al., who developed a tool for analyzing requirements
quality based on the requirements statements with a term-
characteristic map [33].

In real world application, RAs may select categories
for their own observation. Inoki et al. selected OTs on effi-
ciency [34] to support engineers. In their situation, require-
ments on efficiency are highly prioritized, rather than im-
proving usability or other qualities. Fujiwara [35] added a
sub-strategic category to the first level of the categories. Re-
quirements in the sub-strategic category are not directly in-
fluenced by the external environment, but indirectly influ-
enced by the external environment. By adding the new cat-
egory, they were able to improve the productivity of identi-
fying the OTs of requirements.

5. Decision tree for Maturation Types

5.1 Maturation Factors

All the requirements do not need to be elicited in the early
stage of the project. The requirements are influenced by
requesters’ environmental changes, as well as developers’
technical changes. In order to infer the requirements mat-
uration period of each OT, we need to know what kinds of
factors influence the OTs’ requirements maturation. A de-
cision tree can provide a systematic analysis with those fac-
tors to determine the maturation type of the OT. Maturation
types: i.e. E-type, M-type, or L-type are the indicators of
the maturation period. With regard to developing the deci-
sion tree, we define maturation factors that may influence
the requirements elicitation process and can be recognized
in the early stage of projects. The sources of OTs and im-
portance of qualities are the candidates of the factors. We
assume that the factors determine the requirements matura-
tion types. This means that, if the requirements of an OT are
difficult to elicit, the maturation type of the OT belongs to
the L-type.

The following maturation factors are defined as a re-
sult of interviews with the project managers. We devel-
oped a decision tree based on the data of three projects.
Two projects were concluded in less than six months, while
the other project was managed through incremental devel-
opment for three times over 60 weeks. The OTs identi-
fied in these projects were affected by the characteristics of
a problem domain, technical environment, market environ-
ment, project environment, engineers’ domain knowledge,
engineering knowledge, requesters’ cooperation, as well as
product environment. Here are the factors. Two or three
choices in parenthesis were provided for the project man-



1026
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

agers as their answers.

• Characteristics of the problem domain:

– The problem domain stability: (high, medium,
low).

– The related laws’ stability: (high, medium, low).
– User diversity: (high, medium, low).
– Market dependent: (yes, no).

• Characteristics of the technical environment:

– Technically dependent: (yes, no).
– Existence of external interfaces provided by the

third party vendors: (high, medium, low).
– Existence of other OTs: (many, medium, less).
– Importance of the OT’s quality requirements:

∗ Functionality importance: (high, medium,
low).
∗ Usability importance: (high, medium, low).
∗ Security importance: (high, medium, low).
∗ Efficiency importance: (high, medium, low).
∗ Other nonfunctional requirements impor-

tance: (high, medium, low).

– Design constraints importance: (high, medium,
low).

• Characteristics of the project:

– Duration of the project: (< 6 months, < 1 year,
> 1 year).

– Person in charge of defining the requirements:
(sponsor, user, developer, third party organiza-
tion).

– Knowledge level and/or experience level of the
developers: (enough, medium, poor).

– Domain experts’ contributions or the knowledge
level of requesters: (enough, medium, poor).

– Requesters cooperation: (good, medium, bad).

Project managers and RAs can identify the characteristics
of the sources. The source of an OT can be determined in
the early stage of the project. Some of these factors were
not selected by the project managers and some of them were
ignored by WEKA, the data mining tool, that we applied to
derive the decision tree.

5.2 Data Mining

In order to derive the decision tree for the purpose of de-
termining maturation types, we observed OTs’ maturation
processes in three projects. Each OT’s maturation type is
calculated from, and based on the records of those projects.

The maturation types do not depend on the develop-
ment process, but the stage: early, middle, and later. Thus,
the maturation type of each OT can be found by the follow-
ing equation.

Maturation Period: Mp =
Trcomp − T pst

T pcomp − T pst
(2)

Fig. 3 History of the requirements maturation ratio of BzNF.

In this formula, Trcomp represents the time when the require-
ments have been elicited completely, T pst represents the
time when the requirements phase has started, and T pcomp

represents the time when the development of the OT has
been completed. We got these parameters from the com-
pleted project. The decision tree will be applied to infer the
maturation types of OTs in future projects. The adequacy of
the decision tree can be evaluated by comparing the inferred
maturation type and the actual maturation type of an OT.
The actual maturation types were observed in three other
projects. In total, we observed six projects. Three projects
were used in deriving the decision tree, and the other three
projects were used to evaluate the tree.

Figure 3 presents the historical data on the maturation
of a case. The vertical lines represent the start of incremental
developments. The “mtrP” is marked as the requirements
maturation point of each OT in each version. As the guide
of maturation types, three maturation periods are shown at
the bottom of each figure.

For simplicity, if Mp is less than 1/3, 2/3, and 1, we in-
terpret the value of Mp to the E-Type, M-Type, and L-Type
respectively. We asked the project manager of each system
to set values as the characteristics of each of the OTs. The
values are determined by the manager’s intuition. This is
a limitation within our research: however, our research can
show the possibility of inferring the requirements matura-
tion types.

These records, along with the values of the attributes,
are put into WEKA [11], [12]. WEKA is a data mining sys-
tem for performing predictions and forecasting through the
utilization of data. Its J48 is a machine learning algorithm
and derives a decision tree from input data. We expect the
decision tree to lead us to what determines the requirements
maturation type of each OT.

5.3 Decision Tree

The 69 data that we put into WEKA are composed of the



NAKATANI et al.: TOWARD THE DECISION TREE FOR INFERRING REQUIREMENTS MATURATION TYPES
1027

Fig. 4 Decision tree for maturation types.

characteristics of OTs with their maturation type calculated
by utilizing the actual data. We input the data to WEKA and
applied it several times by deleting decision nodes that do
not appear in the derived decision trees. This trial and error
process improved the reliability of the decision tree.

Figure 4 shows the results derived from WEKA. In the
tree, a rectangular leaf represents the class of the decision,
while an oval node represents a decision making attribute.
Each arc has an attribute value. The numbers “(x/y)” in rect-
angle represent that x data has come to a decision, and that
the y data does not fit the decision. For example, the left
bottom leaf labeled “L-type (3.0/1.0)” means that three data
have come to the leaf and one data does not fit L-type. If all
data that reach to a leaf fit to the label of the leaf, only x is
shown in the parentheses. The tree tells us the tendency of
the maturation type of an OT. In the tree, “other NFR.” rep-
resents a characteristic of the importance of non-functional
requirements without regard to efficiency, usability, security,
and constraints requirements.

We can interpret the tree as follows as examples:

• If “efficiency importance” of an OT is low, its matura-
tion type becomes the E-Type.
• If “efficiency importance” of an OT is high, and the

OT is a “technically dependent component”, then its
maturation type becomes the L-Type.

In general, requesters’ cooperation is inevitable for re-
quirements elicitation. In Fig. 4, the node “requesters’ co-
operation” does not exist, because most data is provided by
projects proceeded under the good requesters’ cooperation.

5.4 Quantitative Evaluation

We evaluate the decision tree by comparing the inferred type
with the actual maturation type of the OTs. For the evalu-
ation, we selected three actual projects for the evaluation
completed in less than six months. Their project duration
was similar to the three projects that provided 69 OTs for
developing the decision tree. There were eight OTs in each
project. We compared types of each OT with the maturation
types inferred by the decision tree. If the actual type belongs
to the earlier maturation type as opposed to the inferred type,
we consider the decision tree to be effective. Because the
type inferred by the tree represents the tendency of the OT,
and, if a project manager wanted to get the requirements of

Table 2 Evaluation of the decision tree.

OT Id Maturation Type
Project Physical OT Actual Inferred

A 1 L = L
2 L = L
3 M < L
4 L = L
5 L � E
6 M < L
7 L = L
8 E = E

B 1 E � L
2 E � L
3 E = E
4 E � L
5 E < L
6 E � L
7 L = L
8 E = E

C 1 E � L
2 E = E
3 M < L
4 M < L
5 E = E
6 E � L
7 E = E
8 E = E

an OT earlier and manage the elicitation process, the matu-
ration type can be the earlier type than the inferred type.

Table 2 shows the results of the evaluation. According
to the table, 12 of 24 OTs matched the inferred types and 11
of 24 OTs matured earlier type as opposed to the inferred
types. The satisfaction ratio was 95.8%. Most project man-
agers manage the requirements elicitation process to freeze
the requirements as soon as possible. If we evaluate these
projects according to the decision tree, we can say that the
managers could manage their requirements elicitation pro-
cess well, since most maturation types of OTs were less or
equal to the inferred types.

As shown in the table, all OTs of project B and C were
satisfied, and the OTs of project A were almost satisfied.
The OTs of project A are not categorized into the proper
maturation types by the decision tree. Six of the OTs were
categorized into L-Type. We contemplate that the devel-
opers’ lack of knowledge of the domain may affect the re-
sults, while in other research examples, most developers had
mediocre knowledge or, enough knowledge of the domain.

Project A had one exception of which maturation was



1028
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

delayed by the inferred period. The OT’s usability was
highly important. The usability node is not included in the
decision tree.

In our future work, we will apply other projects’ data in
order to improve the accuracy of the decision tree. For ex-
ample, that a developers’ lack of knowledge of the domain
may affect the results in some cases. The requesters’ co-
operation must affect the maturation type. We must analyze
the priority of non-functional requirements that may lead the
maturation type to L-Type. Furthermore, the decision tree
needs to consider the effect of a project manager’s efforts to
elicit requirements in the earlier stage of their projects, as
opposed to the inferred period.

5.5 Qualitative Evaluation

We interviewed project managers to qualitatively evaluate
the decision tree.

A manager who is involved in telecommunication
projects, who saw the tree and understood the scenario of
the inference, had this to say: “If the efficiency requirements
on OT are highly important and, have technical dependency
with other components, its OT maturation type will be the
L-type”, and further, he said that the efficiency requirements
should be elicited in the earliest stage of any project. The
tree, however, does not imply that the OT should be the L-
type, but that if the manager did not care about that, it might
become the L-type. Therefore, the tree does not contradict
his intention. Basically, if the efficiency requirements of an
OT are important, the OT’s design is usually impacted by
technical and environmental changes, including hardware
upgrades. In such cases, the requirements maturation type
of the OT becomes the L-type, and it sometimes causes re-
work by developers. In order to avoid these problematic
situations, we need to estimate the maturation type of OTs
in the early stage of any project. If we can know, that the
maturation type of an OT may become the L-type, we can
initiate and control the elicitation process.

Another manager who gave us comments focused on
the user diversity. If there are various users, then their re-
quirements need a lot of negotiation. He agreed that the leaf
“L-type” under the “user diversity is high.” He also men-
tioned that “usability importance” should appear in the tree.

The tree leads us to conclude that, if every factor is not
important, then, that the maturation type of an OT will be-
come the E-type. This is because we defined the maturation
factors that negatively influence the maturation period as,
“yes” or “high”, which implies that the OT may become an
M-type or L-type.

6. Discussion and Conclusion

6.1 The U-Type Maturation

In this paper, we did not derive the decision tree based on
the U-Type maturation. Before deriving the decision tree for
the U-Type maturation, we must rethink the U-Type. This

type of maturation imposes a potential highly negative risk
upon the project, since it is out of control and we cannot
predict at which stage of the project it might happen. There-
fore, it is important to identify the possibility, thus causing
the U-Type maturation before it emerges. If we can know
the potential possibility of this type, we can prepare for the
worst. For example, we can develop the E-Type OT earlier
in the plan; then, we can spare the resources for dealing with
the later U-Type maturation. However, when we observe the
requirements elicitation data, it is hard to distinguish the U-
Type maturation from the other types.

In order to identify OTs that may become the U-Type,
we asked the stakeholders and developers to point out any
U-Type OTs within their projects. We got six U-Type OTs
within six studied projects. The following situations caused
the U-Type maturation.

• Under the influence of changing requirements of the
external interface.
We regard these OTs as the L-Type maturation quanti-
tatively. Two of the studied projects had the mission to
provide market-driven products. In their situation, they
had to take into account their integration with multiple
products provided by the third party vendors.
One project could not acquire the correct information
from the third party vendors. As a result, during the
integration testing phase, the engineers had to change
the requirements of the external interfaces in order to
match their product to the correct interfaces. In future
projects, project managers may be able to cope with
U-type OTs that depend on external interfaces, if they
know that such OTs tend to be U-type or L-type. The
PRINCE model is expected to provide patterns to pre-
vent U-type for project managers and RAs.
In said project, the system was planned to support a
single graphics format. Further, in the system test-
ing phase, they decided to support other formats. This
added requirement came from the market environment.
It told us that OTs with the St characteristic are impor-
tant OTs to be observed.
• The requirements had come from deep inside the con-

nected component.
The system had been developed with a component.
The system had several layers, with the lower layer
subcomponent having had its version updated in the
middle stage of the project. No one expected such
an update, but it had occurred regardless. Usu-
ally, layered architecture is free from internal inter-
face changes, even though the inside components have
changed. However, when such an update unexpectedly
provides desired functions, then these specific require-
ments should be updated. This U-Type maturation was
caused by the unusual design of the connected com-
ponent. Project managers have to be prepared for a
U-type case maturation of an OT that, provides desired
functions in a lower layer.
• The requesters realized their goals after trying to use



NAKATANI et al.: TOWARD THE DECISION TREE FOR INFERRING REQUIREMENTS MATURATION TYPES
1029

the system in a real situation.
The system was developed as an educational support
system in a university. In the early stage of the project,
the requesters required higher usability for the record-
ing of student attendance. As a result, the requesters
had focused on the system interface too much and ne-
glected an important function that supported the CSV
(Comma Separated Values) format for the outputs.

According to the situation that caused the U-Type mat-
uration, when an OT had an interface which was connected
to the component provided by a third party vendor, the re-
quirements of the OT became the U-Type maturation. The
last example tells us that the early prototyping is still effec-
tive in saving a project from the U-Type maturation, as fa-
mously mentioned by Boehm [36]. We discussed the U-type
maturation as part of the research of the project management
patterns based on the PRINCE model [37].

6.2 Implication of the Decision Tree

When we collected the data to derive the decision tree, we
were faced with the challenge to set a value for each element
that may affect the OT’s maturation type. An OT is a target
to observe the requirements elicitation process. The deci-
sion tree is expected to provide us characteristics of an OT
to determine its requirements maturation type. This paper
answers the following research questions.

• What requirements can be grouped into OTs?
We defined the categories of OTs with the guideline for
the observation of OTs’ maturation. The cases were
observed according to the categories.
• What determines the requirements maturation type?

We explored the characteristics that determine the OT’s
requirements maturation type. The decision tree is de-
rived from and provides the requirements maturation
factors and their impact on the maturation types.

There remain several issues. The values of maturation fac-
tors of each OT applied to WEKA were subjectively pro-
vided by project managers. The value of the factors should
be derived from a more-grounded source of the OT. There
must be a dependency between the characteristics of the
sources and the value of the factors of the OT. We will ex-
plore the dependency in our future work. Then, we will be
able to develop a guide to establish a value for each mat-
uration factor of OTs. This paper shows the possibility to
infer requirements maturation types by focusing on the OT
maturation factors.

Acknowledgment

This work has been supported by the Joint Forum for Strate-
gic Software Research (SSR) since 2007. The authors
would like to thank all the members and cooperators of this
project. Especially, the authors wish to thank Prof. Noriko
Hanakawa and Mr. Masaki Obana of Hannan University

for kindly providing the requirements data. The evaluation
of the guideline was supported by Prof. Katsuro Inoue of
Osaka university.

References

[1] T.R. Leishman and D.A. Cook, “Requirements risks can drown
software projects,” J. Defense Software Engineering, pp.1–8, April
2002.

[2] B. Boehm, Software Engineering Economics, Prentice Hall, 1981.
[3] B. Boehm, P. Bose, E. Horowitz, and M.J. Lee, “Software require-

ments negotiation and renegotiation aides: A theory-W based spiral
approach,” 17th International Conference on Software Engineering
(ICSE’95), pp.243–253, 1995.

[4] G. Kotonya and I. Sommerville, Requirements Engineering, John
Wiley & Sons, 2002.

[5] S. Fricker, T. Gorschek, C. Byman, and A. Schmidle, “Handshak-
ing with implementation proposals: Negotiating requirements un-
derstanding,” IEEE Softw., vol.27, no.2, pp.72–80, 2010.

[6] Y.K. Malaiya and J. Denton, “Requirements volatility and defect
density,” International Symposium on Software Reliability Engi-
neering, pp.285–299, 1999.

[7] D. Zowghi and N. Nurmuliani, “A study of the impact of require-
ments volatility on software project performance,” Asia-Pacific Soft-
ware Engineering Conference, pp.3–11, 2002.

[8] IEEE Std. 830-1998, Recommended Practice for Software Require-
ments Specifications, 1998.

[9] D.M. Berry and E. Kamsties, “Chapter 2: Ambiguity in re-
quirements specification,” Perspectives on Software Requirements,
ed. J.C.S.D.P. Leite and J.J.H. Doorn, pp.7–44, 2004.

[10] G. Bull, ed., The Prince by Niccolo Machiavelli, Penguin Classics,
2003.

[11] Z. Markov and I. Russell, “An introduction to the WEKA data min-
ing system,” ITICSE ’06: The 11th annual SIGCSE conference on
Innovation and technology in computer science education, pp.367–
368, 2006.

[12] M. Hall, E. Frank, G. Holmes, B. Pfahringer, P. Reutemann, and I.H.
Witten, “The WEKA data mining software: an update,” SIGKDD
Explorations Newsletter, vol.11, pp.10–18, Nov. 2009.

[13] P. Arkley and S. Riddle, “Tailoring traceability information to busi-
ness needs,” 14th International Requirements Engineering Confer-
ence (RE’06), pp.239–244, 2006.

[14] S. Kousik and V. Raman, “Total requirements control at every stage
of product development,” 15th International Requirements Engi-
neering Conference, pp.337–342, 2007.

[15] E. Carmel, R.D. Whitaker, and J.E. George, “Pd and joint applica-
tion design. A transatlantic comparison,” Commun. ACM, vol.36,
no.4, pp.40–47, 1993.

[16] D. Bush and A. Finkelstein, “Requirements stability assessment
using scenarios,” 11th IEEE International Conference on Require-
ments Engineering, pp.23–32, 2003.

[17] A. Dardenne, A. van Lamsweerde, and S. Fickas, “Goal-directed re-
quirements acquisition,” Science of Computer Programming, vol.20,
pp.3–50, 1993.

[18] E.S.K. Yu, “Towards modelling and reasoning support for early-
phase requirements engineering,” 3rd International Symposium on
Requirements Engineering (RE’97), pp.226–235, 1997.

[19] H.E. Eriksson and M. Penker, Business Modeling with UML, John
Wiley & Sons, 2000.

[20] T. Nakatani and T. Fujino, “Rodan: A requirements elicitation
method for a business domain by focusing on roles,” IPSJ J., vol.48,
no.8, pp.2534–2550, 2007. (in Japanese).

[21] N. Nurmuliani, D. Zowghi, and S. Fowell, “Analysis of requirements
volatility during software development life cycle,” Australian Soft-
ware Engineering Conference, pp.28–37, 2004.

[22] N.E. Fenton and S.L. Pfleeger, Software Metrics: A Regorous and



1030
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Practical Approach, second edition, Course Technology, 1998.
[23] S. Anderson and M. Felici, “Controlling requirements evolution: An

avionics case study,” SAFECOMP 2000 (LNCS 1943), pp.361–370,
2000.

[24] IEEE Std 982.1, “IEEE standard dictionary of measures to produce
reliable software,” 1988.

[25] T. Nakatani, S. Hori, N. Ubayashi, K. Katamine, and M. Hashimoto,
“A case study: Requirements elicitation processes throughout a
project,” 16th International Requirements Engineering Conference
(RE’08), pp.241–246, 2008.

[26] T. Nakatani, S. Hori, M. Tsuda, M. Inoki, K. Katamine, and M.
Hashimoto, “Towards a strategic requirements elicitation: A pro-
posal of the PRINCE model,” 4th International Conference on Soft-
ware and Data Technologies (ICSOFT 2009), pp.145–150, 2009.

[27] I. Jacobson, M. Christerson, P. Jonsson, and G. Overgaard, Object-
Oriented Software Engineering, Addison-Wesley, 1992.

[28] ISO/IEC 25030:2007, “Software engineering – Software product
Quality Requirements and Evaluation (SQuaRE) – Quality require-
ments,” 2007.

[29] T. Nakatani, T. Tsumaki, M. Tsuda, M. Inoki, S. Hori, and
K. Katamine, “Requirements maturation analysis by accessibility
and stability,” Asia Pacific Software Engineering Conference 2011
(APSEC2011), 2011 (in printing).

[30] Integrated Requirements Process Research Project, PRINCE Model
–An approach to the integrated requirements process– (in Japanese),
http://www2.gssm.otsuka.tsukuba.ac.jp/staff/nakatani/SSR09/
2009ssr RE.pdf, 2010.

[31] S. Anderson and M. Felici, “Quantitative aspects of requirements
evolution,” COMPSAC ’02: Proc. 26th International Computer Soft-
ware and Applications Conference on Prolonging Software Life:
Development and Redevelopment, pp.27–32, 2002.

[32] T. Nakatani, S. Hori, N. Ubayashi, K. Katamine, and M. Hashimoto,
“A case study of requirements elicitation process with changes,”
IEICE Trans. Inf. & Syst., vol.E93-D, no.8, pp.2182–2189, Aug.
2010.

[33] H. Kaiya, M. Tanigawa, S. Suzuki, T. Sato, A. Osada, and K. Kaijiri,
“Improving reliability of spectrum analysis for software quality re-
quirements using TCM,” IEICE Trans. Inf. & Syst., vol.E93-D, no.4,
pp.702–712, April 2010.

[34] M. Inoki, “An approach to the optimizing productivity of require-
ments definitions (in Japanese),” 2011.

[35] Y. Fujiwara, “Project analysis based on PRINCE Model and study
of estimating the requirements maturation process (in Japanese),”
Software Engineering Symposium 2011, IPSJ, 2011.

[36] B. Boehm, “A spiral model of software development and enhance-
ment,” SIGSOFT Software Engineering Notes, vol.11, no.4, pp.14–
24, 1986.

[37] S. Hori, T. Nakatani, K. Katamine, N. Ubayashi, and M. Hashimoto,
“Project management patterns to prevent schedule delay caused by
requirement elicitation,” IEICE Trans. Inf. & Syst., vol.E93-D, no.4,
pp.745–753, April 2010.

Takako Nakatani received the Ph.D from
the University of Tokyo in 1998. She is an asso-
ciate professor of Graduate School of Business
Sciences, the University of Tsukuba, Japan. She
is a member of the IPSJ, JSSST, SEA, IEEE CS,
ACM, and the Society of Project Management.

Narihito Kondo received the M.B.A. from
the Graduate School of Systems Management,
the University of Tsukuba in 2010. From 2011,
he is a lecturer of Nagoya Management Junior
College, Japan.

Junko Shirogane received the B.E., M.E.
and D.E. degrees in information and computer
science from Waseda University, Tokyo, Japan,
in 1997, 1999 and 2002, respectively. She joined
Media Network Center of Waseda University as
a Research Assistant in 2000 and Department
of Communication of Tokyo Woman’s Christian
University as a Lecturer in 2003. She is now
an Associate Professor of School of Arts and
Sciences, Tokyo Woman’s Christian University.
Her research interest includes support tools for

development of software with graphical user interface. She is a member of
IPSJ, JSSST, HIS, IEEE and ACM.

Haruhiko Kaiya is an associate professor
of Software Engineering in Shinshu University,
Japan.

Shuzo Hori After he graduated from
the Kyushu Institute of Technology informa-
tion engineering in 1980, he is working for
the Yaskawa Information Systems Corporation.
He has performed the embedded software de-
velopment, and management for 20 years. He
has been engaged in a process improvement of
an organization using ISO9001 or CMM since
1998. His interest area is software engineering,
requirements engineering, and project manage-
ment.

Keiichi Katamine received the Ph.D. degree
in engineering from Kyushu Institute of Tech-
nology, Japan. He is now an assistant profes-
sor of computer science and systems engineer-
ing at Kyushu Institute of Technology. He is
a SEI authorized PSP instructor, and a Goldratt
School certified CCPM and S-DBR trainer. His
research interests include software engineering,
software and knowledge modeling techniques,
and project management. He is a member of the
Information Processing Society of Japan and the

Society of Project Management.


