
1044
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

PAPER Special Section on Knowledge-Based Software Engineering

Scenario Generation Using Differential Scenario Information

Masayuki MAKINO†∗, Nonmember and Atsushi OHNISHI†a), Member

SUMMARY A method of generating scenarios using differential sce-
naro information is presented. Behaviors of normal scenarios of similar
purpose are quite similar each other, while actors and data in scenarios
are different among these scenarios. We derive the differential informa-
tion between them and apply the differential information to generate new
alternative/exceptional scenarios. Our method will be illustrated with ex-
amples. This paper describes (1) a language for describing scenarios based
on a simple case grammar of actions, (2) introduction of the differential
scenario, and (3) method and examples of scenario generation using the
differential scenario.
key words: scenario generation, scenario language, differential scenario,
scenario-based requirements elicitation

1. Introduction

Scenarios are important in software development [5], par-
ticularly in requirements engineering by providing concrete
system description [16], [18]. Especially, scenarios are use-
ful in defining system behaviors by system developers and
validating the requirements by customers. In scenario-based
software development, incorrect scenarios will have a neg-
ative impact on the overall system development process.
However scenarios are usually informal and it is difficult to
verify the correctness of them. Errors in incorrect scenarios
may include (1) vague representations, (2) lack of neces-
sary events, (3) extra events, and (4) wrong sequence among
events.

The authors have developed a scenario language named
SCEL for describing scenarios in which simple action traces
are embellished to include typed frames based on a simple
case grammar of actions and for describing the sequence
among events [17], [19]. Since this language is a controlled
language, the vagueness of the scenario written with SCEL
language can be reduced. Furthermore, a scenario with
SCEL can be transformed into internal representation. In the
transformation, both the lack of cases and the illegal usage
of noun types can be detected, and concrete words will be
assigned to pronouns and omitted indispensable cases [14].
As a result, the scenario with SCEL can avoid the errors
typed 1 previously mentioned.

Scenarios can be classified into (1) normal scenarios,
(2) alternative scenarios, and (3) exceptional scenarios. A

Manuscript received June 29, 2011.
Manuscript revised October 18, 2011.
†The authors are with the Department of Computer Science,

Ritsumeikan University, Kusatsu-shi, 525–8577 Japan.
∗Presently, with JSOL Corporation

a) E-mail: ohnishi@selab.is.ritsumei.ac.jp
DOI: 10.1587/transinf.E95.D.1044

normal one represents the normal and typical behavior of
the target system, while an alternative one represents normal
but alternative behavior of the system and an exceptional
one represents abnormal behavior of the system. There are
many normal scenarios for a certain system. For example, a
normal scenario represents withdrawal, another normal sce-
nario represents money deposit, another one represents wire
transfer, and so on. Each normal scenarios has several al-
ternative scenarios and exdceptional scenarios. In order to
grasp whole behaviors of the system, not only normal sce-
narios, but also alternative/ exceptional scenarios should be
specified. However it is difficult to hit upon alternative sce-
narios and exceptional scenarios, whereas it is easy to think
of normal scenarios.

This paper focuses on automatic generation of alterna-
tive/exceptional scenarios from normal scenarios of two dif-
ferent systems belonging to the same problem domain. We
adopt the SCEL language for writing scenarios, because the
SCEL is a control language and it is easy to analyze scenar-
ios written with the SCEL.

Suppose a scenario of purchasing a train ticket. One
scenario may consist of just one event of buying a train
ticket. Another scenario may consists of several events, such
as 1) informing date, destination, and the number of passen-
gers, class of cars, 2) retrieving train data base, 3) issuing a
ticket, 4) charging ticket fee to a credit card, and so on. If the
abstract levels of scenarios are different, it is quite difficult
to correctly compare and analyze events of scenarios.

SCEL language for writing scenarios solves this prob-
lem, because SCEL provides a limited actions and their case
structure as described in Sect. 2 and scenarios with SCEL
keep a certain abstract level of actions.

2. Scenario Language

2.1 Outline

The SCEL language has already been introduced [19]. In
this paper, a brief description of this language will be given
for convenience.

A scenario can be regarded as a sequence of events.
Events are behaviors employed by users or the system for
accomplishing their goals. We assume that each event has
just one verb, and that each verb has its own case struc-
ture [8]. The scenario language has been developed based
on this concept. Verbs and their own case structures depend
on problem domains, but the roles of cases are independent

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers



MAKINO and OHNISHI: SCENARIO GENERATION USING DIFFERENTIAL SCENARIO INFORMATION
1045

of problem domains. The roles include agent, object, recip-
ient, instrument, source, etc. [8], [14]. Verbs and their case
structures are provided in a dictionary of verbs. If a scenario
describer needs to use a new verb, he can use it by adding
the verb and its case structure in the dictionary.

We adopt a requirements frame in which verbs and
their own case structures are specified. The requirements
frame depends on problem domains. Each action has its
case structure, and each event can be automatically trans-
formed into internal representation based on the frame. In
the transformation, concrete words will be assigned to pro-
nouns and omitted indispensable cases. With Requirements
Frame, we can detect both the lack of cases and the illegal
usage of noun types [14].

We assume four kinds of time sequences among events:
1) sequence, 2) selection, 3) iteration, and 4) parallelism.
Actually most events are sequential events. Our scenario
language defines the semantic of verbs with their case struc-
ture. For example, data flow verb has source, goal, agent,
and instrument cases.

2.2 Scenario Example

Figure 1 shows a scenario of reservation of a hotel room
written with our scenario language. A title of the scenario is
given at the first line of the scenario in Fig. 1. Viewpoints of
the scenario are specified at the second line. In this paper,
viewpoints mean active objects such as human, system ap-
pearing in the scenario. There exist two viewpoints, namely
“user” and “reservation system.” The order of the speci-
fied viewpoints means the priority of the viewpoints. In this
example, the first prior object is “user,” and the second is
“reservation system.” In such a case, the prior object be-
comes a subject of an event.

In this scenario, all of the events are sequential. Actu-
ally, event number is for reader’s convenience and not nec-
essary.

2.3 Analysis of Events

Each event is automatically transformed into internal rep-
resentation. For example, the 1st event “A user enters his
membership number and his name to the reservation sys-
tem” can be transformed into internal representation shown
in Table 1.

In this event, the verb “enter” corresponds to the con-
cept “data flow.” The data flow concept has its own case
structure with four cases, namely to say, source case, goal
case, object case and instrument case. Sender corresponds
to the source case and receiver corresponds to the goal case.
Data transferred from source case to goal case corresponds
to the object case. Device for sending data corresponds to
the instrument case. In this event, “membership number and
name” correspond to the object case and “user” corresponds
to the source case.

The internal representation is independent of surface
representation of the event. Suppose other representations of

Fig. 1 Scenario example.

Table 1 Internal representation of the 1st event.

Concept: Data Flow
source goal object instrument
user reservation membership *NOT

system number and name specified*

the event, “the reservation system receives user’s member-
ship number and his name from a user” and “User’s mem-
bership number and his name are sent to the reservation sys-
tem by a user.” These events are syntactically different but
semantically same as the 1st event. These two events can be
automatically transformed into the same internal represen-
tations as shown in Table 1.

3. Differential Information of Scenarios

Systems that are designed for similar purpose (e.g. reserva-
tion, shopping, authentication, etc) often have similar be-
haviors. Besides, if such systems belong to the same do-
main, actors and data resemble each other. In other words,
normal scenarios of similar purpose belonging to the same
domain resemble each other. Since our scenario language
provides limited vocabulary and limited grammar, the ab-
straction level of any scenarios becomes almost the same.

For one system, there exist several normal scenarios. In
the case of ticket reservation, reservation can be written as a
normal scenario and cancellation can be written as another
normal scenario. For a certain normal scenario, there are
several exceptional scenarios and alternative scenarios. To
make a differential scenario, we select two normal scenarios
of two different systems. Each of the two scenarios should
represent almost the same purpose, such as reservation of
some item.

The differential scenario consists of (1) a list of not cor-
responding words, (2) a list of not corresponding events, that
is, deleted events which appear in one scenario (say, sce-
nario A) and do not appear in the other (say, scenario B) and
added events which do not appear in scenario A and appear
in scenario B. We also provide (3) a list of corresponding
words and (4) a list of corresponding events, and (5) a script



1046
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 2 Normal scenario of reservation of a meeting room.

to apply the above differential information for generating
scenarios.

We generally assume that one to one correspondence
between two nouns and one to one correspondence between
two events. Figure 2 shows a scenario of reservation of
meeting room for residents in a city.

We compare the scenario of Fig. 1 with the scenario of
Fig. 2 from top to bottom. First we check the actors speci-
fied as viewpoints of the two scenarios. In the case of sce-
narios of Fig. 1 and 2, “user” in Fig. 1 corresponds to “citi-
zen” in Fig. 2 and “reservation system” in Fig. 1 corresponds
to “system” in Fig. 2. The correspondence should be con-
firmed by user.

Second we check the action concepts of events. If there
exist events whose action concept appears once in scenario
A and B, respectively, we assume that these two events are
probably corresponding to each other. For example, the con-
cept of the 2nd event in Fig. 1 and the concept of the 5th
event in Fig. 2 are “validate” and there are no more events
whose concepts are “validate,” so we regard these two events
are probably corresponding to each other. Then we provide
these two events to a user and the user will confirm that
these two events are corresponding to each other by check-
ing whether nouns of the same cases are corresponding or
not.

If there exists an event whose action concept appears
once in scenario A, but there exists two or more events of
the action concept in scenario B, then we regard that one of
the events of the concept in scenario B corresponds to the
event in scenario A. So, we provide these events to system
user and the user will check the corresponding events.

If there are two or more events whose concepts are
same in two scenarios respectively, these events are candi-
dates of corresponding events. Then we check that nouns
of the same cases are corresponding to. Next we provide
candidates to the user and he will select the corresponding
event.

The first four events of the scenario in Fig. 1 can be
transformed as shown in Table 2. The internal represen-
tations of the first five events of the scenario in Fig. 2 are
shown in Table 3. In fact, the data flow concept has four
cases, that is, source, goal, object, and instrument cases as

Table 2 The internal representation of the first four events of the scenario
in Fig. 1.

concept agent/ goal object
source

data flow user reservation membership
system number and name

validate system user membership
number and name

data flow user reservation retrieval
system information

retrieve system available hotels database

Table 3 The internal representation of the first five events of the scenario
in Fig. 2.

concept agent/ goal object
source

data flow citizen system reservation
information

retrieve system available room database
data flow system citizen available rooms
data flow citizen system name and

telephone number
validate system citizen name and

telephone number

Table 4 A list of corresponding words between scenario A and scenario
B.

Nouns in scenario A Nouns in scenario B
user citizen
reservation system system
membership number and name name and telephone number
available hotels available room
retrieval information reservation information
reservation number room number
hotel room meeting room
hotels room

shown in Table 1, but the instrument cases are omitted in
Table 2 and 3 for the space limitation.

For the 2nd event in Table 2 and the 5th event in Ta-
ble 3 as shown with italic font, since the nouns of the cases
of the two events are same or corresponding to each other,
these two events are corresponding to each other. At this
time we get “membership number and name” correspond to
“name and telephone number.” So, the 1st event in Fig. 1
corresponds to the 4th event in Fig. 2, because concepts are
same and all of the nouns of corresponding cases are corre-
sponding to each other.

Similarly we detect corresponding events and corre-
sponding nouns. Table 4 shows a list of corresponding
nouns. Figure 3 shows corresponding events of the two sce-
narios. In Fig. 3, two events connected by an arrow are cor-
responding to each other. Events without an arrow have no
corresponding events. The successive corresponding events
are grouped into an event block. The first two events in
Fig. 1 are grouped into a block named a1. The block a1
corresponds to a block named b2 consisting of the 4th and
the 5th events in Fig. 2.

Finally, we can get the differential scenario between
hotel reservation and meeting room reservation shown in Ta-



MAKINO and OHNISHI: SCENARIO GENERATION USING DIFFERENTIAL SCENARIO INFORMATION
1047

Fig. 3 Corresponding events.

Table 5 Deleted events from perspective scenario A/ Added events from
perspective scenario B.

concept agent/ goal object
source

select user hotel available hotels
data flow user system credit card number
data flow system credit card credit card number

company

Table 6 Added events from perspective scenario A/ deleted events from
perspective scenario B.

concept agent/ goal object
source

pay citizen system room rate
data flow system citizen receipt

Fig. 4 Script to be applied to alternative/exceptional scenarios of
scenario A.

ble 4, 5, and 6 and Fig. 3.
In order to apply the differential information to another

scenario of reservation of a hotel room, we also provide a
script shown in Fig. 4. Even if there exists a delete com-
mand in a script, event blocks will not be deleted when any
event blocks in an applied scenario do not match with event
blocks in the script. Even if there exists an insertion com-
mand in the script, event blocks will not be inserted when
the following event block and the followed event block are
missing in the applied scenario. Figure 5 shows a script ap-
plied to another scenario of reservation of a meeting room.

4. Scenario Generation Using Differential Scenario

Once the differential scenario between system A and B is
given, we can apply it to another scenario of system A and
get a new scenario of system B by changing corresponding
words and by deleting or adding not-corresponding events.

Fig. 5 Script to be applied to alternative/exceptional scenarios of
scenario B.

Fig. 6 An alternative scenario.

In this section, we apply the differential scenario described
in the previous chapter to an alternative scenario of hotel
reservation and get an alternative scenario of meeting room
reservation.

4.1 Examples of Generation

Figure 6 shows an alternative scenario of hotel reservation.
In this scenario, an aged user reserves a hotel room with a
discount rate. By applying the differential scenario in Ta-
ble 4, 5, 6 and Fig. 3 using the application script in Fig. 4,
we can get a new alternative scenario of reservation of a
meeting room for aged citizen as shown in Fig. 7. In Fig. 7,
words of boldface font are changed nouns according to a
list of corresponding words in Table 4. Lastly, the gener-
ated scenario is investigated by the user. He can modify the
generated scenario to eliminate errors.

4.2 Scenario Generator Using Differential Scenarios

Figure 8 shows the outline of the generation of scenarios us-
ing differential scenarios. We have been developing a pro-
totype system based on the method. This system has been
developed with C# on a Windows XP PC. The line of source
code of the system is about 6,000. This system is a 4.5 man-
month product.

Figure 9 shows the initial display image of the sys-
tem. This system mainly provides two functions. One is



1048
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 7 A generated new alternative scenario.

Fig. 8 Outline of scenario generation.

Fig. 9 Initial image of the system.

the derivation of the differential scenario between given two
scenarios. The other is the application of the differential
scenario to a specified scenario and the generation of a new

Fig. 10 Candidates of corresponding events.

Fig. 11 Derivation of a differential scenario.

scenario. In Fig. 9, a user selects the former function and
now he specifies two scenarios. These are scenario of the
reservation of a hotel room and a scenario of the reservation
of a meeting room. Then differential scenario between them
is derived.

In Fig. 10, the user selects the corresponding event for
the 1st event of the left-hand scenario. Two events are pro-
vided as candidates of corresponding events (the 4th event
and the 7th event of the right-hand scenario). Since nouns
with boldface font of the events are not registered in the list
of corresponding words at that time, the user selects a cor-
responding event by specifying the id number of the event.

In this case, the user specifies the 4th event of the right-
hand scenario as a corresponding event of the 1st event of
the left-hand scenario by specifying the id number 3 in the
bottom and right-side of the window in Fig. 10. The system
automatically registers the correspondence between “mem-
bership number and name” of the left-hand scenario and
“name and telephone number” of the right-hand scenario
in the list of corresponding words. Likewise correspond-
ing words and corresponding events will be determined and
registered in the lists, respectively.

In Fig. 11, a list of corresponding words and a list of



MAKINO and OHNISHI: SCENARIO GENERATION USING DIFFERENTIAL SCENARIO INFORMATION
1049

corresponding events are displayed in the right-hand side of
the window.

In Fig. 12, events of the left-hand scenario in Fig. 10
are blocked. There are 4 blocks numbered 0, 1, 2 and 3
respectively. Three events are not blocked and they do not
have any corresponding events.

In Fig. 13, an application script is displayed. By apply-
ing this script to an exceptional/alternative scenario of the

Fig. 12 Blocked events of the left scenario.

Fig. 13 Generated script.

Fig. 14 Generated alternative scenario.

reservation of a hotel room, an exceptional/alternative sce-
nario of the reservation of a meeting room will be derived as
shown in Fig. 14.

5. Experiment

In order to evaluate our method and system, we performed
an experiment. The purposes of the experiment are to con-
firm the following benefits.

1. to lessen elaboration of writing scenarios
2. to make a scenario of high quality

5.1 Outline of the Experiment

8 students who are graduate students belonging to software
engineering laboratory, Ritsumeikan university are divided
into two groups of four subjects that named group A and B.
Prior to the experiment, we explained scenario language and
the way of scenario writing for two hours. We chose a rental
system as problem domain. We also gave a job description
of a rental system to provide domain knowledge to subjects.

Since the quality of generated scenarios depends on the
ability of scenario writing and scenario analysis of subjects,
we checked the ability of subjects prior to the experiment.
We gave a normal scenario of borrowing a book at a library
and asked to subjects to write a normal scenario of borrow-
ing a CD at a CD rental shop. The result is shown in Table 7.
A1, A2, A3, and A4 are members of group A, while B1, B2,
B3, and B4 are members of group B. It took 17.6 minutes on
average to write the scenario. The number of errors in a sce-
nario of Group A is 2 on average, while the number of errors
in a scenario of Group B is 0.5 on average. We confirmed
that subjects’ abilities of scenario writing and scenario anal-
ysis are different. The ability of Group A is less than that
of Group B. This fact means that the quality of scenarios of
Group A is usually less than that of Group B. We gave a
correct scenario of borrowing a CD to all the menbers and
pointed out the mistakes.

5.2 Generation vs. Description of Scenarios

We provided scenarios of a library system to the members
of the two groups. These scenarios consist of 5 normal sce-
narios, and 2 exceptional scenarios. The member of group
A wrote a normal scenario of borrowing a book and gets a

Table 7 Subjects’ abilities of scenario analysis.

Time (min.) # of errors # of events
A1 17 3 16
A2 17 0 19
A3 15 3 19
A4 13 2 17
B1 20 1 19
B2 19 0 19
B3 20 0 19
B4 20 0 19



1050
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Table 8 Scenarios of CD rental system.

id title the number of events
1 CD rental 19
2 CD rental failure by upper limitation 7
3 Return of CD 6
4 Retrun of CD with penalty 9
5 Retrieval of CDs 7
6 Registration of CDs 8
7 Registraion of a new member 16
8 Cancelation of a member 10

Table 9 Result of the experiment.

Scenario id Group A Group B
Time (min.) errors Time (min.) errors

1 - - - -
2 4 0 10 0
3 1 0 7 0
4 2 0 15 1
5 3 0 10 0
6 8 0 7 0
7 2 0 14 6
8 1 0 5 0

average except 3.0 0 9.7 1.0
for the scenario 1

differential scenario between scenario of borrowing a book
and a scenario of borrowing a CD. Then they get the scenar-
ios of CD rental system automatically generated using our
proposed method and system, while the members of group B
wrote one or two scenarios of the CD rental system by them-
selves using corresponding scenarios of the library system.
We checked generated scenarios of group A and written sce-
narios of group B by comparing correct scenarios with them.

Table 8 shows a list of scenarios of the CD rental sys-
tem prepared as correct scenarios by the authors. Scenario
id number 3, 5, 6, 7 and 8 are normal scenarios of the CD
rental system, while a scenario of no.2 and 4 are exceptional
scenarios.

Table 9 shows the result of experiment. It took extra
3.0 minutes on average to generate differential scenario for
Group A. In using our method and system, scenarios are
automatically generated, but the subjects need to check the
generated scenarios. It took 3.0 minutes on average to check
the scenarios. In checking none of the subjects found any er-
rors in the generated scenarios. This means that our method
and system generates exactly correct scenarios. In order to
write scenarios by Group B, it took 9.7 minutes on average.

Actually, the ability of writing scenario of Group A is
less than that of Group B, but the quality of generated sce-
narios by Group A is better than the quality of written sce-
narios by Group B as shown in Table 9.

Through the experiment, we found that our method and
system improve the correctness of the scenario and lessen
the writing time.

6. Related Works

There is an obvious trend to define scenarios as textual de-

scription of the designed system behaviors. The growing
number of practitioners demanding for more “informality”
in the requirements engineering process seems to confirm
this trend. Most of these papers describe how to use scenar-
ios for the elicitation [15] or exploration [9] of requirements.
The authors believe that it is also important to support both
the generation and the classification of scenarios

Ben Achour proposed guidance for correcting scenar-
ios, based on a set of rules [1]. These rules aim at the clari-
fication, completion and conceptualization of scenarios, and
help the scenario author to improve the scenarios until an ac-
ceptable level in terms of the scenario models. Ben Achour’s
rules can only check whether the scenarios are well written
according to the scenario models. We propose a method of
generating exceptional scenarios and alternative scenarios
from a normal scenario.

Neil Maiden et al. proposed classes of exceptions for
use cases [11]. These classes are generic exceptions, per-
mutations exceptions, permutation options, and problem ex-
ceptions. With these classes, alternative courses are gener-
ated. For communication actions, 5 problem exceptions are
prepared, that is, human agents, machine agents, human-
machine interactions, human-human communication, and
machine-machine communication. They proposed a method
of generating alternative paths for each normal sequence
from exception types for events and generic requirements
with abnormal patterns [3], [13], [15], [16]. Our approach
for generating scenarios with a differential scenario is in-
dependent of problem domains.

Daniel Amyot et al. derive a scenario from use case
map [2]. In order to generate several scenarios, they have to
prepare several use case maps, while we have to prepare just
one normal scenario with our approaches.

Christophe Damas et al. synthesize annotated behav-
ior models from scenarios. They generate a state transition
model from several scenarios and this model covers all sce-
nario examples [6], [7]. However they cannot generate sce-
narios of different systems, while our approach enables to
generate scenarios of different systems.

Yu-Chin Cheng et al. proposes a generation method of
attack scenarios [4]. Using attack patterns, attack state tran-
sition model, attack scenarios can be generated. Their ap-
proach focuses on just attack scenarios via network, but we
provide a generation method of exceptional scenarios and
alternative scenarios.

7. Conclusion

We have developed a frame base scenario language and a
method of generating scenarios using differential scenario.
With our method, we can get new scenarios of a certain
problem domain using scenarios belonging to the same do-
main and differential scenario between two systems.

Differential scenario is derivable from different sys-
tems’ normal scenarios of similar purpose and applicable to
alternative/exceptional scenarios of one of the system. How-
ever, such a differential scenario cannot be applicable to dif-



MAKINO and OHNISHI: SCENARIO GENERATION USING DIFFERENTIAL SCENARIO INFORMATION
1051

ferent normal scenarios’ alternative/exceptional scenarios.
In order to automatically determine the applicability of the
different scenario, we have a plan to use pre-conditions and
post-conditions specified in a scenario just like the selec-
tion of rules applicable to verify the correctness of scenar-
ios [17].

Acknowledgment

This research is partly supported by Grant-in-Aid for Scien-
tific Research (C)(2)(22500039).

References

[1] C.B. Achour, “Guiding scenario authoring,” Proc. Eight European-
Japanese Conference on Information Modeling and Knowledge
Bases, pp.181–200, 1998.

[2] D. Amyot, D.Y. Cho, X. He, and Y. He, “Generating scenarios from
use case map specifications,” Proc. 3rd QSIC, pp.108–115, Dallas,
USA, 2003.

[3] I. Alexander and N.A.M. Maiden, Scenarios, Stories, Use Cases:
Through the Systems Development Life-Cycle, pp.161–177, John
Wiley & Sons, 2004.

[4] Y.C. Cheng, C.H. Chen, C.C. Chiang, J.W. Wang, and C.S.
Laih, “Generating attack scenarios with causal relationship,” Proc.
IEEE International Conference on Granular Computing (GRC2007),
pp.368–373, 2007.

[5] A. Cockburn, Writing Effective Use Cases, Addison-Wesley, USA,
2001.

[6] C. Damas, B. Lambeau, P. Dupont, and A. Lamsweerde, “Gener-
ating annotated behavior models from end-user scenarios,” IEEE
Trans. Softw. Eng., vol.31, no.12, pp.1056–1073, 2005.

[7] C. Damas, B. Lambeau, and A. Lamsweerde, “Scenarios, goals, and
state machines: A win-win partnership for model synthesis,” Proc.
14th ACM SIGSOFT International Symposium on Foundations of
Software Engineering, pp.197–207, 2006.

[8] C.J. Fillmore, The Case for Case, in Universals in Linguistic Theory,
Holt, Rinehart and Winston, 1968.

[9] J.C.S.P. Leite, G. Rossi, F. Balaguer, V. Maiorana, G. Kaplan, G.
Hadad, and A. Oloveros, “Enhancing a requirements baseline with
scenarios,” Proc. 3rd RE, pp.44–53, 1997.

[10] N.A.M. Maiden, M.K. Manning, and M. Ryan, “CREWS-SAVRE:
Systematic scenarios generation and use,” Proc. 3rd ICRE, pp.148–
155, 1998.

[11] N.A.M. Maiden and M. Hare, “Problem domain categories in re-
quirements engineering,” Int. J. Human-Computer Studies, vol.49,
pp.281–304, 1998.

[12] N.A.M. Maiden and S. Robertson, “Developing use cases and sce-
narios in the requirements process,” Proc. 27th ICSE, pp.561–570,
2005.

[13] A. Mavin and N.A.M. Maiden, “Determining socio-technical sys-
tems requirements: Experiences with generating and walking
through scenarios,” Proc. 11th IEEE RE, pp.213–222, 2003.

[14] A. Ohnishi, “Software requirements specification database on re-
quirements frame model,” Proc. IEEE 2nd ICRE, pp.221–228, 1996.

[15] A.G. Sutcliffe and M. Ryan, “Experience with SCRAM, a SCenario
requirements analysis method,” Proc. 3rd ICRE, pp.164–171, 1998.

[16] A.G. Sutcliffe, N.A.M. Maiden, S. Minocha, and D. Manuel,
“Supporting scenario-based requirements engineering,” IEEE Trans.
Softw. Eng., vol.24, no.12, pp.1072–108, 1998.

[17] T. Toyama and A. Ohnishi, “Rule-based verification of scenarios
with pre-conditions and post-conditions,” Proc. 13th IEEE RE2005,
pp.319–328, 2005.

[18] K. Weidenhaupt, K. Pohl, M. Jarke, and P. Haumer, “Scenarios in
system development: Current practice,” IEEE Softw., vol.15, no.2,

pp.34–45, March/April 1998.
[19] H. Zhang and A. Ohnishi, “Transformation between scenarios from

different viewpoints,” IEICE Trans. Inf. & Syst., vol.E87-D, no.4,
pp.801–810, April 2004.

Masayuki Makino was received B. of En-
gineering and M. of Engineering degrees from
Ritsumeikan University in 2006 and 2008, re-
spectively. Currently, he is at JSOL Corpora-
tion.

Atsushi Ohnishi was born in 1957. He
received B. of Engineering, M. of Engineer-
ing, and Dr. of Engineering degrees from Kyoto
University in 1979, 1981, and 1988, respec-
tively. He was a Research Associate of Kyoto
University from 1983 to 1989 and an Asso-
ciate Professor of Kyoto University from 1989
to 1994. Since 1994 he has been a Professor at
Dept. Computer Science, Ritsumeikan Univer-
sity. He was a visiting scientist at Dept. Com-
puter Science, UC Santa Barbara, California,

U.S.A. from 1990 to 1991 and also a visiting scientist at College of Com-
puting, Georgia Institute of Technology, Georgia, U.S.A. in 2000. His cur-
rent research interests include requirements engineering, object oriented
analysis, and software design techniques. Dr. Ohnishi is a member of IEEE
Computer Society, ACM, Information Processing Society (IPS) Japan, and
Japan Society for Software Science and Technology (JSSST).


