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Reconfiguration-Based Fault Tolerant Control of Dynamical
Systems: A Control Reallocation Approach

Ali MORADI AMANI†a), Student Member, Ahmad AFSHAR†b), Nonmember,
and Mohammad Bagher MENHAJ†c), Member

SUMMARY In this paper, the problem of control reconfiguration in the
presence of actuator failure preserving the nominal controller is addressed.
In the actuator failure condition, the processing algorithm of the control
signal should be adapted in order to re-achieve the desired performance of
the control loop. To do so, the so-called reconfiguration block, is inserted
into the control loop to reallocate nominal control signals among the re-
maining healthy actuators. This block can be either a constant mapping
or a dynamical system. In both cases, it should be designed so that the
states or output of the system are fully recovered. All these situations are
completely analysed in this paper using a novel structural approach lead-
ing to some theorems which are supported in each section by appropriate
simulations.
key words: fault tolerant control, control reconfiguration, actuator failure,
system structure, control reallocation

1. Introduction

Stability and performance of control systems are highly af-
fected by system faults. The main goal of Fault Tolerant
Control (FTC) methods is to overcome these undesired ef-
fects when a fault occurs in sensors, actuators or the system
internally. There are two main approaches in fault tolerant
control systems [1]: Passive Fault Tolerant Control (PFTC)
and Active Fault Tolerant Control (AFTC). In PFTC, the
controller should be designed such that the performance of
the control system is acceptable in both normal and fault
conditions. This should be achieved without any online
modification to the controller. Here, some major faults are
modelled and the controller is designed to compensate for
their consequences.

In AFTC, the controller is designed to provide online
self-adaptation under possible fault conditions. Here, ini-
tially a Fault Detection and Diagnosis (FDD) block should
detect, isolate and possibly estimate a model for the fault.
Then, the controller adapts itself to the fault condition. This
approach is further subdivided to fault accommodation and
control reconfiguration [1]. In the first one, controller pa-
rameters are re-tuned in fault conditions to recover the per-
formance of the control system. This approach can basi-
cally be placed in the adaptive control scheme; however, its
performance might not be acceptable when there is a severe
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fault (e.g. actuator failure) in the control loop. Here, the con-
trol system should be reconfigured based on the remaining
set of sensors and actuators. This approach is called control
reconfiguration which is not an easy task (if not impossible),
especially in the presence of real-time constraints.

For control reconfiguration in the case of actuator fail-
ure, which is the main topic of this article, the “virtual ac-
tuator” technique is proposed in [1], [3] and [7]. In this
technique, a static or dynamic block is inserted inside the
control loop between the controller and the faulty plant. To
preserve the nominal controller in the fault condition, this
block should present the fault hiding effect from the con-
troller point of view, i.e. the faulty plant in combination with
the virtual actuator should present the same I/O behaviour as
the fault-free plant. Using this assumption as well as stabil-
ity conditions of the reconfigured control loop, the sufficient
condition for the dynamic virtual actuator is derived and de-
sign conditions are fully discussed.

In addition to classic control methods (like robust con-
trol techniques), structural and energy-based approaches are
also considered by the FTC researchers. A general struc-
tural approach based on the graph theory is presented in [1].
In [8] and [9], fault effects on the controllability Gramian is
considered as a sense of the energy necessary for recovery
of the faulty plant. [10] also focuses on reducing the energy
spent for this performance recovery using reconfiguration of
the reference input. One of the most recent activities in this
field is reported in [11] in which, considering the case of ac-
tuator outages, a general framework for several controllers
is designed. The recoverability of a given fault is defined
by two structural properties, stability and possibility to re-
achieve the performance, of the faulty system considering
an acceptable pre-defined performance degradation level.

In this paper, pursuing the previous activities on struc-
tural and energy-based FTC, the reconfiguration problem is
solved using a more conceptual approach which is based on
the following principle:
When an actuator fails, its role should be reallocated among
the others.
Based on this principle, a new approach for designing the
reconfiguration block is proposed. This approach is a more
conceptual, straightforward and yet easily understandable
version of what was presented as virtual actuator in [1] and
[3].

The paper is organized as follows: Sect. 2 presents
some preliminaries necessary for the the rest of the paper.

Copyright c© 2012 The Institute of Electronics, Information and Communication Engineers
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Static reconfiguration block is designed in Sect. 3 for both
state and output recovery based on the control reallocation
approach. The dynamic reconfiguration block and its design
conditions are presented in Sect. 4. Also, the performance of
the reconfiguration process in the presence of both static and
dynamic reconfiguration blocks are compared in this sec-
tion. In Sect. 5, the problem is solved in the presence of
constraints on input signals. Finally, Sect. 6 concludes the
paper.

2. Preliminaries

Consider the following dynamical equations for a Multi In-
put Single Output (MISO) LTI system:

ẋ(t) = Ax(t) + Bu(t)

y(t) = Cx(t) (1)

in which, x ∈ Rn is the state vector, u ∈ Rm is the input
vector and y ∈ R represents system output. Assume that the
system is successfully controlled by the following controller
Gc as presented in Fig. 1 A:

ẋc(t) = Acxc(t) + Bcuc(t)

yc(t) = Ccxc(t) (2)

Also, assume that Λ represents the set of eigenvalues of the
system matrix An×n and e1, e2, . . . , en is an orthonormal basis
for Rn, in which the ith element of the vector ei is “1” and
the others are zero. The system states can be represented as
[Appendix I]:

x(t) =
n∑

i=1

m∑
k=1

ζkiei, ζki = bki

∫ t

0
eΛ(t−q)uk(q)dq (3)

where ζki shows the effect of kth input (uk) on the system
states in the direction of ei. The coefficients bki are derived
form the projection of kth columns of the matrix B on the
space spanned by the ei’s [see (A· 3)]. Also, the output vec-
tor can be represented in this way as:

y(t) =
n∑

i=1

m∑
k=1

ζkici (4)

where ci is derived form the projection of the vector C on

Fig. 1 FTC using reconfiguration block.

the space spanned by the eT
i ’s [see (A· 8)].

A method for presenting some actuator faults is to
present them as a deviation in the corresponding columns
of the matrix B. By this method, actuator failure can be
shown as a zero column in B. Therefore, the faulty plant G f

p

affected by actuator failure can be represented as:

ẋ f (t) = Ax f (t) + Bf u f (t)

y f (t) = Cx f (t) (5)

In the fault condition, the state and output of this faulty sys-
tem are transferred to:

x f (t) =
n∑

i=1

m∑
k=1

ζ
f
kiei

y f (t) =
n∑

i=1

m∑
k=1

ζ
f
kici (6)

in which,

ζ
f
ki = b f

ki

∫ t

0
eΛ(t−q)u f

k (q)dq (7)

where u f
k represents the kth control signal of the faulty sys-

tem. Now, the main duty of FTC algorithm is to re-transfer
the output or state of the faulty system to the nominal condi-
tion. In this paper, it has been done by inserting a reconfig-
uration block GR inside the control loop (Fig. 1 B). Assume
GR as follows:

ẋR(t) = ARxR(t) + BRuR(t)

yR(t) = CxR(t) +Cx f (t)

u f (t) = CRxR(t) + DRuR(t) (8)

in which, xR is the state of the reconfiguration block. AR, BR,
CR and DR should be designed to achieve a successful recon-
figuration. In Sects. 3 and 4, this block will be designed to
achieve state recovery (i.e. x f → x as t → ∞) as well as
output recovery (i.e. y f → y as t → ∞).

The following theorem is useful in analysing the stabil-
ity of the reconfigured control loop (Fig. 1 B):
Theorem 1: Assume that in Fig. 1 A, the system (1) is suc-
cessfully controlled by the controller (2), i.e. stability and
the desired performance are both achieved. An actuator
failure converts the plant Gp to G f

p presented in (5). If a
reconfiguration block GR (Fig. 1 B) in the form of (8) exists
which can preserve the input/output behaviour of the faulty
plant (i.e. yR/uR = yp/up in Fig. 1) then the resulted control
loop still remains stable in the fault condition if the follow-
ing matrix is Hurwitz:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
AR 0 BRCc

AR + (Bf CR − A) A (BR + Bf DR)Cc

0 BcC Ac

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (9)

Proof: See appendix II.
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3. Static Reconfiguration Block Design

The FTC architecture considered in this paper is presented
in Fig. 2 in which, a reconfiguration block is inserted into
the faulty control loop while the controller of the fault-free
condition is preserved. The simplest case is to consider the
reconfiguration block as a constant matrix, i.e. u f = Nu.
N should be designed to recover state/output of the faulty
system to the fault-free condition. This case is called recon-
figuration using static reconfiguration block in this paper.

3.1 State Recovery

To recover the states of the faulty plant, the conditions under
which the faulty state x f in (6) is re-transferred to x in (3)
should be obtained.

x f (t) = x(t)

→
n∑

i=1

m∑
k=1

ζ
f
kiei =

n∑
i=1

m∑
k=1

ζkiei

→
n∑

i=1

⎛⎜⎜⎜⎜⎜⎝
m∑

k=1

ζ
f
ki −

m∑
k=1

ζki

⎞⎟⎟⎟⎟⎟⎠ei = 0

(10)

The vectors ei are orthogonal, hence:
m∑

k=1

ζ
f
ki −

m∑
k=1

ζki = 0, ∀i (11)

Regarding (3), the above equation can be rewritten as:
m∑

k=1

b f
kiu

f
k −

m∑
k=1

bkiuk = 0, ∀i (12)

Considering u f = Nu, (12) can be presented as the following
matrix equation:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b f
11 b f

21 ··· b f
m1

b f
12 b f

22 ··· b f
m2

...
...
...
...

b f
1n b f

2n ··· b f
mn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸����������︷︷����������︸

Bf

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11 b21 ··· bm1
b12 b22 ··· bm2

...
...
...
...

b1n b2n ··· bmn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸����������︷︷����������︸

B

(13)

Therefore, the static reconfiguration block N which satisfies
(13) can successfully recover the states of the faulty plant.
The stability of reconfigured control loop using the static
reconfiguration block can be easily proved using theorem 1.

Fig. 2 FTC using static reconfiguration block.

3.2 Output Recovery

Considering the goal y f → y and using some algebraic ma-
nipulations like what was led to (13), the following matrix
equality will be driven as a condition for output recovery
using static reconfiguration block:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b f
11c1 b f

21c1 ··· b f
m1c1

b f
12c2 b f

22c2 ··· b f
m2c2

...
...
...
...

b f
1ncn b f

2ncn ··· b f
mncn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�����������������︷︷�����������������︸

Bf
c

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣
b11c1 b21c1 ··· bm1c1
b12c2 b22c2 ··· bm2c2

...
...
...
...

b1ncn b2ncn ··· bmncn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸�����������������︷︷�����������������︸

Bc

(14)

in which, ci is defined in (A· 8). The following theorem con-
cludes the achievements about reconfiguration using static
reconfiguration block.
Theorem 2 (Control reconfiguration using static reconfigu-
ration Block): Assume that in Fig. 1 A, the system (1) is suc-
cessfully controlled by the controller (2), i.e. stability and
the desired performance are both achieved. An actuator
failure degrades the performance of the control loop. The
static reconfiguration block (u f = Nu in Fig. 2) can recover
i) the state of the faulty system if Bf N = B
ii) the output of the faulty system if Bf

c N = Bc

For further analysis, it is clear from (13) and (14) that in-
creasing in the number of failed actuators will cause more
equations than free parameters which will make the problem
unsolvable. The solution for (14) is more expectable since
some of the coefficients ci may be zero which will reduces
the number of equations. The following lemma presents suf-
ficient condition for the existence of static reconfiguration
block.
Lemma1 (existence of the static reconfiguration block): The
system (1) in the case of actuator fault can be:
a) Recovered respect to its state, only if B ∈ im(Bf )
b) Recovered respect to its output, only if Bc ∈ im(Bf

c )
where “im(.)” represents the image of the matrix. On the
other hand, an extreme point can be considered which is
very important in reconfigurability of the control system.
Assume that in the decomposition of columns of the input
matrix B (A· 6), there is an actuator uk for which ∃l; bkl � 0,
noting that equivalent coefficients in other actuators are all
zero, i.e. bnl = 0,∀n � k. This means that among all actu-
ators, just uk can move the system state in the direction el.
Therefore, if it fails, no other input can play its role in this
direction, i.e. the system states can not be recovered to the
fault-free case. Hence, the category of critical actuators can
be defined as follows.
Definition 1 (Critical Actuator): The actuator uk is called
“critical” in the sense of state recovery if there is a direction
el for which:

bkl � 0 but bnl = 0, ∀n � k (15)

Now, using this definition, the following lemma is easily es-
tablished.
Lemma 2: The system (1) in the case of actuator failure is
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Fig. 3 Two coupled tanks problem [1].

unrecoverable respect to its state if one of the failed actua-
tors is critical.
Example 1: To illustrate the reconfiguration by this tech-
nique, a two coupled tank problem is considered as depicted
in Fig. 3. The main goal of the system is to control the
water level of tank 2 for some consumers. The system is
generally described by a nonlinear state space model which
can be linearized around the operation point to the following
model [1]:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.0478 −0.0004 0

1 0 0
0.0058 0 −0.0058

⎤⎥⎥⎥⎥⎥⎥⎥⎦ x

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.0406 −0.0058 −0.0092
−1 0 0
0 0.0046 0.0073

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
y =

[
0 0 1

]
x

According to (A· 3), the columns of the input matrix can be
represented as:

b1 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.0406
−1
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = 0.0406e1 − e2,

b2 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.0058

0
0.0046

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = −0.0058e1 + 0.0046e3,

b3 =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.0092

0
0.0073

⎤⎥⎥⎥⎥⎥⎥⎥⎦ = −0.0092e1 + 0.0073e3

First of all, it is clear that the actuator V1 is a critical one
since it is the only actuator which can force the system in
the direction of e2. Therefore, the system is unrecoverable
respect to its states if V1 fails.

Now assume that the actuator V2 totally fails, i.e. it is
completely closed. In this case, dynamical equations of the
faulty system can be achieved by making all the entries of
the second column (the column related to V2) of the input
matrix zero as:

ẋ =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
−0.0478 −0.0004 0

1 0 0
0.0058 0 −0.0058

⎤⎥⎥⎥⎥⎥⎥⎥⎦ x

Fig. 4 Reconfiguration structure for two coupled tanks.

+

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0.0406 0 −0.0092
−1 0 0
0 0 0.0073

⎤⎥⎥⎥⎥⎥⎥⎥⎦
⎡⎢⎢⎢⎢⎢⎢⎢⎣

u1

u2

u3

⎤⎥⎥⎥⎥⎥⎥⎥⎦
y =

[
0 0 1

]
x

The control reconfiguration is proposed as depicted in
Fig. 4. The control specification in this situation is to pre-
serve stability as well as setpoint tracking for level of tank
2. According to (13),[

0.0406 0 −0.0092−1 0 0
0 0 0.0073

]
N =

[
0.0406 −0.0058 −0.0092
−1 0 0
0 0.0046 0.0073

]

which has clearly no solution. Therefore, the complete state
recovery in the case of failure in V2 is impossible. To check
the possibility of output recovery, the vector C can be de-
composed to:

C =
[

0 0 1
]
= eT

3

Hence, (14) can be written as:

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0 0.0073

⎤⎥⎥⎥⎥⎥⎥⎥⎦ N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
0 0 0
0 0 0
0 0.0046 0.0073

⎤⎥⎥⎥⎥⎥⎥⎥⎦

→ N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 46/73 1

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Using this value for static reconfiguration block N, the out-
put of the system will be recovered in the case of failure in
V2. Figures 5 and 6 show the performance of this reconfig-
uration block in the output and states recovery, respectively.
It is assumed that the actuator V2 is failed at T=500 sec.
The static reconfiguration block is activated as soon as this
failure is detected at T=1200 sec. As depicted in Fig. 5, the
output of the system deviates from its desired value as the
failure occurs at T=500 sec. However, it is recovered when
the reconfiguration process starts at T=1200 sec. In spite of
successful output recovery, Fig. 6 shows that the reconfig-
uration process is failed to recover the states of the faulty
system. This means that a output recovery is successfully



1078
IEICE TRANS. INF. & SYST., VOL.E95–D, NO.4 APRIL 2012

Fig. 5 The system output is recovered using a static reconfiguration
block.

Fig. 6 The system states are not recovered using a static reconfiguration
block.

achieved inserting just a constant mapping into the control
loop.

4. Dynamical Reconfiguration Block

We start this section with an illustrative example. Again
consider the system of example 1 whose output was finally
reconfigured using a static reconfiguration block. Figure 7
shows the control signal for that example. It is seen that the
control signal changes suddenly when the reconfiguration
block is activated at T=1200 sec. Of course, this shock to
the actuators is not acceptable in a practical control system.
In order to avoid it in the time of activation of the reconfigu-
ration block, a dynamic reconfiguration block is proposed in
this section. The following dynamical reconfiguration block
can be proposed for this problem:

ẋR(t) = ARxR(t) + BRuR(t),
u f (t) = CRxR(t) + DRuR(t)

(16)

in which,

Fig. 7 Variation of control signal when static reconfiguration block acti-
vates.

AR = A − Bf M
BR = B − Bf

CR = M
DR = I

(17)

and M is a design parameter. The question of why this
kind of reconfiguration block is considered can be easily
answered by looking at the stability condition of the faulty
reconfigured control loop presented in theorem 1. By this
selection of AR and BR, the set of eigenvalues of (9) can be
decomposed to:

σ(AR) ∪ σ
([

A BCc

BcC Ac

])
(18)

The second part of this decomposition is stable as the fault-
free control system has been assumed to be stable. About the
first part, if (A, Bf ) is stabilizable, M can be found to make
AR stable. Therefore, in this condition, the reconfigured con-
trol system in presence of dynamical reconfiguration block
(16) remains stable. On the other hand, DR is selected as
a unity matrix to avoid a sudden shock in control signals
when the reconfiguration block activates. Another impor-
tant criteria to design M is the I/O behaviour of the dynamic
reconfiguration block in the steady state condition. Compar-
ing dynamic reconfiguration block with its static counterpart
in the architecture of Fig. 2, it can be easily seen that the dy-
namic reconfiguration block can recover the state (output)
of the faulty system if its I/O behaviour in the steady state
condition is the same as N in (13) ((14)). It means that:

−M(A − Bf M)−1(B − Bf ) + I = N (19)

Now, we return to the two tank problem which was previ-
ously presented in example 1. To design a dynamic reconfig-
uration block for it, M should be selected to make A − Bf M
stable and satisfy (19) with N achieved in example 1 for
output recovery as well.The matrix M can be appropriately
chosen as:

M =
[

1 0 0
0 1 0
0 −92 100

]
(20)
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Figure 8 shows that the system output is successfully
recovered like the the case of reconfiguration using static
reconfiguration block in Fig. 5. The main advantage of the
dynamic reconfiguration block is clarified comparing Fig. 9
with Fig. 7. The sudden change in the control signal of Fig. 7
is softened in Fig. 9. Therefore, using the dynamic reconfig-
uration block, the output recovery is achieved without any
shock to the actuators. Of course, this achievement is a re-
sult of the extra degree of freedom, M, we have in the case
of dynamic reconfiguration block.
Recent achievements are concluded in the following lemma:

Lemma 3: Assume that a system with dynamical equa-
tions (1) is successfully controlled, i.e. the stability and de-
sired performance are both achieved. An actuator failure
converts the plant Gp to G f

p presented in (5). If the set
(A, Bf ) is still stabilizable, the following dynamic reconfig-
uration block in the architecture of Fig. 2 can recover the
state/output of the faulty plant:

ẋR(t) = ARxR(t) + BRuR(t)

u f (t) = CRxR(t) + DRuR(t)

AR = A − Bf M

Fig. 8 The system output is recovered using a dynamic reconfiguration
block.

Fig. 9 Variation of control signal when dynamic reconfiguration is used.

BR = B − Bf

CR = M

DR = I (21)

in which M should be designed such that AR is Hurwitz, and
−M(A − Bf M)−1B + I = N where N is the solution of (13)
for state recovery or the solution of (14) for output type.

5. Reconfiguration in the Presence of Constraints on
Control Signals

In the previous part, the reconfiguration-based FTC was ad-
dressed and the reconfiguration block was designed based
on a novel structural method. In this part, the design of the
reconfiguration block in the presence of constraint on actu-
ators is considered.

5.1 Energy Constraint

Assume that the reconfiguration block (13)/(14) should be
designed subject to the constraint in the total energy deliv-
ered to the system, i.e. the recovery should be done using
minimum energy. It means that ‖u f ‖ should be minimized.
Since u f = Nu and the previously designed control signal u
is acceptable, the constraint can be converted to minimiza-
tion of the norm of N; i.e. the largest singular value of N
should be minimized. Therefore, the acceptable static re-
configuration block for state recovery is derived from the
following problem:

Minimize
∥∥∥Bf N − B

∥∥∥2

sub ject to : σ̄(N) < γ2
(22)

This problem can be transformed to a standard LMI problem
as: ∥∥∥Bf N − B

∥∥∥2
< α2

→ (Bf N − B)T (Bf N − B) < α2I

→
(

αI (Bf N − B)
(Bf N − B)T αI

)
> 0

(23)

On the other hand, the singular value minimization problem
can be represented as:

σ̄(N) < γ2 →
(
γI N
NT γI

)
> 0 (24)

Therefore, the problem (22) can be converted to the follow-
ing standard LMI:

Minimize w1α
2 + w2γ

2

sub ject to :(
αI (Bf N − B)

(Bf N − B)T αI

)
> 0(

γI N
NT γI

)
> 0

(25)

in which w1 and w2 are weighting factors which are degree
of freedom for the designer. The similar problem for output
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recover can be easily defined and solved according to (14)
as:

Minimize
∥∥∥∥Bf

c N − Bc

∥∥∥∥2

sub ject to : σ̄(N) < γ2
(26)

5.2 Saturation

The more realistic constraint on the control signals is the
saturation. The process of reallocating the control signals
may cause the actuators to get saturated. In this section,
the control reconfiguration problem in the presence of limit
on the control signals is considered. Assume the following
constraint on the control signals:

δmin
i ≤ ui ≤ δmax

i , i = 1, 2, . . . ,m (27)

It is assumed that the constraints are satisfied in the fault-
free control loop. Now in the faulty one, the reconfiguration
block should be designed such that (27) is still satisfied, i.e.:

δmin
i ≤ u f

i ≤ δmax
i , i = 1, 2, . . . ,m (28)

Definition 2 (Free capacity factor for an actuator): Assume
that a system is successfully controlled and the acceptable
performance is achieved. The amount of increase in a con-
trol signals of an actuator before its saturation is called “Free
Capacity Factor” and can be calculated as:

kca
i =

δmax
i − uss

i

δmax
i

(29)

in which uss
i is the value of the control signal ui in the steady

state condition.
Therefore, the control signal of the actuator i in the

fault free control loop can be presented as:

uss
i = (1 − kca

i )δmax
i (30)

On the other hand, the equation uf = Nu means that each
control signal of the faulty plant is achieved by linear com-
bination of control signals of the previous healthy system
as:

u f
i = ni1u1 + ni2u2 + · · · + nimum →

u f ss
i = ni1(1 − kca

1 )δmax
1 + ni2(1 − kca

2 )δmax
2 +

+ · · · + nim(1 − kca
m )δmax

m

= [ ni1(1−kca
1 ) ni2(1−kca

2 ) ··· nim(1−kca
m ) ]

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
δmax

1
δmax

2

...
δmax

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (31)

Considering the constraint in which uf ss
i ≤ δmax

i , i =
1, 2, . . . ,m, (31) can be written as:

[NKca − δmax] < 0

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n11 n12 · · · n1m

n21 n22 · · · n2m
...

...
...

...
nm1 nm2 · · · nmm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Kca =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 − kca
1

1 − kca
2
...

1 − kca
m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, δmax =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

δmax
1
δmax

2
...
δmax

m

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(32)

Therefore, the reconfiguration block for state recovery will
be the solution of the following LMI problem:

Minimize
∥∥∥Bf N − B

∥∥∥ 2

sub ject to : [NKca − δmax] < 0
(33)

Similarly, the output recovery problem using the static re-
configuration block in the presence of saturation constraint
can be formulated as follows:

Minimize
∥∥∥∥Bf

c N − Bc

∥∥∥∥ 2

sub ject to : [NKca − δmax] < 0
(34)

Example 2: Assume that in example 1, the output recovery
should be achieved under a saturation limit of 0.17 on the
control signal u3. Solving (34), the following static recon-
figuration block N is achieved for this constrained optimiza-
tion problem:

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎣
1 0 0
0 1 0
0 0.6301 0.4619

⎤⎥⎥⎥⎥⎥⎥⎥⎦
Figures 10 and 11 show the output and control signal of the
reconfigured faulty control loop in presence of this value of
N as the reconfiguration block, respectively. Figure 11 indi-
cates that the control signal u3 meets the constraint. How-
ever, it is clear from Fig. 10 that the system output is not
exactly recovered to its value before the failure. Though it
is still acceptable.

Fig. 10 Recovery of the system output in presence of saturation con-
straint on control signal u1.
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Fig. 11 Control signals for weak recovery of Fig. 10.

6. Conclusions

In this paper, a novel approach for control reconfiguration in
the actuator failure condition based on the system structure
was proposed. The method was based on reallocating the
role of the failed actuator among the remaining healthy ones.
Using this, the static reconfiguration block was designed to
implement the state or output recovery of the faulty plant.
Also, to improve the flexibility of the reconfiguration block
respecting the constraints in the control loop, a dynamic re-
configuration block was proposed, but its performance was
at best the same as the static one in the steady state condi-
tion. It is shown that the dynamical one has an extra degree
of freedom to satisfy the constraints of the control loop. Fi-
nally, the reconfiguration problem was solved in the pres-
ence of constraints on the energy delivered to the actuators
and also in the presence of saturation. All the achievements
were concluded in theorems and were fully supported by the
simulations.
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Appendix A

Define the following dynamical equations for a linear time-
invariant system:

ẋ(t) = Ax(t) + bu(t) (A· 1)

in which x ∈ Rn is the state vector of the system and u ∈
Rn is the input signal. Assume that Λ represents the set of
eigenvalue of the system matrix An×n and e1, e2, . . . , en is
an orthonormal basis for Rn in which the ith element of the
vector ei is “1” and the others are zero. It is proved in [2]
that the effect of the input signal on the system state can be
represented as:

x(t) =
n∑

i=1

ζiei, ζi = bi

∫ t

0
eΛ(t−q)u(q)dq (A· 2)

in which, the coefficients bi are resulted form projection of
b onto the space spanned by ei’s as follows:

b =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

b1

b2
...

bn

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= e1b1 + e2b2 + . . . + enbn (A· 3)

In other words, ζi represents the distance the state has trav-
elled in the direction of the eigenvector ei [2]. It is clear from
(A· 2) that if ∃i; bi = 0 then ζi = 0, which means that the in-
put signal can not push the system states in the direction of
ei, i.e. the system is not state controllable in this direction.
Lemma A1: The system (A· 1) is not state controllable in the
direction of ek if b has not any element in this direction i.e.
bk = 0 in (A· 3).
The following example clarifies this lemma.
Example A1: Assume the following systems:

ẋ(t) =

[ −1 0
0 −2

]
x(t) +

[
0
1

]
u(t)

It can be easily seen that the system is not full state control-
lable. The eigenvectors of the system matrix are:
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e1 =

[
0
1

]
, e2 =

[
1
0

]

Decomposition of b in this coordination will result: b = e1,
i.e., the element of b in the direction of e2 is zero. Therefore,
the system is not state controllable in this direction.

For the case of multi-input system,

ẋ(t) = Ax(t) + Bu(t) (A· 4)

The input matrix can be presented by its columns as:

Bn×m =
[

b1 b2 · · · bm

]
(A· 5)

The effect of each input on the system state can be repre-
sented according to the previous part:

bk = e1bk1 + e2bk2 + . . . + enbkn

→ xk(t) =
n∑

i=1

ζkiei
(A· 6)

By superposition, the effect of all system inputs on the sys-
tem state can be concluded as:

x(t) =
n∑

i=1

m∑
k=1

ζkiei (A· 7)

It means that each of the inputs can move the system state
somewhat in each of the ei directions. Hence, the total
movement of the system state is resulted by combination
of these parts. It is important to note that each input sig-
nal would not necessarily affect the system state in all the
directions.

On the other hand, considering the single output case
for simplicity, the vector C can be projected onto the space
spanned by eT

i ’s as follows:

C = c1eT
1 + c2eT

2 + · · · + cneT
n (A· 8)

Considering (A· 7) for system state, the system output can
be represented as follows:

y(t) = Cx(t)→ y(t) =
n∑

i=1

m∑
k=1

n∑
j=1

(c je
T
j )ζkiei

=

n∑
i=1

m∑
k=1

n∑
j=1

ζkic je
T
j ei

(A· 9)

From definition of the set of ei’s,

eT
j ei =

{
1, i f j � i
0, i f j = i

(A· 10)

Therefore, (A· 9) can be simplified to:

y(t) =
n∑

i=1

m∑
k=1

ζkici (A· 11)

Table A· 1 List of symbols and abbreviations.

symbol meaning
u/x/y input/state/output of healthy system
u f /x f /y f input/state/output of faulty system
uc/xc/yc input/state/output of the controller
xR state of reconfiguration block
Gp Healthy plant

G f
p Faulty plant

Gc Controller
GR Reconfiguration block
MISO Multi Input Single Output system
MIMO Multi Input Multi Output system
x < 0(x ∈ Rn) All elements of the vector x are negative.

Appendix B

Augmenting (5) and (8), the reconfigured plant GRp in
Fig. 1 B can be represented as:[

ẋR

ẋ f

]
=

[
AR 0

Bf CR A

] [
xR

x f

]

+

[
BR

Bf DR

]
uR

yR(t) =
[

C C
] [ xR

x f

]
(A· 12)

Applying the following similarity transformation:[
xR

ν

]
=

[
I 0
I I

] [
xR

x f

]
(A· 13)

(A· 12) will be transformed to:[
ẋR
ν̇

]
=

[
AR 0

AR+(Bf CR−A) A

] [ xR
ν

]
+

[
BR

BR+Bf DR

]
uR

yR(t) =
[

0 C
] [ xR

ν

]
(A· 14)

Considering (2), the dynamical equation of the closed loop
reconfigured control system can be presented as:

[
ẋR
ν̇
ẋc

]
=

[
AR 0 BRCc

AR+(Bf CR−A) A (BR+Bf DR)Cc
0 BcC Ac

] [
xR
ν
xc

]

y f (t) = Cx f =
[
−C C 0

] ⎡⎢⎢⎢⎢⎢⎢⎢⎣
xR

ν
xc

⎤⎥⎥⎥⎥⎥⎥⎥⎦ (A· 15)

which is stable if (9) is Hurwitz.

Appendix C

Table A.1 represents a list of some of symbols and abbrevi-
ations used in this paper.
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