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Improving the Readability of ASR Results for Lectures Using
Multiple Hypotheses and Sentence-Level Knowledge

Yasuhisa FUJII†a), Kazumasa YAMAMOTO†, Members, and Seiichi NAKAGAWA†, Fellow

SUMMARY This paper presents a novel method for improving the
readability of automatic speech recognition (ASR) results for classroom
lectures. Because speech in a classroom is spontaneous and contains many
ill-formed utterances with various disfluencies, the ASR result should be
edited to improve the readability before presenting it to users, by apply-
ing some operations such as removing disfluencies, determining sentence
boundaries, inserting punctuation marks and repairing dropped words. Ow-
ing to the presence of many kinds of domain-dependent words and casual
styles, even state-of-the-art recognizers can only achieve a 30-50% word
error rate for speech in classroom lectures. Therefore, a method for im-
proving the readability of ASR results is needed to make it robust to recog-
nition errors. We can use multiple hypotheses instead of the single-best
hypothesis as a method to achieve a robust response to recognition errors.
However, if the multiple hypotheses are represented by a lattice (or a con-
fusion network), it is difficult to utilize sentence-level knowledge, such as
chunking and dependency parsing, which are imperative for determining
the discourse structure and therefore imperative for improving readability.
In this paper, we propose a novel algorithm that infers clean, readable tran-
scripts from spontaneous multiple hypotheses represented by a confusion
network while integrating sentence-level knowledge. Automatic and man-
ual evaluations showed that using multiple hypotheses and sentence-level
knowledge is effective to improve the readability of ASR results, while pre-
serving the understandability.
key words: improving readability of ASR results, confusion network, auto-
matic speech recognition, classroom lecture speech, sentence-level knowl-
edge

1. Introduction

The availability of audio transcripts of speech allows the
content of the speech to be more easily understood. In par-
ticular, classroom lectures, which are the focus of this pa-
per, benefit from transcripts because they can assist the hear-
ing impaired and can also be used in downstream process-
ing such as summarization [1], indexing [2], browsing sys-
tems [3], and so on, for normal students. Therefore, there
is much research currently underway on transcribing these
lectures [4]–[6].

However, the recognition results from current auto-
matic speech recognition (ASR) systems are not easily un-
derstood by people even with perfect speech recognition re-
sults, because the speech used in classroom lectures con-
tains many ill-formed utterances with filled pauses, restarts,
repetitions, deletion of prepositions and so on. Thus, be-
fore making transcripts available to users, their readability
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needs to be improved to assist the readers in understanding
the contents of the lecture material. Operations for correct-
ing transcripts include removing filled pauses and repetition,
converting from a spoken style to a written style, inserting
punctuation marks such as commas and periods, and dis-
course markers such as for paragraphs.

In this context, there is currently extensive research
on paraphrasing and correcting recognition results [7]–[10].
Shitaoka et al. formulated the problem as a kind of ma-
chine translation and applied a statistical method to trans-
form spoken language to written language [7]. Hori et al.
used weighted finite state transducers (WFSTs) for the same
purpose by representing each component as a WFST [8].
Neibig et al. also used WFSTs in which their method was
based on the WFST-based log-linear framework [9], [10].

ASR in the classroom is quite difficult owing to the
presence of many kinds of domain-dependent words and the
spontaneity of the lecture. In the case of classroom lectures,
state-of-the-art recognizers typically achieve a word error
rate (WER) of 30-50% [4]–[6]. In this scenario, we need a
method that is robust to recognition errors to improve the
readability of ASR results. Most previous research focused
on manually transcribed texts and therefore did not need to
take this problem into account. Without special treatment
for the problem, those methods would suffer severe degra-
dation when dealing with ASR results [11].

To make the method robust to recognition errors, it
would be more effective to use multiple hypotheses pro-
duced by an ASR decoder instead of the single-best hypoth-
esis, because we would then have an opportunity to recover
recognition errors in the following post-processing stage by
making use of more sophisticated knowledge. A number
of methods such as N-best, word graph (lattice), word trel-
lis, and confusion networks are known to represent mul-
tiple hypotheses for ASR results [12]–[15]. In this study,
we use a confusion network as an intermediate representa-
tion between a speech recognizer and a module for improv-
ing readability for the following three reasons. First, it can
serve posterior probabilities of hypothesized words that rep-
resent confidence in the words by the recognizer. Second,
it is easy to handle its concise structure like a “sausage”, as
depicted in Figure 1. Finally, it has been successfully used
in many other studies as an intermediate representation be-
tween speech recognizers and downstream modules, such as
machine translation [16] and retrieval [17].

Although using multiple hypotheses would make meth-
ods for improving the readability of ASR results more ro-
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Fig. 1 Confusion Network (eto kogi wo hajime masu: Well (I) will start
lecture).

bust to recognition errors, we face an additional challenge if
we use sentence-level knowledge with multiple hypotheses
that are not represented as sentences directly, like N-best.
Accurate sentence boundary detection algorithms such as
methods using maximum entropy, support vector machines
and conditional random fields usually require sentence-level
knowledge to extract features from surrounding context.

In this paper, we propose a novel algorithm that in-
fers clean, readable transcripts from spontaneous multiple
hypotheses represented by a confusion network while in-
tegrating sentence-level knowledge. To integrate sentence-
level knowledge, the algorithm uses iterative decoding pro-
posed in [18]. Since this algorithm can integrate sentence-
level knowledge efficiently, we can employ a more sophis-
ticated sentence boundary detection algorithm that requires
sentence-level knowledge. For the sentence boundary detec-
tion algorithm, we used “improved sequential dependency
analysis (improved-SDA)” which is an algorithm for depen-
dency analysis and sentence boundary detection designed to
work well for spontaneous speech whose sentence bound-
aries are not predefined [19]. We employed the improved-
SDA for sentence boundary detection since it seemed the
best among sentence boundary detection methods when
dealing with spontaneous speech. In addition, it produced
scores from bunsetsu estimation and dependency analysis
which may have been useful for sentence cleaning. The
scores computed during the process of improved-SDA are
integrated into the transcript cleaning process to further im-
prove the performance.

This paper is organized as follows: Sect. 2 explains our
proposed method to infer cleaned transcripts from multiple
ASR hypotheses represented by a confusion network. Inte-
gration of sentence-level knowledge to further improve the
transcript cleaning algorithm is described in Sect. 3. Base-
lines used in the experiments are described in Sect. 4. Ex-
perimental results are shown in Sect. 5. Section 6 states the
conclusions and outlines some future work.

2. Inferring Cleaned Transcripts from Multiple ASR
Hypotheses

In this section, we describe an algorithm to improve the
readability of ASR results using multiple hypotheses rep-
resented by a confusion network without sentence-level
knowledge.

2.1 Formulation

We cast the problem of improving the readability of ASR re-
sults as one of finding a clean, readable transcript w given an
acoustic observation sequence o. The posteriori probability

of w given o can be written as

P(w|o) =
∑

s

P(w|s, o)P(s|o) ≈ max
s

P(w|s)P(s|o), (1)

where s stands for a raw transcript corresponding to acoustic
observation o, P(w|s) represents a probability if s is trans-
formed to w, and P(s|o) is a posterior probability of s given
o obtained from a decoder. In this paper, P(w|s) is approxi-
mated as follows:

P(w|s) ≈ 1
C

P(w)δ(w, s), (2)

where P(w) is a language model for clean, readable tran-
scripts, δ(w, s) is a function if s can be converted into
w, the value is 1, otherwise 0, and C is a normalization
term to ensure the summation of the probability is equal
to 1. These types of (handcrafted) rules are often used
when a parallel corpus to train the transformation is not
available [20]. For practical reasons, we compute δ(w, s)
(w = (w1,w2, . . . ,wN), s = (s1, s2, . . . , sN)) as follows (see
Sect. 2.3 for the different length):

δ(w, s) =
N∏

i

δ(wi, si), (3)

where δ(w, s) = 1 if there exists the word pair in the trans-
lation table, otherwise 0. Since P(s|o) is represented by a
confusion network, it can be computed as follows:

P(s|o) =
∏

i

P(si|o). (4)

Using Eqs. (2), (3) and (4), Eq. (1) becomes

P(w|o) ≈ 1
C

P(w) max
s

N∏

i

δ(wi, si)P(si|o). (5)

Introducing a weight α to balance between P(w) and P(si|o)
into Eq. (5), the final output of the system is the ŵ, which
maximizes the equation below

ŵ = argmax
w

P(w)αmax
s

N∏

i

δ(wi, si)P(si|o). (6)

We consider multiple hypotheses from a decoder by a
max operator while traditional methods based on statistical
methods consider only the single-best hypothesis and thus
use only P(w|s) [7]–[10].

2.2 Posterior Probabilities from a Confusion Network

In a lattice, we can compute the posterior probability de-
fined as the sum of the posteriors of all paths through a word.
Once the confusion network is constructed, words that ap-
pear at the same time but on other paths are merged into
one class. By summing the posteriors of the words that are
merged into the same class, we can compute the posterior of
the word class.
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P(Ci(w)) =
∑

e∈Ci(w)

P(e), (7)

where Ci(w) is the word class of w in bin Bi
†and it has edges

e whose labels are w and whose posterior probabilities are
P(e).

The confusion network allows a bin to be dropped by
introducing a special word del. The posterior probability of
this special word del is computed as follows:

P(deli) = 1 −
∑

c∈Bi

P(c), (8)

where Bi is the bin to which the special word deli belongs.

2.3 Transformation Rules

By using Eq. (3), we can deal with any kind of translation.
However, in this paper, we deal only with the deletion of
filled pauses and the insertion of periods, which should be
dealt with initially. In the following sections, we describe
each transformation.

2.3.1 Deletion of Filled Pauses

A filled pause is the most dominant phenomenon among the
specific phenomena to spontaneous speech [21], and mostly
affects the readability of the transcripts. To remove filled
pauses, we added entries into the translation table as fol-
lows:

δ(del,Filler) = 1, (9)

where Filler is a word whose part of speech (POS) is filler
or interjection. In our setup, words are composed of surface
form, pronunciation and POS tag, so that we can use POS
without an additional parser.

2.3.2 Insertion of Periods

The raw output from recognizers lacks the periods and the
unit used for recognition (usually a segment between short-
pauses) and differs from the actual sentence unit underlying
the utterances. Therefore, to improve the readability of the
output text, we need to detect sentence boundaries and re-
cover the periods. While periods do not always correspond
to pauses, relationships still exist between them [7]. There-
fore, initially we added entries into the translation table as
follows:

δ(Period,Pause) = 1, (10)

where Pause is a silence or a short pause. In addition, we
added entries into the translation table as follows:

δ(Period, del) = 1. (11)

By allowing the conversion from del to Period, we can also
recover the periods that do not correspond to pauses.

Since we do not have manually paraphrased corpora
with commas, we do not deal with them in this paper. How-
ever, we can add similar rules to those used for insertion of
periods, to insert commas.

2.4 Language Model for Clean Transcripts

The language model probability P(w) for clean, readable
transcripts in Eq. (6) plays an important role in improving
the readability of ASR results, because our method assumes
that there are no parallel data to obtain transformation rules
between raw and cleaned transcripts, unlike [10], and only
uses a few heuristic rules for the transformation.

In this study, we train P(w) on a large newspaper corpus
because the contents of a newspaper can be considered clean
and readable, and therefore it is reasonable to try to bring the
style of processed transcripts close to that of a newspaper
(representative written style).

3. Integration of Sentence-Level Knowledge

3.1 Motivation

While the algorithm described in Sect. 2 has the ability to
deal with multiple hypotheses in the transcript cleaning pro-
cess, it is not accurate for sentence boundary detection be-
cause it mostly relies on an N-gram language model trained
from newspaper text to detect sentence boundaries. Gen-
erally speaking, an N-gram language model is not power-
ful enough for accurate sentence boundary detection. To
improve the sentence boundary detection of the algorithm,
we can employ a more sophisticated algorithm that requires
sentence-level knowledge [19].

However, we face an additional challenge if we use
sentence-level knowledge with multiple hypotheses that are
not represented as sentences directly, like the N-best, and
are stored compactly by bundling hypotheses locally using
some base, like a lattice. Therefore, it is usually difficult or
even not feasible to rescore such multiple hypotheses using
sentence-level knowledge. Obviously, we can adopt a sim-
ple N-best as a representation of multiple hypotheses to use
sentence-level knowledge in the algorithm; however, N-best
is inefficient for representing thousands of hypotheses.

To solve the problem, we propose to use a recently
proposed state-of-the-art iterative decoding algorithm de-
veloped for a confusion network to integrate sentence-level
knowledge [18]. Using the iterative decoding algorithm, we
can use sentence-level knowledge efficiently with multiple
hypotheses represented by a confusion network. The actual
decoding algorithm we use will be described in Sect. 3.5.

3.2 Improved-SDA

Since we can use sentence-level knowledge efficiently
within the process of transcript cleaning owing to the iter-
ative decoding algorithm, we can employ a more sophisti-
cated algorithm that requires sentence-level knowledge to
detect sentence boundaries. As the sophisticated sentence

†For example, in Fig. 1, eto(well), de(then) and del correspond
to word classes and {eto(well), de(then), del} corresponds to a bin.
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boundary detection algorithm, we use an improved-SDA,
which is an algorithm to determine a sentence boundary and
dependency structure simultaneously, given a spoken word
stream whose sentence boundaries are not known [19]. Us-
ing the improved-SDA, we can expect that sentence bound-
ary detection accuracy will be improved.

3.2.1 Bunsetsu Chunking

Since improved-SDA works on a bunsetsu (like “phrase”
in English) sequence and uses the bunsetsu detection result
for the accurate sentence boundary detection algorithm, we
need to determine bunsetsu boundaries prior to applying the
improved-SDA. In [19], the bunsetsu boundary detection
problem was cast as a labeling problem and it was solved
by using conditional random fields (CRF) [22]. We also im-
plemented a CRF chunker and used the same configuration
with [19] for bunsetsu chunking. We use P(b|s) to express
the probability of bunsetsu the chunking result b given a
spoken word sequence s.

3.2.2 Dependency Modeling

In a typical Japanese dependency analysis, a depen-
dency structure d is represented by a set of head bun-
setsu h1, h2, · · · , hN corresponding to modifier bunsetsus se-
quence b = (b1, b2, · · · , bN). Generally, the dependency
analysis is a task for finding the most appropriate depen-
dency structure d̂ given the bunsetsu sequence b. Theoreti-
cally, it is written as follows:

d̂ = argmax
d

P(d|b). (12)

P(d|b) is the probability for generating the structure d given
a bunsetsu sequence b and calculated as

P(d|b) =
N∏

i=1

P(bi → hbi |Φ(bi, hbi , b)), (13)

where Φ(bi, hbi , b) is a linguistic feature vector, and P(bi →
hbi |Φ(bi, hbi , b)) is a link score between bi and hbi and trained
using dependency parsed data. In [19], the maximum en-
tropy model-based relative dependency model was used to
model the link score, which was defined as follows:

P(bi → hbi |Φ(bi, hbi , b))

=
exp(w ·Φ(bi, hbi , b))∑

h∈Cbi
exp(w ·Φ(bi, hbi , b))

, (14)

where w is a model parameter and Cbi is a set of head candi-
dates for bi, which is given based on the parsing algorithm
and the dependency constraints. If Φ(bi, hbi , b) is carefully
defined, we can expect that Eq. (14) will work well. To make
Φ(bi, hbi , b) powerful, explicit feature expansions are usu-
ally needed. However, in our algorithm, explicit feature ex-
pansions are time-consuming because the algorithm needs
to examine a lot of hypotheses. Therefore, instead of ex-
panding features explicitly, we use gate functions to expand

features implicitly as follows:

P(bi → hbi |Φ(bi, hbi , b))

=
exp(
∑K

g µgh(wg ·Φ(bi, hbi , b)))
∑

h∈Cbi
exp(
∑K

g µgh(wg ·Φ(bi, h, b)))
, (15)

where K is a number of gate functions, μg is the weight of
a gate g, wg is an internal weight for a gate g and h(x) is a
gate function defined as follows:

h(x) =
1

1 + exp(−x)
. (16)

The idea of using gate functions in a maximum entropy
model is referenced in [23]. The parameters were trained
to maximize the probability defined by Eq. (13) of training
data (we used core data from CSJ) using a gradient-based
optimization algorithm.

3.2.3 Sequential Dependency Analysis

SDA extracts the dependency structure online by introduc-
ing meta-symbols 〈b〉 and 〈c〉, which express a sentence
boundary and an arbitrary bunsetsu in the unseen part with-
out changing the formulation of Eq. (12). Please refer to
[24] for a detailed explanation of SDA.

In addition to the 〈b〉 and 〈c〉, we introduce a meta-
symbol 〈n〉, which expresses a null bunsetsu, namely, a link
bi → 〈n〉 means bi does not have a head. This newly intro-
duced meta-symbol is mainly used for disfluent words that
tend not to have heads; therefore, it can be a good indicator
for detecting disfluencies (or redundant bunsetsu).

3.3 Formulation

Although the initial aim to utilize sentence-level knowledge
in transcript cleaning was to improve sentence boundary de-
tection accuracy, the scores computed during the sentence
boundary detection process can be used as the scores for
transcript cleaning. During the processing of improved-
SDA, the bunsetsu chunking probability P(b|s) and the de-
pendency analysis probability P(d|b) are computed. By
adding these probabilities into Eq. (6), we obtain the follow-
ing equation

ŵ = argmax
w

P(w)αmax
s,b,d

P(d|b)βP(b|s)γ

·
N∏

i

δ(wi, si|b, d)P(si|o), (17)

where β and γ are weights for P(d|b) and P(b|s), respec-
tively. Transformation rules represented by δ(wi, si) in
Eq. (6) are changed to δ(wi, si|b, d) and now depend on an
improved-SDA result of {b, d}.

3.4 Transformation Rules with Improved-SDA

Transformation rules described in Sect. 2.3 are modified to
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Fig. 2 Decoding algorithm with iterative decoding.

use the result of improved-SDA. The rules for deletion of
filled pauses and insertion of periods are changed as de-
scribed in the following sections.

3.4.1 Deletion of Filled Pauses

The rule to delete filled pauses is changed as follows:

δ(del,Filler|Filler→ 〈n〉) = 1. (18)

This means that Fillers only whose heads are 〈n〉 are trans-
formed to del.

3.4.2 Insertion of Periods

Since improved-SDA can detect sentence boundaries accu-
rately, we utilize this information to determine the position
where a period is inserted. To reflect the information, we
use the following rule:

δ(Period, 〈b〉) = 1, (19)

where 〈b〉 is the meta-symbol that indicates a sentence
boundary determined by improved-SDA.

3.5 Decoding Algorithm with Iterative Decoding

In this section, we describe an algorithm to find the most
plausible clean, readable transcript ŵ given an observation
sequence o based on Eq. (17). The algorithm is shown in
Fig. 2. The algorithm receives utterances one by one, and
processes them iteratively (line 3-26). A confusion net-
work CN is constructed at line 4. Iterative decoding finds
the most plausible cleaned transcript ŵ given the CN and
contexts, s′, b′, d′, w′, which were the results of the pre-
vious iteration (line 6-25). Multiple hypotheses are ex-
amined by changing a word at a time (line 10-23). The
operator ‘+’ is used to concatenate two partial hypothe-
ses (line 12-15). GetHypothesis(CN, i, j) extracts a word
hypothesis from CN by picking the best words from each
bin except bin i from which the jth word is extracted.
Chunking(s, b′) chunks s given the context b′ using the
method described in Sect. 3.2.1 and returns the chunked re-
sult. Improved-SDA(b, d′) conducts improved-SDA on b
given a context d′ based on Eq. (12) and returns the result.
Transform(s, b, d,w′) applies transformation rules to s given
b, d and w′. If the score of an examined hypothesis w ex-
ceeds the score of the current best hypothesis ŵ, w is used as
the new best hypothesis and the examined word Ci j is placed
at the top of the bin (line 17-21). When the algorithm ter-
minates, ŵ is the desired output. Note that this algorithm is
globally suboptimal because it considers only the best con-
text in each iteration (line 3-26).

4. Compared Baselines

To confirm the superiority of the proposed method, we com-
pare the proposed method with three baselines, which are
described in the following sections.

4.1 Filler Removal

Filled pauses would mostly affect the readability of the tran-
scripts as mentioned in Sect. 2.3.1. Therefore, we removed
filled pauses from the transcripts automatically and used it
as a baseline. Filled pauses were removed from transcripts
based only on the POS information. The words whose POS
was “filler” or “interjection” were removed as filled pauses.
We will refer to the baseline as Filler.

4.2 Single Hypothesis Editing

Our proposed method uses multiple hypotheses to be ro-
bust for recognition errors, thus we should compare it with
the transcripts that are edited from a confusion network
that only contains the single-best hypothesis using the pro-
posed method. To create such a confusion network, we just
dropped all other words except single-best words and dels
from a confusion network. If we need to deal with a plain
transcript such as a manual transcript, we create a pseudo
confusion network that contains the words included in the
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Fig. 3 Examples of transcripts.

Table 1 Statistics of the test sets (average of 8 lectures for CJLC and 4 lectures for CSJ). APP. means
adjusted perplexity. OOV indicates the ratio of OOV.

Corpus Duration (min.)
#Words APP. OOV [%]

#Filler [%]
Manual Paraph. Manual Paraph. Manual Paraph.

CJLC 67.6 11813 10192 182.6 159.7 3.5 3.9 7.2
CSJ 19.8 4776 3921 80.1 96.4 0.6 0.8 8.6

transcript and dels whose pseudo posterior probabilities are
c and 1 − c in each bin, respectively. We will refer to the
baseline as Single.

4.3 No Sentence-Level Knowledge

To confirm the effectiveness of sentence-level knowledge,
we examine methods that do not use it. In the following
experiments, (w/o snt.) indicates that sentence-level knowl-
edge is not used (Eq. (6)) while (w/ snt.) indicates that
sentence-level knowledge is used (Eq. (17)).

5. Experiments

5.1 Setup

We used 8 lectures from CJLC [21] as a test set and 4 lec-
tures from CSJ [25] as a development set. For both corpora,
manually transcribed texts (referred to as manual in the ex-
perimental results) are available, and in addition, we pre-
pared cleaned transcripts of the manual transcripts by man-
ually editing and paraphrasing the transcripts to improve the
readability (henceforth referred to as paraphrased). Exam-
ples of the transcripts are shown in Fig. 3. The statistics of
the both test sets are shown in Table 1. In the table, “APP.”
means adjusted perplexity and “OOV” indicates the ratio of
OOV. The perplexities were computed using the CSJ model.

We prepared an acoustic model and a language model
that were both trained from the CSJ corpus for the ASR. The
size of the lexicon was set at 20 k. We used ChaSen with

Table 2 WER, Word coverage and density of constructed confusion net-
work.

Testset Reference WER [%] Coverage [%] Density

CJLC
Manual 43.8 80.9

3.83
Paraphrased 64.2 75.9

CSJ
Manual 29.0 90.9

4.68
Paraphrased 49.0 86.9

IPADic ver. 2.7.0 as a morphological analyzer. As a de-
coder, we used SPOJUS++, which has a feature for produc-
ing a confusion network [26]. The recognition results, word
coverage and word densities of constructed confusion net-
works are shown in Table 2. We trained a 4-gram language
model with Witten-Bell smoothing on the Mainichi newspa-
per corpus (9 years, 214 M words) for clean transcripts using
the same lexicon used for the ASR †. The same configura-
tion with [19] was used for the improved-SDA except we
used Eq. (15) to compute link scores. Our implementation
achieved approximately the same performance with [19] for
sentence boundary detection and dependency analysis, de-
spite the difference.

We used WER to evaluate the transcripts, which was
calculated as follows:

†Unsurprisingly, most of the colloquial and spoken-style ex-
pressions were able to be found in the newspaper articles even
though they may have not been frequent words. Since our proposed
method does not produce a hypothesis which contains words that
are not contained in the vocabulary due to the limited translation
rules, it is not needed to use a different vocabulary. However, we
can use a more useful different vocabulary without changing the
algorithm if needed.
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WER =
D + S + I
C + D + S

, (20)

where D, I, S , and C denote the number of deletions, in-
sertions, substitutions and matches, respectively. When we
calculated WER, we considered only surface form.

We used Recall, Precision and F-measure that is a har-
monic mean of the Recall and Precision to evaluate the per-
formance of the insertion of periods. These are defined as
follows:

Recall =
C

C + D + S
, Precision =

C
C + I

. (21)

All parameters were tuned on the development set
(CSJ). α, β, γ in (6) and (17) were 0.15, 0.0, 5.0 for the
ASR result-based systems and 0.0, 0.3, 0.0 for the man-
ual transcript-based systems. If the value of a parameter
is 0.0, it means that the parameter does not contribute the
cleaning process. Before the experiments were conducted,
we expected that all parameters would have positive values
(> 0.0) to help the cleaning process. Contrary to our ex-
pectation, the value of parameter for dependency analysis
was 0 for ASR results and the values of parameters for LM
and bunsetsu estimation were 0.0 for the manual transcripts.
Although this result was different from our expectation, it
revealed the interesting characteristic of each component.
Namely, the scores from LM and bunsetsu estimation were
useful to filter out hypotheses which have relatively higher
WER, and they were not needed for the manual transcripts
since they were already perfect. On the other hand, the
scores from dependency analyses on an erroneous ASR re-
sults were not consistent with the final WERs of processed
transcripts, however, they were somewhat consistent if the
processed transcripts were perfect.

We believe that from the view point of machine learn-
ing, ideally, the value of each parameter should be automat-
ically determined through an optimization algorithm and we
do not need to concern whether each parameter is effective
or not a priori. This means that we can use any scores (fea-
tures) without concerning the adequateness to be used since
the adequateness can be judged by the optimization algo-
rithm. In this experiment, although we used the simplest
grid search algorithm to optimize the parameters, we can
use more sophisticated algorithms if needed.

The dependency analysis on poor ASR results does not
make sense, and therefore, it is difficult to show what ex-
tent our dependency analysis worked with our ASR results
whose WER was 44% since there is no dependency struc-
ture on incorrect transcripts. However, please note that our
proposed method works on multiple hypotheses which may
obtain correct transcripts. We expected that the dependency
analysis produced higher scores for hypotheses which had
correct dependency structure, however, it may have not been
held because the score of a dependency structure was con-
ditional probability computed by Eq. (13) and there was no
meaning to compare them if the condition b was different.

5.2 Automatic Evaluation

5.2.1 Comparison with Paraphrased Transcripts

To evaluate the proposed method, we compared different
types of transcripts with manually paraphrased transcripts.
The WER for the transcripts derived from the manual tran-
scripts (Manual-*) must not be 0% because our target was
the paraphrased transcript. Punctuation marks were re-
moved from all transcripts for the evaluation. Significance
tests were conducted using the method described in [27].

The results are given in Table 3. We could observe
that the 1-best-raw, which means the single-best ASR re-
sult, obviously produced the worst result (64.2% and 49.0%
for CJLC and CSJ, respectively). By removing filled pauses
from the transcripts, the Filler could improve the 1-best-raw
(64.2% → 58.4%†† and 49.0% → 42.0%††; where † and ††
indicate the method was significantly better under signifi-
cance levels of 5% and 1%, respectively). The Single (w/o
snt.) outperformed the Filler because it could determine
and remove disfluencies by utilizing the posterior probabil-
ities from the confusion networks and the N-gram probabil-
ities from clean transcripts (58.4% → 55.2%†† and 42.0%
→ 40.9%†). Using multiple hypotheses, the Multiple (w/o
snt.) outperformed the Single (w/o snt.) (55.2%→ 54.2%††
and 40.9% → 40.0%). Furthermore, the Multiple (w/ snt.)
was superior to the Single (w/ snt.), but there was no signif-
icant difference between them (53.8%→ 53.5% and 39.5%
→ 39.1%). In addition, the sentence-level knowledge bene-
fited the Single (w/ snt.) and the Multiple (w/ snt.), and they

Table 3 Evaluation results of the transcripts [%]. 1-best-raw means
the raw transcript of the best recognition result, Filler and Single are the
two baselines that are described in Sect. 4, Manual-raw means raw man-
ual transcript, Manual-filler means manual transcript that removed filled
pauses using the method described in Sect. 4.1, and Manual-single means
the transcript that was edited from the manual transcript using the method
described in Sect. 4.2. w/o snt. and w/ snt. mean whether sentence-level
features are used or not, respectively.

Corpus Method Del. Ins. Subs. WER

CJLC

1-best-raw 6.8 18.2 39.3 64.2
Filler 8.7 11.0 38.7 58.4
Single (w/o snt.) 16.1 7.3 31.8 55.2
Single (w/ snt.) 18.7 5.0 30.1 53.8
Multiple (w/o snt.) 15.4 7.0 31.7 54.2
Multiple (w/ snt.) 16.7 5.7 31.1 53.5
Manual-raw 3.5 19.8 14.1 37.4
Manual-filler 4.0 14.4 13.7 32.1
Manual-single (w/o snt.) 7.6 10.8 15.8 34.2
Manual-single (w/ snt.) 7.1 10.3 15.0 32.4

CSJ

1-best-raw 4.7 17.8 26.5 49.0
Filler 6.5 11.1 24.4 42.0
Single (w/o snt.) 10.0 7.8 23.0 40.9
Single (w/ snt.) 12.1 5.8 21.6 39.5
Multiple (w/o snt.) 9.9 7.4 22.7 40.0
Multiple (w/ snt.) 11.0 6.1 22.0 39.1
Manual-raw 2.4 22.3 9.5 34.1
Manual-filler 2.9 14.0 9.2 26.1
Manual-single (w/o snt.) 4.5 11.5 10.2 26.2
Manual-single (w/ snt.) 3.9 11.3 9.4 24.6
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outperformed the Single (w/o snt.) (55.2% → 53.8%†† and
40.9% → 39.5%†) and the Multiple (w/o snt.) (54.2% →
53.5%†† and 40.0% → 39.1%), respectively. If the multi-
ple hypotheses or the sentence-level knowledge is used in-
dividually, the improvements were not always significant es-
pecially for the CSJ, however, by taking into account both
multiple hypotheses and sentence-level knowledge, the Mul-
tiple (w/ snt.) yielded the best performance among the ASR
result-based systems and significant improvements against
the Single (w/o snt.) where the both knowledge is not used
(55.2% → 53.5%†† and 40.9% → 39.1%††). These results
clearly show that using multiple hypotheses and sentence-
level knowledge makes the ASR results closer to manually
cleaned transcripts.

We can see that the numbers of deletion significantly
increased in the cases of the Single and Multiple compared
to the 1-best-raw and Filler. We believe that the increase
of the number of deletion itself was not a problem since the
proposed method mainly benefits the sentence cleaning pro-
cess by removing not only fillers but also low-confidence,
unnecessary and redundant words. However, there is a
trade-off between the numbers of deletions of those irrele-
vant words and correct words because the deletion by the
proposed system is not perfect. The effectiveness of the
deletion can be evaluated by only a subjective test as we did
in Sect. 5.3. As the subjective test revealed, it was true that
the proposed method occasionally dropped words which
were crucial to understand the content of a video and must
be retained in the final transcript since it did not consider
the importance of the words. By weighting words depend-
ing on their importance, the problem might be mitigated in
a similar vein with [28]. This will be one of the our future
works.

When using the manual transcripts, the Manual-raw
was the worst one among all methods (37.4% and 34.1%).
The Manual-filler reduced the WER by removing filled
pauses from raw transcripts compared to the Manual-raw
(37.4% → 32.1%†† and 34.1% → 26.1%††). The Manual-
single (w/o snt.) also outperformed the Manual-raw signif-
icantly (37.4% → 34.2%†† and 34.1% → 26.2%††). How-
ever, it was infereior to the Manual-filler for the CJLC while
it was comprable for the CSJ. The Manual-single (w/ snt.)
improved the Manual-single (w/o snt.) by utilizing the sen-
tence level knowledge (34.2% → 32.4%†† and 26.2% →
24.6%††). The Manual-single (w/ snt.) was comparable to
the best one (Manual-filler) for the CJLC while it was the
best one among all methods for the CSJ.

Although we trained the language model using the
newspaper corpus, we do not have to be restricted to the
newspaper corpus to train the language model. For ex-
ample, transcripts from the Japanese National Diet Record
(JNDR) would be appropriate to train the language model
since the transcripts are created by cleaning the raw spon-
taneous transcripts manually by professional stenographers.
As an additional experiment, we combined the newspaper
corpus (214 M words) and the JNDR (184 M words) [29],
and trained a new language model using the combined cor-

Table 4 Evaluation results of the transcripts by the proposed method
(Multiple (w/ snt.)) when using different language models [%]. JNDR
stands for the Japanese National Diet Record.

Corpus LM Del. Ins. Subs. WER

CJLC
Mainichi 16.7 5.7 31.1 53.5
+JNDR 16.7 5.8 30.9 53.4

CSJ
Mainichi 11.0 6.1 22.0 39.1
+JNDR 11.0 6.1 21.9 39.0

Table 5 Evaluation results of the insertion of periods.

Corpus Method Recall Precision F

CJLC

Utterance 0.562 0.252 0.334
Single (w/o snt.) 0.475 0.463 0.467
Single (w/ snt.) 0.457 0.543 0.489
Multiple (w/o snt.) 0.487 0.421 0.450
Multiple (w/ snt.) 0.497 0.517 0.501
Manual-single (w/o snt.) 0.367 0.602 0.455
Manual-single (w/ snt.) 0.596 0.656 0.620

CSJ

Utterance 0.824 0.232 0.355
Single (w/o snt.) 0.474 0.466 0.469
Single (w/ snt.) 0.645 0.545 0.590
Multiple (w/o snt.) 0.481 0.390 0.429
Multiple (w/ snt.) 0.674 0.526 0.590
Manual-single (w/o snt.) 0.469 0.611 0.530
Manual-single (w/ snt.) 0.746 0.594 0.661

pus (214 + 184 = 398 M words). The result is shown in Ta-
ble 4. With the new language model, our proposed method
provided an almost same result for both corpora (53.5%→
53.4% and 39.1% → 39.0%). The small differences were
due to the poor translation model we used and the restricted
hypothesis space represented by a confusion network, but
not our proposed framework.

5.2.2 Evaluation of the Insertion of Periods

In this section, we evaluated the ability to insert punctua-
tion marks. To evaluate the ability, we aligned the tran-
scripts with the paraphrased transcripts that contained man-
ually inserted periods and computed Recall, Precision and
F-measure for the periods.

Table 5 gives the evaluation results of the insertion of
periods. Since for the results of the 1-best-raw, Filler and
the Manual-filler must be the same, Utterance stands for
these methods in the table. We regarded utterance bound-
aries for ASR as sentence boundaries for the Utterance. The
utterance was defined as a portion between pauses longer
than about 200 msec. The Utterance was the worst among
all methods (0.334 and 0.355 of F for CJLC and CSJ, re-
spectively). The Single (w/o snt.) outperformed the Utter-
ance by inserting periods depending on the N-gram infor-
mation from clean transcripts (0.334→ 0.467 and 0.355→
0.469). Interestingly, in this evaluation, the Multiple (w/o
snt.) did not provide any improvement over the Single (w/o
snt.) (0.467 → 0.450 and 0.469 → 0.429). This might be
because inserting periods relying only on the N-gram infor-
mation, which can only capture local cohesion with multi-
ple hypotheses, causes a number of false alarms and leads
to severe degradation of the precision. On the other hand,
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Table 6 Statistics of the test set for the subjective test. APP. means adjusted perplexity. OOV indicates
the ratio of OOV.

Duration (min.)
#Words APP. OOV [%]

#Filler [%]
Manual Paraph. Manual Paraph. Manual Paraph.

8.18 1654 1410 148.5 121.2 2.2 2.1 8.8

sentence-level knowledge benefited the inserting periods.
As a result, the Single (w/ snt.) was superior to the Single
(w/o snt.) (0.467→ 0.489 and 0.469→ 0.590) and the Mul-
tiple (w/ snt.) outperformed the Multiple (w/o snt.) (0.450
→ 0.501 and 0.429 → 0.590). When using sentence-level
knowledge, the multiple hypotheses approach was also ef-
fective and the Multiple (w/ snt.) overcomes or is compa-
rable to the Single (w/ snt.) (0.489 → 0.501 and 0.590 →
0.590). Therefore, we concluded that multiple hypotheses
and sentence-level knowledge are also beneficial for the in-
sertion of periods.

We did not analyze how the readability varies in ac-
cordance with the accuracy of the insertion of periods. The
analysis would be one of the future works. However, if the
accuracy of the insertion of periods is improved, it means
that the performance of the automatic insertion of periods
approaches the performance of the manual insertion of pe-
riods. If we assume that the manual paraphrased transcripts
have the best readability, we can expect that the performance
improvement of the insertion of periods improves the read-
ability as well.

5.3 Subjective Test

To assess whether the proposed method really improves the
readability and the understandability of the ASR result, we
conducted a subjective test. The definitions of the criteria
are follows:

• Readabilty: How transcripts are read easily before
knowing the contents of the transcripts and it did not
matter whether the transcripts conveyed the true mean-
ings or not. Therefore, it just assessed the “readaiblity”
of the transcripts.
• Understandability: How the transcript conveyed the

true meaning of the original raw transcripts and it did
not matter how easily they were read.

The subjective test was conducted for two lectures of CJLC
by 10 persons. The statistics of the test set are shown in Ta-
ble 6 and the recognition results, word coverage and word
densities of constructed confusion networks of the test set
are shown in Table 7. We can confirm that the test set was
representative enough by comparing Tables 6 and 7 with Ta-
bles 1 and 2. The procedure of the subjective test was as
follows:

1. Read transcripts A and B. Each transcript is about 30
lines (about 850 words) and divided into 4 small blocks
(about 7 lines), which roughly reflect topics.

2. Compare each block for readability (paired compari-
son).

Table 7 WER, Word coverage and density of constructed confusion net-
work of the test set for the subjective test.

Reference WER [%] Coverage [%] Density
Manual 52.0 74.0

4.00
Paraphrased 69.0 70.1

Table 8 Subjective test results. R and U mean the evaluations of read-
ability and understandability. † and †† indicate statistical significance of the
method under the significance level 0.05 and 0.01, respectively. * means
that the subjects were different with other experiments.

Eval.
Method Count

A B A B ?

R
1-best-raw Filler†† 8 70 2
Filler Single (w/o snt.)†† 26 50 4
*Single (w/o snt.) Single (w/ snt.)†† 20 53 7
*Single (w/o snt.) Multiple (w/o snt.) 34 41 5
Single (w/o snt.) Multiple (w/ snt.)†† 27 51 2

U

1-best-raw Filler†† 8 57 15
Filler†† Single (w/o snt.) 60 18 2
*Single (w/o snt.) Single (w/ snt.)†† 4 65 11
*Single (w/o snt.) Multiple (w/o snt.)†† 3 66 11
Single (w/o snt.) Multiple (w/ snt.)†† 19 56 5
Filler Multiple (w/o snt.) 38 28 14

3. Read the manual transcript, and then read and under-
stand each transcript again.

4. Compare each block for understandability (paired com-
parison).

If there are no preferences between two pairs, subjects are
allowed to use “?” to indicate “I could not distinguish
them”. We deleted linefeeds for periods from those tran-
scripts to avoid any bias caused by existence of periods.

The results of the subjective test are shown in Table 8.
In the table, “count” indicates how many times the method
was chosen, while “†” and “††” denote that the method
achieved significantly better readability or understandabil-
ity at the 5% and 1% significance level (z-test), respectively.
“*” means that the subjects were different with other ex-
periments. The table shows that the Filler significantly im-
proved the readability and understandability compared with
the 1-best-raw. This means that we should always remove
filled pauses from transcripts. The Single (w/o snt.) sig-
nificantly improved the readability and degraded the un-
derstandability compared with the Filler. This result indi-
cated that the Single could improve the readability because
it could remove disfluent parts better than the Filler, while
it degraded the understandability because the disfluent part
detection was not accurate enough and it deleted some im-
portant content words that were crucial to understanding the
contents.

The comparison between the Single (w/o snt.) and the
Single (w/ snt.) showed that the sentence level knowledge
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was effective for the both criteria, while the comparison
between the Single (w/o snt.) and the Multiplee (w/o snt.)
showed that the use of multiple hypotheses was effective es-
pecially for improving the understandability. By using the
both knowledge, the Multiple (w/ snt.) improved the Sin-
gle (w/o snt.) for the both criteria. Although it seems that
the Single (w/ snt.) would be enough to improve the Single
(w/o snt.) and was not needed to be used with the multiple
hypotheses, the superiority of the Multiplee (w/o snt.) to the
Single (w/o snt.) implied that the hypotheses which were not
contained the 1-best result helped the cleaning process, and
thereby the combining the both knowledge sources would
provide better results †.

If the Multiple (w/ snt.) is compared with the Filler,
we can induce that the Multiple (w/ snt.) was superior to
the Filler in terms of the readability from the relationships
Filler < Single (w/o snt.) and Single (w/o snt.) < Multi-
ple (w/ snt.) (where A < B means that A is superior to B).
On the other hand, we cannot order them in terms of the
understandability from the results. However, we might be
able to say that at least there would be no significant differ-
ence between Multiple (w/ snt.) and Filler based on the fact
that there was no significant difference between the Filler
and the Multiple (w/o snt.) in terms of the understandability.
As mentioned in Sect. 5.2.1, our proposed method benefits
the sentence cleaning process by removing not only fillers
but also low-confidence, unnecessary and redundant words.
Therefore, it had a higher risk to deteriorate the understand-
ability of the transcript than the Filler by occasionally drop-
ping content words which were needed to understand the
lecture. In that context, the proposed method which suc-
cessfully kept the understandability of the Filler has under-
standability enough.

The manual (subjective) evaluation showed that the
proposed method that uses multiple hypotheses and
sentence-level knowledge could improve the readability and
understandability compared with the method that does not
use either multiple hypotheses or sentence-level knowledge.

6. Conclusions

In this paper, we presented a novel method for improving
the readability of ASR results that uses the multiple hy-
potheses method represented by a confusion network for
robustness to recognition errors and sentence-level knowl-
edge such as chunking and dependency parsing for accu-
rate sentence boundary detection. To use the sentence-level
knowledge with multiple hypotheses, we proposed to use
the novel iterative decoding algorithm proposed for confu-
sion network-based rescoring. Experimental results showed
that the effectiveness of using both multiple hypotheses and
sentence-level knowledge to improve the readability of the
ASR results in automatic and manual evaluations.

†Please note that the subjects were different among these tests
and therefore we need to be careful when comparing the number
of counts directly.

In the future, we will address taking a more sophisti-
cated transformation model to deal with the correction of
colloquial expressions like [10], which are difficult to con-
sider in an unsupervised manner. In addition, if the con-
struction of a confusion network is problematic, for exam-
ple, in real-time applications, it is better to use lattices in-
stead of confusion networks to represent multiple hypothe-
ses. In such a case, we can use the algorithm described in
[30] to incorporate sentence-level knowledge efficiently in-
stead of iterative decoding used in this paper [18]. This will
be another direction of research.

Acknowledgements

Part of this research was supported by the Global COE Pro-
gram “Frontiers of Intelligent Sensing” from the Ministry of
Education, Culture, Sports, Science and Technology, Japan.

References

[1] Y. Fujii, K. Yamamoto, N. Kitaoka, and S. Nakagawa, “Class lec-
ture summarization taking into account consectiveness of important
sentences,” Proc. Interspeech, pp.2438–2441, Sept. 2008.

[2] C. Chelba and A. Acero, “Indexing uncertainty for spoken document
search,” Proc. Interspeech, pp.61–64, Sept. 2005.

[3] S. Togashi and S. Nakagawa, “A browsing system for classroom lec-
ture speech,” Proc. Interspeech, pp.2803–2806, Sept. 2008.

[4] J. Glass, S.C.T.J. Hazen, I. Malioutov, D. Huynh, and R. Barzilay,
“Recent progress in the MIT spoken lecture processing project,”
Proc. Interspeech, pp.2553–2356, Aug. 2007.

[5] S. Kogure, H. Nishizaki, M. Tsuchiya, K. Yamamoto, S. Togashi,
and S. Nakagawa, “Speech recognition performance of CJLC: Cor-
pus of Japanese lecture contents,” Proc. Interspeech, pp.1554–1557,
Sept. 2008.

[6] T. Kawahara, Y. Nemoto, and Y. Akita, “Automatic lecture transcrip-
tion by exploiting presentation slide information for language model
adaptation,” Proc. IEEE-ICASSP, pp.4929–4932, 2008.

[7] K. Shitaoka, H. Nanjo, and T. Kawahara, “Automatic transformation
of lecture transcription into document style using statistical frame-
work,” Proc. Interspeech, pp.2881–2884, 2004.

[8] T. Hori, D. Willet, and Y. Minami, “Paraphrasing spontaneous
speech using weighted finite-state transducers,” SSPR, pp.210–222,
April 2003.

[9] G. Neubig, S. Mori, and T. Kawahara, “A WFST-based Log-linear
Framework for Speaking-style Transformation,” Proc. Interspeech,
pp.1495–1498, 2009.

[10] G. Neubig, Y. Akita, S. Mori, and T. Kawahara, “Improved statis-
tical models for SMT-based speaking style transformation,” Proc.
ICASSP, Dallas, Texas, USA, March 2010.

[11] Y. Liu, E. Shriberg, A. Stolcke, D. Hillard, M. Ostendorf, and M.
Harper, “Enriching speech recognition with automatic detection of
sentence boundaries and disfluencies,” IEEE Trans. Audio Speech
Language Process., vol.14, no.5, pp.1526–1540, Sept. 2006.

[12] A. Stolcke, Y. König, and M. Weintraub, “Explicit word error min-
imization in n-best list rescoring,” Proc. Eurospeech ’97, pp.163–
166, 1997.

[13] H. Ney and X. Aubert, “A word graph algorithm for large vocabulary
continuous speech recognition,” Proc. ICSLP ’94, pp.1355–1358,
1994.

[14] F.K. Soong and E.F. Huang, “A tree-trellis based fast search for find-
ing the Nbest sentence hypotheses in continuous speech recogni-
tion,” Proc. ICASSP ’91, pp.705–708, 1991.

[15] L. Mangu, E. Brill, and A. Stolcke, “Finding consensus in speech



FUJII et al.: IMPROVING THE READABILITY OF ASR RESULTS FOR LECTURES USING MULTIPLE HYPOTHESES AND SENTENCE-LEVEL KNOWLEDGE
1111

recognition: word error minimization and other applications of con-
fusion networkds,” Computer Speech and Language, vol.14, no.4,
pp.373–400, 2000.

[16] N. Bertoldi and M. Federico, “A New Decoder For Spoken Lan-
guage Translation based on Confusion Networkds,” Proc. ASRU,
pp.86–91, 2005.

[17] T. Hori, I.L. Hetherington, T.J. Hazen, and J.R. Glass, “Open-
vocabulary spoken utterance retrieval using confusion networkds,”
Proc. ICASSP, pp.IV-73–IV-76, 2007.

[18] A. Deoras and F. Jelinek, “Iterative decoding: A novel re-scoring
framework for confusion network,” Proc. ASRU, pp.282–286, 2009.

[19] T. Oba, T. Hori, and A. Nakamura, “Improved sequential depen-
dency analysis integrating labeling-based sentence boundary detec-
tion,” IEICE Trans. Inf. & Syst., vol.E93-D, no.5, pp.1272–1281,
May 2010.

[20] M. Shungrina, “Formatting time-aligned ASR transcripts for read-
ability,” Proc. NAACL, pp.198–206, 2010.

[21] M. Tsuchiya, S. Kogure, H. Nishizaki, K. Ohta, and S. Nakagawa,
“Developing corpus of Japanese classroom lecture speech contents,”
Proc. LREC, pp.2061–2065, June 2008.

[22] J. Lafferty, A. McCallum, and F. Pereira, “Conditional random
fields: Probabilistic models for segmenting and labeling sequence
data,” Proc. 18th International Conference on Machine Learning,
2001.

[23] J. Peng, L. Bo, and J. Xu, “Conditional neural fields,” Proc. Ad-
vances in Neural Information Processing Systems 22, pp.1419–
1427, 2009.

[24] T. Oba, T. Hori, and A. Nakamura, “Sequential dependency anal-
ysis for online spontaneous speech processing,” Speech Commun.,
vol.50, pp.616–625, July 2008.

[25] S. Furui, K. Maekawa, and H. Isahara, “A japanese national project
on spontaneous speech corpus and processing technology,” Proc.
ASR2000, pp.244–248, 2000.

[26] Y. Fujii, K. Yamamoto, and S. Nakgawa, “Large vocabulary speech
recognition system: SPOJUS++,” MUSP, March 2011.

[27] S. Nakagawa and H. Takagi, “Statistical methods for comparing
pattern recognition algorithms and comments on evaluating speech
recognition performance,” J. Acoust. Soc. Jpn., vol.50, no.10,
pp.849–854, 1994-10-01. (in Japanese).

[28] T. Shichiri, H. Nanjo, and T. Yoshimi, “Minimum bayes-risk decod-
ing with presumed word significance for speech based information
retrieval,” Proc. ICASSP, pp.1557–1560, 2008.

[29] K. Ohta, M. Tsuchiya, and S. Nakagawa, “Detection of precisely
transcribed parts from inexact transcribed corpus,” Proc. ASRU,
2011.

[30] A. Rastrow, M. Dreyer, A. Sethy, B. Ramabhadran, and M. Dredze,
“Hill climbing on speech lattices: A new rescoring framework,”
Proc. ICASSP, pp.5032–5035, 2011.

Yasuhisa Fujii graduated from Toyohashi
University of Technology with his Bachelor’s
and Master’s degree in 2007 and 2009. Since
2009, he has been studying at the Toyohashi
University of Technology as a doctoral student.
His research interest is in spoken language pro-
cessing, signal processing, pattern recognition,
and machine learning. He is a member of IPSJ,
ASJ, and IEEE.

Kazumasa Yamamoto received his B.E.,
M.E. and Dr. Eng. degrees in information and
computer sciences from the Toyohashi Univer-
sity of Technology, Toyohashi, Japan, in 1995,
1997 and 2000. From 2000 to 2007, he was a
research associate in the Department of Electri-
cal and Electronic Engineering, Faculty of En-
gineering, Shinshu University, Nagano, Japan.
Since 2007, he has been an assistant professor
in the Department of Information and Computer
Sciences, Toyohashi University of Technology,

Toyohashi, Japan. His current research interests include speech recogni-
tion and privacy protection for speech signals. He is a member of ASJ, and
IPSJ.

Seiichi Nakagawa received Dr. of Eng. de-
gree from Kyoto University in 1977. He joined
the faculty of Kyoto University in 1976 as a Re-
search Associate in the Department of Informa-
tion Sciences. From 1980 to 1983 he was an As-
sistant Professor, from 1983 to 1990 he was an
Associate Professor and since 1990 he has been
a Professor in the Department of Information
and Computer Sciences, Toyohashi University
of Technology, Toyohashi. From 1985 to 1986,
he was a Visiting Scientist in the Department of

Computer Science, Carnegie-Mellon University, Pittsburgh, USA. He re-
ceived the 1997/2001 Paper Award from the IEICE and the 1988 JC Bose
Memorial Award from the Institution of Electro, Telecomm. Engrs. His
major interests in research include automatic speech recognition/speech
processing, natural language processing, human interface and artificial in-
telligence. He is a Fellow of IPSJ.


